
Package ‘Rfssa’
January 10, 2022

Type Package

Title Functional Singular Spectrum Analysis

Version 2.0.1

Maintainer Hossein Haghbin <haghbinh@gmail.com>

URL https://github.com/haghbinh/Rfssa

Description Methods and tools for implementing univariate and multivariate functional singular spec-
trum analysis for functional time series whose variables might be observed over different dimen-
sional domains. The univariate fssa algorithm is described in Haghbin H., Najibi, S.M., Mah-
moudvand R., Trinka J., Maadooliat M. (2021) and the multivariate fssa over different dimen-
sional domains technique may be found in Trinka J., Haghbin H., and Maadooliat M. (Ac-
cepted). In addition, one may perform forecasting of univariate and multivariate fts whose vari-
ables are observed over one-dimensional domains as described in the disserta-
tion of Trinka J. (2021) and the manuscript of Trinka J., Haghbin H., Maadoo-
liat M. (2020) where the manuscript is to be submitted to a journal for publication.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.2

Imports Rcpp, fda, lattice, plotly, shiny, Rssa, hrbrthemes, ggplot2,
tibble, methods, RSpectra, httr, markdown

LinkingTo Rcpp, RcppArmadillo, RcppEigen,

Suggests knitr,

Depends R (>= 4.0.0), dplyr

NeedsCompilation yes

Author Hossein Haghbin [aut, cre] (<https://orcid.org/0000-0001-8416-2354>),
Jordan Trinka [aut],
Seyed Morteza Najibi [aut],
Mehdi Maadooliat [aut] (<https://orcid.org/0000-0002-5408-2676>)

Repository CRAN

Date/Publication 2022-01-10 00:32:44 UTC

1

https://github.com/haghbinh/Rfssa
https://orcid.org/0000-0001-8416-2354
https://orcid.org/0000-0002-5408-2676

2 *.fts

R topics documented:
*.fts . 2
+.fts . 3
-.fts . 4
Callcenter . 5
cor.fts . 6
fforecast . 7
freconstruct . 9
fssa . 10
fts . 12
fwcor . 14
Jambi . 15
launchApp . 16
load_github_data . 17
Montana . 18
plot.fssa . 18
plot.fts . 20
Rfssa . 21
wplot . 23
[.fts . 23

Index 25

*.fts Multiplication of Functional Time Series

Description

A method for functional time series (fts) pointwise multiplication and fts-scalar multiplication.
Note that if the fts is multivariate then a vector of numerics may be provided allowing for multiplica-
tion of different variables by different scalars. For example, multivariate fts-numeric multiplication
follows the form of Y*c(1,2) if Y is a bivariate fts.

Usage

S3 method for class 'fts'
Y1 * Y2

Arguments

Y1 An object of class fts or numeric.

Y2 An object of class fts or numeric.

Value

An object of class fts.

+.fts 3

See Also

fts

Examples

Not run:
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
u <- seq(0, 1, length.out = 240) # Define domain of functional data
d <- 22 # number of basis elements
Y <- fts(list(D), list(list(d, "bspline")), list(u))
plot(Y)
Ytimes <- Y * Y # multiply the functional time series by itself
plot(Ytimes)
Ytimes2 <- Y * 2 # multiply every term in the fts by 2
plot(Ytimes2)

End(Not run)

+.fts Addition of Functional Time Series

Description

A method for functional time series (fts) addition and fts-scalar addition. Note that if the fts is
multivariate then a vector of numerics may be provided allowing for addition of different scalars to
different variables. For example, multivariate fts-numeric addition follows the form of Y+c(1,2) if
Y is a bivariate fts.

Usage

S3 method for class 'fts'
Y1 + Y2

Arguments

Y1 An object of class fts or numeric.

Y2 An object of class fts or numeric.

Value

An object of class fts.

See Also

fts

4 -.fts

Examples

Not run:
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
u <- seq(0, 1, length.out = 240) # Define domain of functional data
d <- 22 # number of basis elements
Y <- fts(list(D), list(list(d, "bspline")), list(u))
plot(Y)
Yplus <- Y + Y # add the functional time series to itself
plot(Yplus)
Yplus2 <- Y + 2 # add 2 to every term in the functional time series
plot(Yplus2)

End(Not run)

-.fts Subtraction of Functional Time Series

Description

A method for functional time series (fts) subtraction and fts-scalar subtraction. Note that if the
fts is multivariate then a vector of numerics may be provided allowing for subtraction of different
scalars from different variables. For example, multivariate fts-numeric subtraction follows the form
of Y-c(1,2) if Y is a bivariate fts.

Usage

S3 method for class 'fts'
Y1 - Y2

Arguments

Y1 An object of class fts or numeric.

Y2 An object of class fts or numeric.

Value

An object of class fts.

See Also

fts

Callcenter 5

Examples

Not run:
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
u <- seq(0, 1, length.out = 240) # Define domain of functional data
d <- 22 # number of basis elements
Y <- fts(list(D), list(list(d, "bspline")), list(u))
plot(Y)
Yminus <- Y[1:4] - Y[5:8] # subtract the functional time series to itself
plot(Yminus)
Yminus2 <- Y - 2 # subtract 2 to every term in the functional time series
plot(Yminus2)

End(Not run)

Callcenter Number of Calls for a Bank.

Description

This dataset is a small call center for an anonymous bank (Brown et al., 2005). This dataset provides
the exact time of the calls that were connected to the center from January 1 to December 31 in the
year 1999. The data are aggregated into time intervals to obtain a data matrix. More precisely, the
(i,j)’th element of the data matrix contains the call volume during the jth time interval on day i.
This dataset has been analyzed in several prior studies; e.g. Brown et al. (2005), Shen and Huang
(2005), Huang et al. (2008), and Maadooliat et al. (2015). Here, the data are aggregated into time
intervals of 6 minutes. The data is hosted on GitHub and load_github_data may be used to load
the data.

Format

A dataframe with 87600 rows and 5 variables:

calls The number of calls in 6 minutes aggregated interval.

u A numeric vector to show the aggregated interval.

Date Date time when the calls counts are recorded.

Day Weekday associated with Date.

Month Month associated with Date.

References

1. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., & Zhao, L. (2005).
Statistical analysis of a telephone call center: A queueing-science perspective. Journal of the
American statistical association, 100(469), 36-50.

6 cor.fts

2. Shen, H., & Huang, J. Z. (2005). Analysis of call center arrival data using singular value
decomposition. Applied Stochastic Models in Business and Industry, 21(3), 251-263.

3. Huang, J. Z., Shen, H., & Buja, A. (2008). Functional principal components analysis via
penalized rank one approximation. Electronic Journal of Statistics, 2, 678-695.

4. Maadooliat, M., Huang, J. Z., & Hu, J. (2015). Integrating data transformation in principal
components analysis. Journal of Computational and Graphical Statistics, 24(1), 84-103.

See Also

fssa

cor.fts Correlation for Functional Time Series Objects

Description

This function finds the correlation between univariate or multivariate functional time series (fts)
objects.

Usage

cor.fts(Y1, Y2)

Arguments

Y1 An object of class fts.

Y2 An object of class fts.

Value

A scalar that is the correlation between fts objects.

See Also

fts

Examples

Not run:
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Jambi.RData")
Raw image data
NDVI <- Jambi$NDVI
EVI <- Jambi$EVI
Kernel density estimation of pixel intensity
D0_NDVI <- matrix(NA, nrow = 512, ncol = 448)
D0_EVI <- matrix(NA, nrow = 512, ncol = 448)
for (i in 1:448) {

fforecast 7

D0_NDVI[, i] <- density(NDVI[, , i], from = 0, to = 1)$y
D0_EVI[, i] <- density(EVI[, , i], from = 0, to = 1)$y

}
d <- 11
u <- seq(0, 1, length.out = 512)
Y_1 <- fts(list(D0_NDVI), list(list(d, "bspline")), list(u))
Y_2 <- fts(list(D0_EVI), list(list(d, "bspline")), list(u))
out <- cor.fts(Y_1, Y_2)
print(out)

End(Not run)

fforecast Functional Singular Spectrum Analysis Recurrent Forecasting and
Vector Forecasting

Description

This function performs functional singular spectrum analysis (FSSA) recurrent forecasting (FSSA
R-forecasting) or vector forecasting (FSSA V-forecasting) of univariate or multivariate functional
time series (fts) observed over a one-dimensional domain.

Usage

fforecast(U, groups = list(c(1)), h = 1, method = "recurrent", tol = 10^-3)

Arguments

U An object of class fssa that holds the decomposition.

groups A list of numeric vectors where each vector includes indices of elementary com-
ponents of a group used for reconstruction and forecasting.

h An integer that specifies the forecast horizon.

method A character string specifying the type of forecasting to perform either "recurrent"
or "vector".

tol A double specifying the amount of tolerated error in the approximation of the
matrix that corresponds with the operator formed using a Neumann series lever-
aged in both forecasting algorithms; see Trinka et. al. (2021) for more details.

Value

A list of objects of class fts where each fts corresponds to a forecasted group.

8 fforecast

Examples

Not run:
FSSA Forecasting
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
Define functional objects
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
N <- ncol(D)
time <- seq(ISOdate(1999, 1, 1), ISOdate(1999, 12, 31), by = "day")
K <- nrow(D)
u <- seq(0, K, length.out = K)
d <- 22
Define functional time series
Y <- fts(list(D), list(list(d, "bspline")), list(u))
plot(Y, mains = "Call Center Data")
Perfom FSSA decomposition
L <- 28
U <- fssa(Y, L)
groups <- list(1:7, 1, 2:3, 4:5, 6:7)
Perform FSSA R-forecast and FSSA V-forecast
pr_R <- fforecast(U = U, groups = groups, h = 30, method = "recurrent", tol = 10^-3)
plot(pr_R[[1]], mains = "Recurrent Forecast Group 1")
plot(pr_R[[2]], mains = "Recurrent Forecast Group 2")
plot(pr_R[[3]], mains = "Recurrent Forecast Group 3")
plot(pr_R[[4]], mains = "Recurrent Forecast Group 4")
plot(pr_R[[5]], mains = "Recurrent Forecast Group 5")

pr_V <- fforecast(U = U, groups = groups, h = 30, method = "vector", tol = 10^-3)
plot(pr_V[[1]], mains = "Vector Forecast Group 1")
plot(pr_V[[2]], mains = "Vector Forecast Group 2")
plot(pr_V[[3]], mains = "Vector Forecast Group 3")
plot(pr_V[[4]], mains = "Vector Forecast Group 4")
plot(pr_V[[5]], mains = "Vector Forecast Group 5")

MFSSA Forecasting
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Jambi.RData")
Raw image data
NDVI <- Jambi$NDVI
EVI <- Jambi$EVI
time <- Jambi$Date
Kernel density estimation of pixel intensity
D0_NDVI <- matrix(NA, nrow = 512, ncol = 448)
D0_EVI <- matrix(NA, nrow = 512, ncol = 448)
for (i in 1:448) {

D0_NDVI[, i] <- density(NDVI[, , i], from = 0, to = 1)$y
D0_EVI[, i] <- density(EVI[, , i], from = 0, to = 1)$y

}
Define functional objects
d <- 11
D <- list(D0_NDVI, D0_EVI)
B0 <- list(list(d, "bspline")

freconstruct 9

B1 <- list(d + 4, "fourier"))
U <- list(c(0, 1), c(0, 1))
Y <- fts(D, B0, B1, U)
plot(Y)
U <- fssa(Y = Y, L = 45)
groups <- list(c(1:4), c(1), c(2:3), c(4))
pr_R <- fforecast(U = U, groups = groups, h = 1, method = "recurrent")
plot(pr_R[[1]])
plot(pr_R[[2]])
plot(pr_R[[3]])
plot(pr_R[[4]])

pr_V <- fforecast(U = U, groups = groups, h = 1, method = "vector")
plot(pr_V[[1]])
plot(pr_V[[2]])
plot(pr_V[[3]])
plot(pr_V[[4]])

End(Not run)

freconstruct Reconstruction Stage of Functional Singular Spectrum Analysis

Description

This is a function for reconstructing univariate or multivariate functional time series (fts) objects
from functional singular spectrum analysis (fssa) objects (including Grouping and Hankelization
steps). The function performs the reconstruction step for univariate functional singular spectrum
analysis (ufssa) or multivariate functional singular spectrum analysis (mfssa) depending on whether
or not the input is an fssa object from ufssa or mfssa.

Usage

freconstruct(U, groups = as.list(1L:10L))

Arguments

U An object of class fssa.
groups A list of numeric vectors, each vector includes indices of elementary compo-

nents. of a group used for reconstruction.

Value

A named list of objects of class fts that are reconstructed as according to the specified groups and
a numeric vector of eigenvalues.

Note

Refer to fssa for an example on how to run this function starting from fssa objects.

10 fssa

See Also

fssa, fts,

fssa Functional Singular Spectrum Analysis

Description

This is a function which performs the decomposition (including embedding and functional SVD
steps) stage for univariate functional singular spectrum analysis (ufssa) or multivariate functional
singular spectrum analysis (mfssa). The algorithm (ufssa or mfssa) is chosen based on whether the
supplied input is a univariate or multivariate functional time series (fts) object. The type parameter
can also be set to "mfssa" if the user wishes to perform ufssa of a univariate fts object using the
mfssa code. Also note that the variables of the fts maybe observed over different dimensional
domains where the maximum dimension currently supported is two.

Usage

fssa(Y, L = NA, ntriples = 20, type = "ufssa")

Arguments

Y An object of class fts.

L A positive integer giving the window length.

ntriples A positive integer specifying the number of eigentriples to calculate in the de-
composition.

type A string indicating which type of fssa to perform. Use type="ufssa" to per-
form univariate fssa (default for univariate fts). Use type="mfssa" to perform
multivariate fssa (default for multivariate fts).

Value

An object of class fssa, which is a list of functional objects and the following components:

values A numeric vector of eigenvalues.

L The specified window length.

N The length of the functional time series.

Y The original functional time series.

fssa 11

Examples

Not run:
Univariate FSSA Example on Callcenter data
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
Define functional objects
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
N <- ncol(D)
time <- seq(ISOdate(1999, 1, 1), ISOdate(1999, 12, 31), by = "day")
K <- nrow(D)
u <- seq(0, K, length.out = K)
d <- 22 # Optimal Number of basis elements
Define functional time series
Y <- fts(list(D), list(list(d, "bspline")), list(u))
Y
plot(Y, mains = c("Sqrt of Call Center Data"))
Univariate functional singular spectrum analysis
L <- 28
U <- fssa(Y, L)
plot(U, d = 13)
plot(U, d = 9, type = "lheats")
plot(U, d = 9, type = "lcurves")
plot(U, d = 9, type = "vectors")
plot(U, d = 10, type = "periodogram")
plot(U, d = 10, type = "paired")
plot(U, d = 10, type = "wcor")
gr <- list(1, 2:3, 4:5, 6:7, 8:20)
Q <- freconstruct(U, gr)
plot(Y, mains = "Sqrt of Call Center Data")
plot(Q[[1]], mains = "1st Component")
plot(Q[[2]], mains = "2nd Component")
plot(Q[[3]], mains = "3rd Component")
plot(Q[[4]], mains = "4th Component")
plot(Q[[5]], mains = "5th Component (Noise)")

Other visualisation types for object of class "fts":

plot(Q[[1]], type = "3Dsurface", xlabels = "Intraday", tlabels = "Day", zlabels = "Output")
Visualizing the first 60 observations in the reconstructed fts.
plot(Q[[2]][1:60], type = "heatmap", xlabels = "Intraday intervals")
plot(Q[[3]][1:60], type = "3Dline", xlabels = "Intraday", tlabels = "Day", zlabels = "Output")

Multivariate FSSA Example on bivariate intraday
temperature curves and smoothed images of vegetation
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Montana.RData")
Temp <- Montana$Temp
NDVI <- Montana$NDVI
d_temp <- 11
d_NDVI <- 13
Define functional time series
Y <- fts(

12 fts

list(Temp / sd(Temp), NDVI), list(
list(d_temp, "bspline"),
list(d_NDVI, d_NDVI, "bspline", "bspline")

),
list(c(0, 23), list(c(1, 33), c(1, 33)))

)
Plot the first 100 observations
plot(Y[1:100],

xlabels = c("Time", "Lon."), ylabels = c("Temperature (\u00B0C)", "Lat."),
zlabels = c("", "NDVI"), mains = c("Temperature Curves", "NDVI Images")

)
plot(Y, types = c("3Dline", "heatmap"), vars = c(1, 1))
plot(Y, types = "heatmap", vars = 2)
plot(Y, vars = c(2, 1))
L <- 45
Multivariate functional singular spectrum analysis
U <- fssa(Y, L)
plot(U, type = "values", d = 10)
plot(U, type = "vectors", d = 4)
plot(U, type = "lheats", d = 4)
plot(U, type = "lcurves", d = 4, vars = c(1))
plot(U, type = "paired", d = 6)
plot(U, type = "wcor", d = 10)
plot(U, type = "periodogram", d = 4)
Reconstruction of multivariate fts observed over different dimensional domains
Q <- freconstruct(U = U, groups = list(c(1), c(2:3), c(4)))
Plotting reconstructions to show accuracy
plot(Q[[1]]) # mean
plot(Q[[2]]) # periodic
plot(Q[[3]]) # trend

End(Not run)

fts Functional Time Series Class

Description

This function is used to create functional time series (fts) objects from lists of discretely sampled
data, basis specifications, and grid elements which provide the domain that each variable is observed
over. Each variable is assumed to be observed over a regular and equidistant grid. In addition, each
variable in the fts is assumed to be observed over a one or two-dimensional domain.

Usage

fts(X, B, grid)

fts 13

Arguments

X A list of length p where p is a positive integer specifying the number of variables
observed in the fts. Each entry in the list should be a matrix or an array. For a
variable observed over a one-dimensional domain, the list entry should be an m
by N matrix where m is the number of sampling points for each observation and
N is the number of observations. For a variable observed over a two-dimensional
domain, the list entry should be an m_1 by m_2 by N array where m_1 is the
number of sampling points in the horizontal direction and m_2 is the number of
sampling points in the vertical direction.

B A list of length p. Each entry in the list should be either a matrix specifying the
basis for each variable or each list entry should be a list specifying the number of
basis elements and desired basis type to be used in the smoothing process. For
a variable observed over a one-dimensional domain, the list entry should be a m
by d matrix or the list entry should be a list of the form, list(d,"basistype"),
where d specifies the number basis elements and "basistype" is a string that is
set to "bspline" or "fourier" to specify the type of basis. For a variable ob-
served over a two-dimensional domain, the list entry should be a (m_1)(m_2) by
(d_1)(d_2) matrix or the list entry should be a list of the form, list(d_1,d_2,"basistype1","basistype2"),
where d_1 and d_2 specify the number of basis elements in the horizontal and
vertical directions respectively, and "basistype1" and "basistype2" are set to
be "bspline" or "fourier" which specifies the type of basis in the horizontal
direction, and "basistype2" is set to be "bspline" or "fourier" to specify
the type of basis in the horizontal and vertical directions respectively.

grid A list of length p. Each entry in the list should either be a numeric or a list
of numeric elements depending on the dimension of the domain the variable is
observed over. For a variable observed over a one-dimensional domain, the list
entry should be either an ordered (from smallest to largest) numeric of length
m giving the sampling points or a numeric of the form, c(x_1,x_2) where x_1
and x_2 are the smallest and largest values attained in the domain of the variable
respectively. In addition, these list entries can also be provided in a list. For a
variable observed over a two-dimensional domain, the list entry should be either
a list of the form, list(u,v), or of the form, list(c(x_1,x_2),v), or of the
form, list(u,c(x_3,x_4)), or of the form, list(c(x_1,x_2),c(x_3,x_4))
where u is a numeric with minimium and maximum values of x_1 and x_2 re-
spectively and v is a numeric with minimium and maximum values of x_3 and
x_4 respectively.

Note

Refer to fssa for an example on how to run this function.

See Also

fssa

14 fwcor

fwcor Weighted Correlation Matrix

Description

This function returns the weighted correlation (w-correlation) matrix for functional time series (fts)
objects that were reconstructed from functional singular spectrum analysis (fssa) objects.

Usage

fwcor(U, groups)

Arguments

U An object of class fssa.

groups A list or vector of indices which determines the grouping used for the recon-
struction in pairwise w-correlations matrix.

Value

A square matrix of w-correlation values for the reconstructed fts objects that were built from. fssa
components

See Also

fssa, freconstruct, fts, wplot

Examples

Not run:

Univariate FSSA Example on Callcenter data
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
Define functional objects
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
N <- ncol(D)
time <- seq(ISOdate(1999, 1, 1), ISOdate(1999, 12, 31), by = "day")
K <- nrow(D)
u <- seq(0, K, length.out = K)
d <- 22 # Optimal Number of basis elements
Define functional time series
Y <- fts(list(D), list(list(d, "bspline")), list(u))
Y
plot(Y, mains = c("Sqrt of Call Center Data"))
Univariate functional singular spectrum analysis
L <- 28
U <- fssa(Y, L)
ufwcor <- fwcor(U = U, groups = list(1, 2, 3))

Jambi 15

wplot(W = ufwcor)

Multivariate W-Correlation Example on Bivariate Satelite Image Data
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Jambi.RData")
Raw image data
NDVI <- Jambi$NDVI
EVI <- Jambi$EVI
time <- Jambi$Date
Kernel density estimation of pixel intensity
D0_NDVI <- matrix(NA, nrow = 512, ncol = 448)
D0_EVI <- matrix(NA, nrow = 512, ncol = 448)
for (i in 1:448) {

D0_NDVI[, i] <- density(NDVI[, , i], from = 0, to = 1)$y
D0_EVI[, i] <- density(EVI[, , i], from = 0, to = 1)$y

}
Define functional objects
d <- 11
D <- list(D0_NDVI, D0_EVI)
B0 <- list(list(d, "bspline")
B1 <- list(d + 4, "fourier"))
U <- list(c(0, 1), c(0, 1))
Y <- fts(D, B0, B1, U)
plot(Y)
U <- fssa(Y = Y, L = 45)
L <- 45
mfwcor <- fwcor(U = U, groups = list(1, 2, 3, 4))
wplot(W = mfwcor)

End(Not run)

Jambi Jambi MODIS Data

Description

This data set contains the normalized difference vegetation index (NDVI) and enhanced vegetation
index (EVI) image data from NASA’s MODerate-resolution Imaging Spectroradiometer (MODIS)
with global coverage at 250 m^2. The goal of the study is to collect raw image data of the Jambi
Province, Indonesia. Indonesia manages various forested land utilizations such as natural forest and
plantations which, in the past, have been exploited throughout the country. Greater criticisms on
forest exploitation lead to a moratorium which needs to be monitored frequently. Assessment of
woody vegetation could be taken using field surveys or remote sensing. It was found that season
is probably the most intriguing factor in vegetative land cover, especially in long-term land cover
changes (Lambin, 1999). The data was gathered starting in 2000-02-18 and ending in 2019-07-28
every 16 days. The data is hosted on GitHub and load_github_data may be used to load the data.

16 launchApp

Format

A list which contains two 33 by 33 by 448 arrays where one array is for NDVI image data and the
other is for EVI image data. The list also contains a date vector of length 448 which specifies upon
which date was each image 33 by 33 image taken.

Days 1 - 448 Pixel intensity with values between zero and one

@references

1. Lambin, E., Geist, H., Lepers, E. (1999). Dynamics of Land-Use and Land-Cover Change in
Tropical Regions Annual Review of Environment and Resources, 205-244.

Source

https://lpdaac.usgs.gov/products/mod13q1v006/

See Also

fssa

launchApp Launch the Shiny Application Demonstration

Description

This function launches an app that can be used to help an individual better understand univariate or
multivariate functional singular spectrum analysis (fssa). The app allows the user to run univariate
or multivariate functional singular spectrum analysis (depending on the entered type of parameter)
on a variety of data types including simulated and real data available through the server. The app
also has functionality that allows the user to upload their own data. The app allows the user to
compare different methods simultaneously such as multivariate singular spectrum analysis versus
univariate functional singular spectrum analysis. It also allows the user to choose the number and
types of basis elements used to estimate functional time series (fts) objects. The app supports fts
plots and fssa plots.

Usage

launchApp(type = "ufssa")

Arguments

type Type of FSSA with options of type = "ufssa" or type = "mfssa".

Value

A shiny application object.

https://lpdaac.usgs.gov/products/mod13q1v006/

load_github_data 17

Examples

Not run:

launchApp()

End(Not run)

load_github_data Load Data from GitHub Repositories

Description

This function was found in https://stackoverflow.com/questions/24846120/importing-data-into-r-
rdata-from-github and can be used to load .RData files from GitHub repositories. This function
can be used to load the Callcenter, Jambi, and Montana datasets from the Rfssa package hosted by
GitHub at https://github.com/haghbinh/Rfssa. It was found that hosting such datasets on GitHub
and not including them in the Rfssa R package saved a significant amount of space.

Usage

load_github_data(github_data_url)

Arguments

github_data_url

The GitHub url of the dataset.

Value

A dataset specified by a GitHub url.

Examples

Not run:
Loading different datasets from the Rfssa repository hosted by GitHub.
call <- load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
jambi <- load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Jambi.RData")
montana <- load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Montana.RData")

End(Not run)

18 plot.fssa

Montana Montana Intraday Temperature Curves and NDVI Images Data Set

Description

This data set contains the intraday hourly temperature curves measured in degrees celcius and nor-
malized difference vegetation index (NDVI) image data where both types of data are recorded near
Saint Mary, Montana, USA. The NDVI images are taken of a region located between longitudes
of 113.30 degrees West and 113.56 degrees west and latitudes of 48.71 degrees North and 48.78
degrees North. The intraday temperature curves are available for download from Diamond et al.
(2013) and the NDVI images were attained leveraging resources provided by Tuck et al. (2014).
For each recorded intraday temperature curve, an NDVI image was recorded on the same day,
every 16 days, starting January 1, 2008 and ending September 30, 2013. With the the threat of
global warming damaging various ecosystems, the goal of the study was to analyze trends in the
temperature and to investigate how changes in temperature effects the amount of vegetation in the
region. We discovered that leveraging both types of variables in a multivariate analysis revealed a
stronger signal extraction result and more informative patterns. The data is hosted on GitHub and
load_github_data may be used to load the data.

Format

A list which contains a 24 by 133 matrix of discrete samplings of intraday hourly temperature curves
and an array that is 33 by 33 by 133 where one 33 by 33 slice of the array is an NDVI image.

References

1. Diamond, H. J., Karl, T., Palecki, M. A., Baker, C. B., Bell, J. E., Leeper, R. D., Easter-
ling, D. R., Lawrimore, J. H., Meyers, T. P., Helfert, M. R., Goodge, G., and Thorne, P.W.
(2013). U.S. climate reference network after one decade of operations: status and assessment.
https://www.ncdc.noaa.gov/crn/qcdatasets.html. Last accessed April 2020.

2. Tuck, S. L., Phillips, H. R., Hintzen, R. E., Scharlemann, J. P., Purvis, A., and Hudson, L.
N. (2014). MODISTools – downloading and processing MODIS remotely sensed data in R.
Ecology and Evolution, 4(24):4658–4668.

See Also

fssa

plot.fssa Plot Functional Singular Spectrum Analysis Objects

Description

This is a plotting method for objects of class functional singular spectrum analysis (fssa). The
method is designed to help the user make decisions on how to do the grouping stage of univariate
or multivariate functional singular spectrum analysis.

plot.fssa 19

Usage

S3 method for class 'fssa'
plot(
x,
d = length(x$values),
idx = 1:d,
idy = idx + 1,
contrib = TRUE,
groups = as.list(1:d),
type = "values",
vars = NULL,
ylab = NA,
...

)

Arguments

x An object of class fssa.

d An integer which is the number of elementary components in the plot.

idx A vector of indices of eigen elements to plot.

idy A second vector of indices of eigen elements to plot (for type="paired").

contrib A logical where if the value is TRUE (the default), the contribution of the com-
ponent to the total variance is displayed.

groups A list or vector of indices determines grouping used for the decomposition(for
type="wcor").

type The type of plot to be displayed where possible types are:

• "values" plot the square-root of singular values (default)
• "paired" plot the pairs of eigenfunction’s coefficients (useful for the de-

tection of periodic components)
• "wcor" plot the W-correlation matrix for the reconstructed objects
• "vectors" plot the eigenfunction’s coefficients (useful for the detection of

period length)
• "lcurves" plot of the eigenfunctions (useful for the detection of period

length)
• "lheats" heatmap plot of the eigenfunctions which can be used for fts

variables observed over one or two-dimensional domains (useful for the
detection of meaningful patterns)

• "periodogram" periodogram plot (useful for the detecting the frequencies
of oscillations in functional data).

vars A numeric specifying the variable number (can be used in plotting MFSSA
"lheats" or "lcurves").

ylab The character vector of name of variables.

... Arguments to be passed to methods, such as graphical parameters.

20 plot.fts

Note

See fssa examples.

See Also

fssa, plot.fts

plot.fts Functional Time Series Visualization Tools Using Plotly

Description

This is a plotting method for univariate or multivariate functional time series (fts). This method is
designed to help the user visualize fts data using a variety of techniques that use plotly.

Usage

S3 method for class 'fts'
plot(
x,
vars = NULL,
types = NULL,
subplot = TRUE,
mains = NULL,
ylabels = NULL,
xlabels = NULL,
tlabels = NULL,
zlabels = NULL,
...

)

Arguments

x An object of class fts.

vars A numeric specifying which variables in the fts to plot. The default is to plot all
variables in succession. Note as well that variable indices may be repeated.

types A tuple of strings specifying the types of plots to be displayed where possible
types for fts variables observed over a one-dimensional domain are:

• "line" plot the fts elements in a line plot (default)
• "heatmap" plot the fts elements in a heat map which can be used for vari-

ables observed over one or two-dimensional domains
• "3Dsurface" plot the fts elements as a surface
• "3Dline" plot the fts elements in a three-dimensional line plot.

The current plot type supported for fts variables observed over a two-dimensional
domain is "heatmap". Also note that the same variable may be plotted several
times using many different type options.

Rfssa 21

subplot A logical specifying whether or not line plots should be plotted in a subplot
or not. The default is TRUE and if any other plot type is provided, the value is
switched to FALSE.

mains A tuple of strings providing the the main titles of each plot.

ylabels A tuple of strings providing the the y-axis titles of each plot.

xlabels A tuple of strings providing the the x-axis titles of each plot.

tlabels A tuple of strings providing the the time-axis titles of each plot.

zlabels A tuple of strings providing the the z-axis titles of each plot.

... arguments to be passed to methods, such as graphical parameters.

Note

For examples, see fssa

Rfssa Rfssa: A Package for Functional Singular Spectrum Analysis and Re-
lated Methods.

Description

The Rfssa package provides the collection of necessary functions to implement functional singu-
lar spectrum analysis (FSSA)-based methods for analyzing univariate and multivariate functional
time series (FTS). Univariate and multivariate FSSA are novel, non-parametric methods used to
perform decomposition and reconstruction of univariate and multivariate FTS respectively. In addi-
tion, the FSSA-based routines may be performed on FTS whose variables are observed over a one
or two-dimensional domain. Finally, one may perform FSSA recurrent or fssa vector forecasting of
univariate or multivariate FTS observed over one-dimensional domains. Forecasting of FTS whose
variables are observed over domains of dimension greater than one is under development.

Details

The use of the package starts with the decomposition of functional time series (fts) objects using
the fssa routine. Then a suitable grouping of the principal components is required for reconstruc-
tion (freconstruct) or forecasting (fforecast) which can be done heuristically by looking at the
plots of the decomposition. Once a suitable grouping is chosen, one may perform reconstruction
where the sum of all the elements between the disjoint groups approximates the original FTS. One
may also choose to perform forecasting after a grouping is chosen which returns future observations
in each FTS specified by the groups.

This version of the package leverages a new S4 object for FTS objects (fts). Along with pro-
viding the raw, sampled data, the new object may be specified using a provided basis and grid, a
requested basis and grid, or a mixture of provided and requested elements. We note that the FTS ob-
ject may be univariate or multivariate and variables may be observed over one or two-dimensional
domains. Validity checking of the S4 object constructor inputs was also added to help guide the
user. The plotting of FTS objects was also updated to allow the user to plot FTS variables observed
over two-dimensional domains. Next, the FSSA routine (fssa) was updated to perform faster by

22 Rfssa

leveraging the RSpectra and RcppEigen R packages, and the Eigen C++ package. We achieved
a roughly 20 times speed up for certain data examples. We updated the plotting of fssa objects
to allow for plotting of left singular functions that correspond with FTS variables observed over a
two-dimensional domain. We updated FSSA reconstruction freconstruct to handle FTS whose
variables are observed over one or two-dimensional domains. We also updated FTS arithmetic
(such as FTS addition, FTS subtraction, etc.) to allow the user to perform scalar-FTS arithmetic
on different variables of a multivariate FTS. In addition, we also now host the Callcenter, Jambi,
and Montana datasets on GitHub to significantly decrease the size of the package. In order to load
the data, one simply needs to use the load_github_data function. This same function can also be
used to load data from any other public GitHub repository.

The first piece of new functionality that has been added is that the user may now specify univariate
or multivariate FTS comprised of variables observed over one or two-dimensional domains. In
addition, forecasting of univariate and multivariate FTS observed over one-dimensional domains
by FSSA/MFSSA recurrent forecasting and FSSA/MFSSA vector forecasting has also been added.
We have also added in a new data set (Montana) which provides the data for a multivariate FTS
observed over different dimensional domains.

The package update also includes updates to the shiny app (launchApp) that can be used for demon-
strations of univariate or multivariate FSSA depending on the type that is specified. The app allows
the user to explore FSSA with simulated data, data that is provided on the server, or data that the
user provides. It allows the user to change parameters as they please, gives visual results of the
methods, and also allows the user to compare FSSA results to other spectrum analysis methods
such as multivariate singular spectrum analysis. The tool is easy to use and can act as a nice starting
point for a user that wishes to perform FSSA as a part of their data analysis.

References

Haghbin, H., Morteza Najibi, S., Mahmoudvand, R., Trinka, J., and Maadooliat, M. (2021). Func-
tional singular spectrum analysis. Stat. e330 STAT-20-0240.R1.

Trinka J., Haghbin H., Maadooliat M. (Accepted) Multivariate Functional Singular Spectrum Anal-
ysis: A Nonparametric Approach for Analyzing Multivariate Functional Time Series. In: Bekker
A., Ferreira, J., Arashi M., Chen D. (eds) Innovations in Multivariate Statistical Modeling: Navi-
gating Theoretical and Multidisciplinary Domains. Emerging Topics in Statistics and Biostatistics.
Springer, Cham.

Trinka J. (2021) Functional Singular Spectrum Analysis: Nonparametric Decomposition and Fore-
casting Approaches for Functional Time Series [Doctoral dissertation, Marquette University]. Pro-
Quest Dissertations Publishing.

Trinka, J., Haghbin, H., and Maadooliat, M. (2021). Functional time series forecasting: Functional
singular spectrum analysis approaches. Version 4 retrieved from https://arxiv.org/abs/2011. 13077.

See Also

fssa, freconstruct, fforecast fwcor, wplot, fts, plot.fts, plot.fssa, cor.fts, launchApp

wplot 23

wplot Weighted-Correlations Plot

Description

This function displays a plot of the weighted-correlation (w-correlation) matrix of functional time
series (fts) objects that were reconstructed from functional singular spectrum analysis (fssa) ob-
jects.

Usage

wplot(W, cuts = 20)

Arguments

W A w-correlation matrix.

cuts An integer that is the number of levels the range of w-correlation values will be
divided into.

Note

Refer to fwcor for an example on how to run this function starting from a w-correlation matrix.

See Also

fssa, freconstruct, fts, fwcor

[.fts Indexing into Functional Time Series

Description

An indexing method for functional time series (fts).

Usage

S3 method for class 'fts'
Y[i = "index"]

Arguments

Y An object of class fts.

i The index value.

24 [.fts

Value

An object of class fts.

See Also

fts

Examples

Not run:
require(Rfssa)
load_github_data("https://github.com/haghbinh/Rfssa/blob/master/data/Callcenter.RData")
D <- matrix(sqrt(Callcenter$calls), nrow = 240)
u <- seq(0, 1, length.out = 240) # Define domain of functional data
d <- 22 # number of basis elements
Y <- fts(list(D), list(list(d, "bspline")), list(u))
plot(Y)
plot(Y[10:15])

End(Not run)

Index

*.fts, 2
+.fts, 3
-.fts, 4
[.fts, 23

Callcenter, 5, 22
cor.fts, 6, 22

fforecast, 7, 21, 22
freconstruct, 9, 14, 21–23
fssa, 6, 7, 9, 10, 10, 13, 14, 16, 18–23
fts, 2–4, 6, 7, 9, 10, 12, 14, 16, 19–24
fwcor, 14, 22, 23

Jambi, 15, 22

launchApp, 16, 22
load_github_data, 5, 15, 17, 18, 22

Montana, 18, 22

plot.fssa, 18, 22
plot.fts, 20, 20, 22

Rfssa, 21

wplot, 14, 22, 23

25

	*.fts
	+.fts
	-.fts
	Callcenter
	cor.fts
	fforecast
	freconstruct
	fssa
	fts
	fwcor
	Jambi
	launchApp
	load_github_data
	Montana
	plot.fssa
	plot.fts
	Rfssa
	wplot
	[.fts
	Index

