
Package ‘Rspc’
July 30, 2018

Type Package

Title Nelson Rules for Control Charts

Version 1.2.2

Maintainer Stanislav Matousek (MSD) <rspc@merck.com>

Description Implementation of Nelson rules for control charts in 'R'. The 'Rspc' implements some Sta-
tistical Process Control methods, namely Levey-Jennings type of I (individuals) chart, She-
whart C (count) chart and Nelson rules (as described in Montgomery, D. C. (2013) Introduc-
tion to statistical quality control. Hoboken, NJ: Wiley.). Typical workflow is taking the time se-
ries, specify the control limits, and list of Nelson rules you want to evaluate. There are sev-
eral options how to modify the rules (one sided limits, numerical parameters of rules, etc.). Pack-
age is also capable of calculating the control limits from the data (so far only for i-chart and c-
chart are implemented).

BugReports https://github.com/Merck/SPC_Package/issues

Depends R (>= 3.1.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

VignetteBuilder knitr

Suggests knitr

NeedsCompilation no

Author Martin Vagenknecht (MSD) [aut],
Jindrich Soukup (MSD) [aut],
Stanislav Matousek (MSD) [aut, cre],
Janet Alvarado (MSD) [ctb, rev],
Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.,
Kenilworth, NJ, USA [cph]

Repository CRAN

Date/Publication 2018-07-30 16:20:06 UTC

1

https://github.com/Merck/SPC_Package/issues

2 CalculateLimits

R topics documented:
CalculateLimits . 2
CalculateZoneBorders . 3
EvaluateRules . 4
NelsonRules . 5
Rule1 . 6
Rule2 . 7
Rule3 . 7
Rule4 . 8
Rule5 . 9
Rule6 . 10
Rule7 . 11
Rule8 . 12
SetParameters . 13

Index 14

CalculateLimits CalculateLimits

Description

Evaluates whether to use custom limits or calculate them from the data.

Usage

CalculateLimits(x, lcl = NA, cl = NA, ucl = NA, type = "i",
controlLimitDistance = 3)

Arguments

x Numerical vector

lcl Lower control limit, single value or NA

cl Central line, single value or NA

ucl Upper control limit, single value or NA

type Type of control chart, either "i" for i-chart (default) or "c" for c-chart
controlLimitDistance

Multiple of st.dev to be used to calculate limits, possible values: 1, 2, 3 (default);
this parameter affect the interpretation of lcl and ucl parameters

Details

If at least two limits were provided, the missing ones are calculated from the them. If one or zero
limits were provided the rest is computed from data.

CalculateZoneBorders 3

Value

Named list with limits

Examples

CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')

CalculateZoneBorders CalculateZoneBorders

Description

Some Nelson rules uses so-called zones. This function calculates the borders of the zones for given
limits.

Usage

CalculateZoneBorders(limits, controlLimitDistance = 3)

Arguments

limits List of limits provided by CalculateLimits

controlLimitDistance

Multiple of st.dev to be used to calculate limits, possible values: 1, 2, 3 (default);
this parameter affect the interpretation of lcl and ucl parameters

Value

Vector of zones

Examples

limits = CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')
CalculateZoneBorders(limits)
#limits is object created by CalculateLimits() function

4 EvaluateRules

EvaluateRules EvaluateRules

Description

Evaluates the selected Nelson rules for a given numerical vector.

Usage

EvaluateRules(x, type = "i", whichRules = 1:8, lcl = NA, cl = NA,
ucl = NA, controlLimitDistance = 3, returnAllSelectedRules = F,
parRules = NULL)

Arguments

x Series to be evaluated, numerical vector

type Type of control chart, either "i" for i-chart (default) or "c" for c-chart

whichRules Selection of Nelson rules beeing evaluated, vector with numbers from 1 to 8

lcl Lower control limit, single numeric value (expected as mean - controlLimitDis-
tance * sigma), if missing the function calculates it from data

cl Central line, single numeric value (expected as mean), if missing the function
calculates it from data

ucl Upper control limit, single numeric value (expected as mean + controlLimitDis-
tance * sigma), if missing the function calculates it from data

controlLimitDistance

Multiple of st.dev to be used to calculate limits, possible values: 1, 2, 3 (default);
this parameter affect the interpretation of lcl and ucl parameters

returnAllSelectedRules

Resulting dataframe will contain all selected rules, either True or False, if miss-
ing only valid rules returned

parRules Optional parameters for specific rules, for details see SetParameters

Details

Only Rules 1-4 relevant for c-chart.
Check for non negative data for c-chart.
For controlLimitDistance less than or equal to 2 disable rule 5.
For controlLimitDistance less than or equal to 1 disable rule 5,6,8.
For returnAllSelectedRules=TRUE columns of invalid rules for given evaluation are filled with
NAs.

Value

Dataframe containing original vector and rules evaluation

NelsonRules 5

Examples

Evaluate data, use all 8 Nelson rules, limits are specified by user
EvaluateRules(x = rnorm(10), whichRules = 1:8, lcl = 0, cl = 50, ucl = 100)
#Evaluate only rule 1, 3, 5, calculate limits from data using c-chart formula,
#use 2 sigma instead of 3, modify default behaviour of rule by pars variable
#created by function SetParameters()
pars = SetParameters()
EvaluateRules(x = rpois(10, lambda = 15), type = 'c', whichRules = c(1,3,5), lcl = NA, cl = NA,
ucl = NA, controlLimitDistance = 2, parRules = pars)
pars is object of optional parameters created by SetParameters() function

NelsonRules NelsonRules

Description

Auxiliary function to calling individual Rule functions.

Usage

NelsonRules(ruleN, data, zoneB, limits, parRules = NULL, ...)

Arguments

ruleN Name of individual Rule function "Rule1" to "Rule8"

data Data to be checked, numerical vector

zoneB Vector of zones created by CalculateLimits

limits List of limit created by CalculateLimits

parRules List of optional parameters for this particular rule

... unspecified arguments of a function

Details

Handling the missing values:

Missing values are represented by the symbol NA - not available.

Rule 1: NAs do not violate this rule.

Rule 2-8: NAs are ignored, they do not break Rule evaluation. NA values are removed from the
vector, the rule function is calculated and then the NAs are returned back to it’s original position in
the vector.

Value

Result of individual Rule function with predefined parameters

6 Rule1

Rule1 Rule 1

Description

One point beyond the control limits

Usage

Rule1(x, lcl, ucl, sides, ...)

Arguments

x Numerical vector

lcl Lower control limit, single number

ucl Upper control limit, single number

sides Monitored side of the process: either "two-sided" (default), "upper" or "lower"

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

inequality used during evaluation

parametr sides is internally encoded as: 1 for "two-sided", 2 for "upper", 3 for "lower"

Value

Vector of the same length as x

Examples

Rule1(x = rnorm(10), lcl = 10, ucl = 100, sides = "two-sided")

Rule2 7

Rule2 Rule 2

Description

Nine points in a row are on one side of the central line.

Usage

Rule2(x, cl, nPoints = 9, ...)

Arguments

x Numerical vector

cl central line, single number

nPoints Sequence of consequtive points to be evaluated

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

inequality used during evaluation

Value

Vector of the same length as x

Examples

Rule2(x = rnorm(20), cl=0, nPoints = 9)

Rule3 Rule 3

Description

Six points in a row steadily increasing or decreasing.

Usage

Rule3(x, nPoints = 6, convention = 1, equalBreaksSeries = 1, ...)

8 Rule4

Arguments

x Numerical vector

nPoints Sequence of consequtive points to be evaluated

convention Calculation according to ’minitab’ or ’jmp’ (see details)
equalBreaksSeries

Equal values break consequtive series of points

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

parameter equalBreakSeries is internally encoded as: 1 for TRUE and 2 for FALSE

parameter convention is internally encoded as: 1 for ’minitab’ and 2 for ’jmp’

Difference in convention parameter is as follows:
’minitab’ - seven points in a row steadily increasing or decreasing
’jmp’ - six points in a row steadily increasing or decreasing

Value

Vector of the same length as x

Examples

Rule3(x = rnorm(20), nPoints = 6, convention = 1, equalBreaksSeries = 1)

Rule4 Rule 4

Description

Fourteen or more points in a row alternate in direction, increasing then decreasing.

Usage

Rule4(x, nPoints = 14, convention = 1, ...)

Arguments

x Numerical vector

nPoints Sequence of consequtive points to be evaluated

convention Calculation according to ’minitab’ or ’jmp’ (see details)

... unspecified arguments of a function

Rule5 9

Details

0 means: ok
1 means: violation

parameter convention is internally encoded as: 1 for ’minitab’ and 2 for ’jmp’

Difference in convention parameter is as follows:
’minitab’ - 15 or more points (14 changes of direction) in a row alternate in direction, increasing
then decreasing
’jmp’ - 14 or more points (13 changes of direction) in a row alternate in direction, increasing then
decreasing

Value

Vector of the same length as x

Examples

Rule4(x = rnorm(20), nPoints = 14,convention = 1)

Rule5 Rule 5

Description

Two out of three consecutive points beyond the 2*sigma limits on same side of center line.

Usage

Rule5(x, zoneB, minNPoints = 2, nPoints = 3, ...)

Arguments

x Numerical vector
zoneB Vector of zone borders
minNPoints Minimal number of points in a sequence violating a rule
nPoints Sequence of consequtive points to be evaluated
... unspecified arguments of a function

Details

0 means: ok
1 means: violation

inequality used during evaluation
Rule is violated also if the first two points are beyond the 2*sigma limits During calculation of
EvaluateRules function wiht controlLimitDistance <= 2, the evaluation of this rule is suppressed

10 Rule6

Value

Vector of the same length as x

Examples

limits = CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')
zones = CalculateZoneBorders(limits)
Rule5(x = rnorm(20), zoneB = zones, minNPoints = 2, nPoints = 3)
#zones is object created by function CalculateZoneBorders()

Rule6 Rule 6

Description

Four or five out of five points in a row are more than 1 standard deviation from the mean in the same
direction.

Usage

Rule6(x, zoneB, minNPoints = 4, nPoints = 5, ...)

Arguments

x Numerical vector

zoneB Vector of zone borders

minNPoints Minimal number of points in a sequence violating a rule

nPoints Sequence of consequtive points to be evaluated

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

inequality used during evaluation Rule is violated also if the first four points are beyond the 1
standard deviation from the mean During calculation of EvaluateRules function wiht controlLimit-
Distance <= 1, the evaluation of this rule is suppressed

Value

Vector of the same length as x

Rule7 11

Examples

limits = CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')
zones = CalculateZoneBorders(limits)
Rule6(x = rnorm(20), zoneB = zones, minNPoints = 4, nPoints = 5)
#zones is object created by function CalculateZoneBorders()

Rule7 Rule 7

Description

Fifteen points in a row are all within 1 standard deviation of the mean on either side of the mean.

Usage

Rule7(x, nPoints = 15, zoneB, ...)

Arguments

x Numerical vector

nPoints Sequence of consequtive points to be evaluated

zoneB Vector of zone borders

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

equality used during evaluation

Value

Vector of the same length as x

Examples

limits = CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')
zones = CalculateZoneBorders(limits)
Rule7(x = rnorm(20), zoneB = zones, nPoints = 15)
#zones is object created by function CalculateZoneBorders()

12 Rule8

Rule8 Rule 8

Description

Eight points in a row outside 1 standard deviation of the mean in both directions.

Usage

Rule8(x, nPoints = 8, zoneB, ...)

Arguments

x Numerical vector

nPoints Sequence of consequtive points to be evaluated

zoneB Vector of zone borders

... unspecified arguments of a function

Details

0 means: ok
1 means: violation

inequality used during evaluation During calculation of EvaluateRules function wiht controlLimit-
Distance <= 1, the evaluation of this rule is suppressed

Value

Vector of the same length as x

Examples

limits = CalculateLimits(x = rnorm(10), lcl = NA, cl = 100, ucl = NA, type = 'i')
zones = CalculateZoneBorders(limits)
Rule8(x = rnorm(20), zoneB = zones, nPoints = 8)
#zones is object created by function CalculateZoneBorders()

SetParameters 13

SetParameters SetParameters

Description

Creates optional parameters with default settings.

Usage

SetParameters()

Details

The function is called without any parameter. If you want to modify any or the rules’ setting, modify
the result of this function and plug it to EvaluateRules’s parRules parameter.

Value

List of optional parameters

Examples

pars <- SetParameters()
pars$Rule1$sides <- "upper"
#function doos not need any input parameters

Index

CalculateLimits, 2, 3, 5
CalculateZoneBorders, 3

EvaluateRules, 4, 13

NelsonRules, 5

Rule1, 6
Rule2, 7
Rule3, 7
Rule4, 8
Rule5, 9
Rule6, 10
Rule7, 11
Rule8, 12

SetParameters, 4, 13

14

	CalculateLimits
	CalculateZoneBorders
	EvaluateRules
	NelsonRules
	Rule1
	Rule2
	Rule3
	Rule4
	Rule5
	Rule6
	Rule7
	Rule8
	SetParameters
	Index

