Package 'RxODE'

March 23, 2022
Version 1.1.5
Title Facilities for Simulating from ODE-Based Models
Maintainer Wenping Wang wwang8198@gmail.com
Depends R (>=4.0.0)
Suggests spelling, Matrix, DT, covr, crayon, curl, data.table (>= 1.12.4), digest, dplyr ($>=0.8 .0$), ggrepel, gridExtra, htmltools, knitr, learnr, microbenchmark, nlme, remotes, rlang, rmarkdown, scales, shiny, stringi, symengine, testthat, tidyr, usethis, vdiffr, xgxr, pillar, tibble, units ($>=0.6-0$), rsconnect, devtools, patchwork

Imports PreciseSums ($>=0.3$), Rcpp ($>=0.12 .3$), assertthat, backports, checkmate, cli ($>=2.0 .0$), dparser ($>=0.1 .8$), ggplot2, inline, lotri ($>=0.3 .0$), magrittr, memoise, methods, rex, qs, sys, tools, utils
Description Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the " R Administration and Installation" manual. Also the code is mostly released under GPL. The 'VODE' and 'LSODA' are in the public domain. The information is available in the inst/COPYRIGHTS.

BugReports https://github.com/nlmixrdevelopment/RxODE/issues/
NeedsCompilation yes
VignetteBuilder knitr
License GPL (>= 3)
URL https://nlmixrdevelopment.github.io/RxODE/,
https://github.com/nlmixrdevelopment/RxODE/

RoxygenNote 7.1.2

Biarch true
LinkingTo dparser (>= 1.3.1-0), PreciseSums ($>=0.3$), RcppEigen ($>=$ 0.3.3.3.0), RcppArmadillo ($>=0.9 .300 .2 .0$), sitmo, StanHeaders (>= 2.21.0), BH

Encoding UTF-8

LazyData true
Language en-US
Author Matthew L. Fidler [aut] (https://orcid.org/0000-0001-8538-6691), Melissa Hallow [aut],
Wenping Wang [aut, cre],
Zufar Mulyukov [ctb],
Alan Hindmarsh [ctb],
Awad H. Al-Mohy [ctb],
Matt Dowle [ctb],
Cleve Moler [ctb],
David Cooley [ctb],
Drew Schmidt [ctb],
Arun Srinivasan [ctb],
Ernst Hairer [ctb],
Gerhard Wanner [ctb],
Goro Fuji [ctb],
Hadley Wickham [ctb],
Jack Dongarra [ctb],
Linda Petzold [ctb],
Martin Maechler [ctb],
Matteo Fasiolo [ctb],
Morwenn [ctb],
Nicholas J. Higham [ctb],
Roger B. Sidje [ctb],
Simon Frost [ctb],
Kevin Ushey [ctb],
Yu Feng [ctb]
Repository CRAN
Date/Publication 2022-03-23 01:10:12 UTC

R topics documented:

.rxGenFoce 5
.rxWithOptions 6
.rxWithWd 7
.setWarnIdSort 7
add.dosing 8
add.sampling 11
as.et 13R topics documented:3
cvPost 14
et 17
etExpand 21
etRbind 22
etRep 25
etSeq 28
eventTable 31
forderForceBase 33
gammap 34
gammapDer 35
gammapInv 35
gammaq 36
gammaqInv 37
genShinyApp.template 38
getRxThreads 39
invWR1d 40
logit 41
lowergamma 42
phi 43
probit 44
rinvchisq 44
rLKJ1 45
rxAllowUnload 46
rxAssignPtr 46
rxbeta 47
rxbinom 48
rxcauchy 49
rxCbindStudyIndividual 51
rxChain 52
rxchisq 53
rxClean 54
rxCompile 55
rxCreateCache 57
rxD 57
rxDelete 58
rxDerived 58
rxDfdy 60
rxEvid 61
rxexp 62
rxf 63
rxFun 64
rxgamma 66
rxgeom 67
rxGetLin 69
rxGetRxODE 69
rxHtml 70
rxIndLinState 71
rxIndLinStrategy 71
rxInv 72
rxIsCurrent 72
rxLhs 73
rxLock 73
rxNorm 74
rxnorm 74
RxODE 76
rxOptExpr 82
rxParams 83
rxPkg 86
rxpois 87
rxPp 88
rxProgress 89
rxRandNV 90
rxRateDur 91
rxReservedKeywords 92
rxRmvn 92
rxS 94
rxSetIni0 95
rxSetProd 96
rxSetProgressBar 96
rxSetSeed 97
rxSetSum 98
rxShiny 99
rxSimThetaOmega 100
rxSolve 103
rxStack 115
rxState 116
rxSumProdModel 117
rxSupportedFuns 117
rxSuppressMsg 118
rxSymInvChol 119
rxSyncOptions 120
rxSyntaxFunctions 120
rxt 121
rxTempDir 122
rxTheme 122
rxToSE 123
rxTrans 124
rxunif 125
rxUnloadAll 127
rxUse 127
rxValidate 128
rxweibull 128
rxWinSetup 130
stat_amt 130
stat_cens 132
summary.RxODE 133

```
uppergamma134
```

Index 135

```
.rxGenFoce Generate FOCE without interaction
```


Description

Generate FOCE without interaction

Usage

```
.rxGenFoce(
    obj,
    predfn,
    pkpars = NULL,
    errfn = NULL,
    init = NULL,
    pred.minus.dv = TRUE,
    sum.prod = FALSE,
    optExpression = TRUE,
    promoteLinSens = TRUE,
    theta = FALSE,
    addProp = c("combined2", "combined1")
)
```


Arguments

obj	RxODE object
predfn	Prediction function
pkpars	Pk Pars function
errfn	Error function
init	Initialization parameters for scaling.
pred.minus.dv	Boolean stating if the FOCEi objective function is based on PRED-DV (like NONMEM $)$ Default TRUE.
sum.prod	A boolean determining if RxODE should use more numerically stable sums/products.
optExpression	Optimize the model text for computer evaluation.
promoteLinSens	Promote solved linear compartment systems to sensitivity-based solutions.
theta	Calculate THETA derivatives instead of ETA derivatives. By default FALSE
addProp	one of "combined1" and "combined2"; These are the two forms of additive+proportional errors supported by monolix/nonmem: combined1: transform $(\mathrm{y})=\operatorname{transform(f)~})+\left(\mathrm{a}+\mathrm{b}^{*} \mathrm{f}^{\wedge} \wedge\right) * e p s$
	combined2: transform $(\mathrm{y})=\operatorname{transform}(\mathrm{f})+\left(\mathrm{a}^{\wedge} 2+\mathrm{b}^{\wedge} 2^{*} \mathrm{f}^{\wedge}(2 \mathrm{c})\right)^{*} \mathrm{eps}$

Value
RxODE/symengine environment

Author(s)

Matthew Fidler

Description

Temporarily set options then restore them while running code

Usage

.rxWithOptions(ops, code)

Arguments

ops	list of options that will be temporarily set for the code
code	The code to run during the sink

Value

value of code

Examples

```
.rxWithOptions(list(digits = 21), {
    print(pi)
})
print(pi)
```

\qquad
.rxWithWd Temporarily set options then restore them while running code

Description

Temporarily set options then restore them while running code

Usage

.rxWithWd(wd, code)

Arguments

wd	working directory to temporarily set the system to while evaluating the code
code	The code to run during the sink

Value

value of code

Examples

.rxWithWd(tempdir(), \{ getwd()
\})
getwd()
.setWarnIdSort Turn on/off warnings for ID sorting.

Description

Turn on/off warnings for ID sorting.

Usage

.setWarnIdSort(warnIdSort = TRUE)

Arguments

warnIdSort Boolean for if the sorting warning is turned on or off.

Value

Nothing

Author(s)

Matthew Fidler
add.dosing Add dosing to eventTable

Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr. It can also be accessed by eventTable\$add. dosing(...)

Usage

add.dosing(eventTable, dose, nbr. doses $=1 \mathrm{~L}$, dosing.interval = 24, dosing.to $=1 \mathrm{~L}$, rate $=$ NULL, amount.units = NA_character_, start.time $=0$, do.sampling = FALSE, time.units = NA_character_,)

Arguments

eventTable dose	eventTable object; When accessed from object it would be eventTable\$ numeric scalar, dose amount in amount. units;
nbr.doses dosing.interval	integer, number of doses;
	required numeric scalar, time between doses in time. units, defaults to 24 of time.units="hours";
dosing.to	integer, compartment the dose goes into (first compartment by default); for infusions, the rate of infusion (default is NULL, for bolus dosing;
rate	
amount.units	optional string indicating the dosing units. Defaults to NA to indicate as per the original EventTable definition.
start.time	required dosing start time; do.sampling
logical, should observation sampling records be added at the dosing times? De-	
faults to FALSE.	

Value

eventTable with updated dosing (note the event table will be updated anyway)

Author(s)

Matthew L. Fidler
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q & C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
    et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
```

```
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
## 2wk-on, 1wk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- seq(qd, set_units(1,"weeks"), qd) %>%
    add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
wkOnOff <- rxSolve(mod1, et)
plot(wkOnOff, C2)
## You can also repeat the cycle easily with the rep function
qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
    add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
repCycle4 <- rxSolve(mod1, et)
plot(repCycle4, C2)
```


Description

This adds a dosing event to the event table. This is provided for piping syntax through magrittr. It can also be accessed by eventTable\$add. sampling()

Usage

add.sampling(eventTable, time, time.units = NA)

Arguments

eventTable An eventTable object. When accessed from object it would be eventTable\$
time a vector of time values (in time.units).
time.units an optional string specifying the time units. Defaults to the units specified when the EventTable was initialized.

Value

eventTable with updated sampling. (Note the event table will be updated even if you don't reassign the eventTable)

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add. sampling, add. dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
```

```
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
    et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
## 2wk-on, 1wk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
```

```
et <- seq(qd, set_units(1,"weeks"), qd) %>%
        add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
wkOnOff <- rxSolve(mod1, et)
plot(wkOnOff, C2)
## You can also repeat the cycle easily with the rep function
qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
        add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
    repCycle4 <- rxSolve(mod1, et)
    plot(repCycle4, C2)
```

 as.et Coerce object to data.frame

Description

Coerce object to data.frame

Usage

as.et (x, ...)
\#\# Default S3 method:
as.et(x, ...)

Arguments

x
Object to coerce to et.
... Other parameters

Value

An event table

Sample a covariance Matrix from the Posterior Inverse Wishart distribution.

Description

Note this Inverse wishart rescaled to match the original scale of the covariance matrix.

Usage

cvPost (
nu,
omega,
$\mathrm{n}=1 \mathrm{~L}$,
omegaIsChol = FALSE,
returnChol = FALSE,
type = c("invWishart", "lkj", "separation"),
diagXformType = c("log", "identity", "variance", "nlmixrSqrt", "nlmixrLog",
"nlmixrIdentity")
)

Arguments

nu Degrees of Freedom (Number of Observations) for covariance matrix simulation.
omega Either the estimate of covariance matrix or the estimated standard deviations in matrix form each row forming the standard deviation simulated values
$\mathrm{n} \quad$ Number of Matrices to sample. By default this is 1 . This is only useful when omega is a matrix. Otherwise it is determined by the number of rows in the input omega matrix of standard deviations
omegaIsChol is an indicator of if the omega matrix is in the Cholesky decomposition. This is only used when codetype="invWishart"
returnChol Return the Cholesky decomposition of the covariance matrix sample. This is only used when codetype="invWishart"
type \quad The type of covariance posterior that is being simulated. This can be:

- invWishart The posterior is an inverse wishart; This allows for correlations between parameters to be modeled. All the uncertainty in the parameter is captured in the degrees of freedom parameter.
- 1 kj The posterior separates the standard deviation estimates (modeled outside and provided in the omega argument) and the correlation estimates. The correlation estimate is simulated with the rLKJ1(). This simulation uses the relationship eta $=(n u-1) / 2$. This is relationship based on the proof of the relationship between the restricted LKJ-distribution and inverse wishart distribution (XXXXXX). Once the correlation posterior is calculated, the estimated standard deviations are then combined with the simulated correlation matrix to create the covariance matrix.
- separation Like the 1 kj option, this separates out the estimation of the correlation and standard deviation. Instead of using the LKJ distribution to simulate the correlation, it simulates the inverse wishart of the identity matrix and converts the result to a correlation matrix. This correlation matrix is then used with the standard deviation to calculate the simulated covariance matrix.
diagXformType Diagonal transformation type. These could be:
- log The standard deviations are \log transformed, so the actual standard deviations are exp(omega)
- identity The standard deviations are not transformed. The standard deviations are not transformed; They should be positive.
- variance The variances are specified in the omega matrix; They are transformed into standard deviations.
- nlmixrSqrt These standard deviations come from an nlmixr omega matrix where $\operatorname{diag}(\operatorname{chol}(\operatorname{inv}($ omega $)))=x^{\wedge} 2$
- nlmixrLog These standard deviations come from a nlmixr omega matrix omega matrix where $\operatorname{diag}($ chol $($ solve $($ omega $)))=\exp (\mathrm{x})$
- nlmixrIdentity These standard deviations come from a nlmixr omega matrix omega matrix where $\operatorname{diag}(\operatorname{chol}($ solve(omega) $))=x$

The nlmixr transformations only make sense when there is no off-diagonal correlations modeled.

Details

If your covariance matrix is a 1 x 1 matrix, this uses an scaled inverse chi-squared which is equivalent to the Inverse Wishart distribution in the uni-directional case.

In general, the separation strategy is preferred for diagonal matrices. If the dimension of the matrix is below $10,1 \mathrm{kj}$ is numerically faster than separation method. However, the 1 kj method has densities too close to zero (XXXX) when the dimension is above 10. In that case, though computationally more expensive separation method performs better.
For matrices with modeled covariances, the easiest method to use is the inverse Wishart which allows the simulation of correlation matrices (XXXX). This method is more well suited for well behaved matrices, that is the variance components are not too low or too high. When modeling nonlinear mixed effects modeling matrices with too high or low variances are considered sub-optimal in describing a system. With these rules in mind, it is reasonable to use the inverse Wishart.

Value

a matrix $(\mathrm{n}=1)$ or a list of matrices $(\mathrm{n}>1)$

Author(s)

Matthew L.Fidler \& Wenping Wang

References

Alvarez I, Niemi J and Simpson M. (2014) Bayesian Inference for a Covariance Matrix. Conference on Applied Statistics in Agriculture. https://newprairiepress.org/cgi/viewcontent.cgi? article=1004\&context=agstatconference

Wang1 Z, Wu Y, and Chu H. (2018) On Equivalence of the LKJ distribution and the restricted Wishart distribution. arXiv:1809.04746

Examples

```
## Sample a single covariance.
draw1 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2))
## Sample 3 covariances
set.seed(42)
draw3 <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3)
## Sample 3 covariances, but return the cholesky decomposition
set.seed(42)
draw3c <- cvPost(3, matrix(c(1, .3, .3, 1), 2, 2), n = 3, returnChol = TRUE)
## Sample 3 covariances with lognormal standard deviations via LKJ
## correlation sample
cvPost(3, sapply(1:3, function(...) {
    rnorm(10)
}), type = "lkj")
## or return cholesky decomposition
cvPost(3, sapply(1:3, function(...) {
    rnorm(10)
}),
type = "lkj",
returnChol = TRUE
)
## Sample 3 covariances with lognormal standard deviations via separation
## strategy using inverse Wishart correlation sample
cvPost(3, sapply(1:3, function(...) {
    rnorm(10)
}), type = "separation")
## or returning the cholesky decomposition
cvPost(3, sapply(1:3, function(...) {
    rnorm(10)
}),
type = "separation",
returnChol = TRUE
)
```


Description

Event Table Function

Usage

```
et(x, ..., envir = parent.frame())
    ## S3 method for class 'RxODE'
    et(x, ..., envir = parent.frame())
    ## S3 method for class 'rxSolve'
    et(x, ..., envir = parent.frame())
    ## S3 method for class 'rxParams'
    et(x, ..., envir = parent.frame())
    ## Default S3 method:
    et(
        x,
        ...,
        time,
        amt,
        evid,
        cmt,
        ii,
        addl,
        ss,
        rate,
        dur,
        until,
        id,
        amountUnits,
        timeUnits,
        addSampling,
        envir = parent.frame(),
        by = NULL,
        length.out = NULL
    )
```


Arguments

This is the first argument supplied to the event table. This is named to allow et to be used in a pipe-line with arbitrary objects.

envir	Times or event tables. They can also be one of the named arguments below. the environment in which expr is to be evaluated. May also be NULL, a list, a data frame, a pairlist or an integer as specified to sys.call.
time	Time is the time of the dose or the sampling times. This can also be unspecified and is determined by the object type (list or numeric/integer).
amt	Amount of the dose. If specified, this assumes a dosing record, instead of a sampling record.
evid	Event ID; This can be:
Numeric Value	Description
0	An observation. This can also be specified as evid=obs
1	A dose observation. This can also be specified as evid=dose
2	A non-dose event. This can also be specified as evid=other
3	A reset event. This can also be specified as evid=reset.
4	Dose and reset event. This can also be specified as evid=doseReset or evid=resetDose

Note a reset event resets all the compartment values to zero and turns off all infusions.
cmt Compartment name or number. If a number, this is an integer starting at 1 . Negative compartments turn off a compartment. If the compartment is a name, the compartment name is changed to the correct state/compartment number before running the simulation. For a compartment named "-cmt" the compartment is turned off.

```
Can also specify `cmt` as `dosing.to`,
`dose.to`, `doseTo`, `dosingTo`, and
`state`.
```

When specifying a dose, this is the inter-dose interval for ss, addl and until options (described below).
The number of additional doses at a inter-dose interval after one dose.
Steady state flag; It can be one of:

Value Description

This dose is not a steady state dose
1 This dose is a steady state dose with the between/inter-dose interval of ii
2 Superposition steady state

When $s s=2$ the steady state dose that uses the super-position principle to allow more complex steady states, like 10 mg in the morning and 20 mg at night, or dosing at 8 am 12 pm and 8 pm instead of every 12 hours. Since it uses the super positioning principle, it only makes sense when you know the kinetics are linear.
All other values of SS are currently invalid.
rate When positive, this is the rate of infusion. Otherwise:

Value	Description
0	No infusion is on this record
-1	Modeled rate (in RxODE:rate $(\mathrm{cmt})=$); Can be et (rate=model).
-2	Modeled duration (in RxODE: dur(cmt) =); Can beet (dur=model) or et (rate=dur).

When a modeled bioavailability is applied to positive rates (rate >0), the duration of infusion is changed. This is because the data specify the rate and amount, the only think that modeled bioavailability can affect is duration.
If instead you want the modeled bioavailability to increase the rate of infusion instead of the duration of infusion, specify the dur instead or model the duration with rate=2.
dur Duration of infusion. When amt and dur are specified the rate is calculated from the two data items. When dur is specified instead of rate, the bioavailability changes will increase rate instead of duration.
until This is the time until the dosing should end. It can be an easier way to figure out how many additional doses are needed over your sampling period.
id A integer vector of IDs to add or remove from the event table. If the event table is identical for each ID, then you may expand it to include all the IDs in this vector. All the negative IDs in this vector will be removed.
amountUnits The units for the dosing records (amt)
timeUnits The units for the time records (time)
addSampling This is a boolean indicating if a sampling time should be added at the same time as a dosing time. By default this is FALSE.
by When there are no observations in the event table, this is the amount to increment for the observations between from and to.
length.out The number of observations to create if there isn't any observations in the event table. By default this is 200 .

Value

A new event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add. dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
        et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
```

```
    et <- seq(infusion,qd)
    infusionQd <- rxSolve(mod1, et)
    plot(infusionQd, C2)
    ## 2wk-on, 1wk-off
    qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
    et <- seq(qd, set_units(1,"weeks"), qd) %>%
    add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
    wkOnOff <- rxSolve(mod1, et)
    plot(wkOnOff, C2)
    ## You can also repeat the cycle easily with the rep function
    qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
    et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
        add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
    repCycle4 <- rxSolve(mod1, et)
    plot(repCycle4, C2)
```

 etExpand
 Expand additional doses

Description

Expand additional doses

Usage

etExpand(et)

Arguments

et Event table to expand additional doses for.

Value

New event table with addl doses expanded

Author(s)

Matthew Fidler

Examples

```
    ev <- et(amt = 3, ii = 24, until = 240)
    print(ev)
    etExpand(ev) # expands event table, but doesn't modify it
    print(ev)
    ev$expand() ## Expands the current event table and saves it in ev
```

 etRbind Combining event tables

Description

Combining event tables

Usage

etRbind(
....,
samples = c("use", "clear"),
waitII = c("smart", "+ii"),
id = c("merge", "unique")
)
\#\# S3 method for class 'rxEt'
rbind(..., deparse.level = 1)

Arguments

... The event tables and optionally time between event tables, called waiting times
samples How to handle samples when repeating an event table. The options are:

- "clear" Clear sampling records before combining the datasets
- "use" Use the sampling records when combining the datasets
waitII This determines how waiting times between events are handled. The options are:
- "smart" This "smart" handling of waiting times is the default option. In this case, if the waiting time is above the last observed inter-dose interval in the first combined event table, then the actual time between doses is given by the wait time. If it is smaller than the last observed inter-dose interval, the time between event tables is given by the inter-dose interval + the waiting time between event tables.
- " +ii " In this case, the wait time is added to the inter-dose interval no matter the length of the wait time or inter-dose interval
This is how rbind will handle IDs. There are two different types of options:
- merge with id="merge", the IDs are merged together, overlapping IDs would be merged into a single event table.
- unique with id="unique", the IDs will be renumbered so that the IDs in all the event tables are not overlapping.
deparse.level The deparse.level of a traditional rbind is ignored.

Value

An event table

Author(s)

Matthew L Fidler
Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add.dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
```

```
    d/dt(peri) = Q Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
    et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
## 2wk-on, 1wk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- seq(qd, set_units(1,"weeks"), qd) %>%
    add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
wkOnOff <- rxSolve(mod1, et)
plot(wkOnOff, C2)
## You can also repeat the cycle easily with the rep function
qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
```

```
    et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
        add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
    repCycle4 <- rxSolve(mod1, et)
    plot(repCycle4, C2)
```

 etRep Repeat an RxODE event table

Description

Repeat an RxODE event table

Usage

etRep(x , times $=1$,
length. out $=$ NA,
each = NA,
$\mathrm{n}=\mathrm{NULL}$,
wait = 0,
id = integer(0),
samples = c("clear", "use"),
waitII = c("smart", "+ii"),
ii $=24$
)
\#\# S3 method for class 'rxEt'
$\operatorname{rep}(x, \ldots)$

Arguments

x
times
length.out
each
n
wait
id

An RxODE event table
Number of times to repeat the event table
Invalid with RxODE event tables, will throw an error if used.
Invalid with RxODE event tables, will throw an error if used.
The number of times to repeat the event table. Overrides times.
Waiting time between each repeated event table. By default there is no waiting, or wait=0
A integer vector of IDs to add or remove from the event table. If the event table is identical for each ID, then you may expand it to include all the IDs in this vector. All the negative IDs in this vector will be removed.
samples How to handle samples when repeating an event table. The options are:

- "clear" Clear sampling records before combining the datasets
- "use" Use the sampling records when combining the datasets
waitII This determines how waiting times between events are handled. The options are:
- "smart" This "smart" handling of waiting times is the default option. In this case, if the waiting time is above the last observed inter-dose interval in the first combined event table, then the actual time between doses is given by the wait time. If it is smaller than the last observed inter-dose interval, the time between event tables is given by the inter-dose interval + the waiting time between event tables.
- " +ii " In this case, the wait time is added to the inter-dose interval no matter the length of the wait time or inter-dose interval
ii When specifying a dose, this is the inter-dose interval for ss, addl and until options (described below).
$\ldots \quad$ Times or event tables. They can also be one of the named arguments below.

Value

An event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add. dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
```

```
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
    et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
## 2wk-on, 1wk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- seq(qd, set_units(1,"weeks"), qd) %>%
    add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
```

```
wkOnOff <- rxSolve(mod1, et)
plot(wkOnOff, C2)
## You can also repeat the cycle easily with the rep function
qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
    add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
repCycle4 <- rxSolve(mod1, et)
plot(repCycle4, C2)
```

etSeq Sequence of event tables

Description

This combines a sequence of event tables.

Usage

etSeq(..., samples = c("clear", "use"), waitII = c("smart", "+ii"), ii = 24)
\#\# S3 method for class 'rxEt'
seq(...)

Arguments

. . .
The event tables and optionally time between event tables, called waiting times in this help document.
samples
waitII
How to handle samples when repeating an event table. The options are:

- "clear" Clear sampling records before combining the datasets
- "use" Use the sampling records when combining the datasets
This determines how waiting times between events are handled. The options are:
- "smart" This "smart" handling of waiting times is the default option. In this case, if the waiting time is above the last observed inter-dose interval in the first combined event table, then the actual time between doses is given by the wait time. If it is smaller than the last observed inter-dose interval, the time between event tables is given by the inter-dose interval + the waiting time between event tables.
- "+ii" In this case, the wait time is added to the inter-dose interval no matter the length of the wait time or inter-dose interval
If there was no inter-dose intervals found in the event table, assume that the interdose interval is given by this ii value. By default this is 24 .

Details

This sequences all the event tables in added in the argument list By default when combining the event tables the offset is at least by the last inter-dose interval in the prior event table (or ii). If you separate any of the event tables by a number, the event tables will be separated at least the wait time defined by that number or the last inter-dose interval.

Value

An event table

Author(s)

Matthew L Fidler, Wenping Wang

References

Wang W, Hallow K, James D (2015). "A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R." CPT: Pharmacometrics
\& Systems Pharmacology, 5(1), 3-10. ISSN 2163-8306, <URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728294/>.

See Also

eventTable, add.sampling, add. dosing, et, etRep, etRbind, RxODE

Examples

```
library(RxODE)
library(units)
## Model from RxODE tutorial
mod1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
```

```
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q*C2 - Q*C3;
        d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
});
## These are making the more complex regimens of the RxODE tutorial
## bid for 5 days
bid <- et(timeUnits="hr") %>%
    et(amt=10000,ii=12,until=set_units(5, "days"))
## qd for 5 days
qd <- et(timeUnits="hr") %>%
    et(amt=20000,ii=24,until=set_units(5, "days"))
## bid for 5 days followed by qd for 5 days
et <- seq(bid,qd) %>% et(seq(0,11*24,length.out=100));
bidQd <- rxSolve(mod1, et)
plot(bidQd, C2)
## Now Infusion for 5 days followed by oral for 5 days
## note you can dose to a named compartment instead of using the compartment number
infusion <- et(timeUnits = "hr") %>%
    et(amt=10000, rate=5000, ii=24, until=set_units(5, "days"), cmt="centr")
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(5, "days"), cmt="depot")
et <- seq(infusion,qd)
infusionQd <- rxSolve(mod1, et)
plot(infusionQd, C2)
## 2wk-on, 1wk-off
qd <- et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
et <- seq(qd, set_units(1,"weeks"), qd) %>%
    add.sampling(set_units(seq(0, 5.5,by=0.005),weeks))
wkOnOff <- rxSolve(mod1, et)
plot(wkOnOff, C2)
## You can also repeat the cycle easily with the rep function
qd <-et(timeUnits = "hr") %>% et(amt=10000, ii=24, until=set_units(2, "weeks"), cmt="depot")
```

```
et <- etRep(qd, times=4, wait=set_units(1,"weeks")) %>%
    add.sampling(set_units(seq(0, 12.5,by=0.005),weeks))
repCycle4 <- rxSolve(mod1, et)
plot(repCycle4, C2)
```

eventTable Create an event table object

Description

Initializes an object of class 'EventTable' with methods for adding and querying dosing and observation records

Usage

eventTable(amount.units = NA, time.units = NA)

Arguments

amount.units
string denoting the amount dosing units, e.g., "mg", "ug". Default to NA to denote unspecified units. It could also be a solved RxODE object. In that case, eventTable(obj) returns the eventTable that was used to solve the RxODE object.
time.units string denoting the time units, e.g., "hours", "days". Default to "hours".
An eventTable is an object that consists of a data.frame storing ordered timestamped events of an (unspecified) PK/PD dynamic system, units (strings) for dosing and time records, plus a list of functions to add and extract event records. Currently, events can be of two types: dosing events that represent inputs to the system and sampling time events that represent observations of the system with 'amount.units' and 'time.units', respectively.

Value

A modified data.frame with the following accessible functions:

- get.EventTable() returns the current event table
- add. dosing() adds dosing records to the event table.
- get. dosing() returns a data.frame of dosing records.
- clear.dosing() clears or deletes all dosing from event table
- 'add. sampling() adds sampling time observation records to the event table.
- get. sampling()returns a data.frame of sampled observation records.
- clear. sampling() removes all sampling from event table.
- get.obs.rec() returns a logical vector indicating whether each event record represents an observation or not.
- get. nobs() returns the number of observation (not dosing) records.
- get.units() returns a two-element character vector with the dosing and time units, respectively
- copy () makes a copy of the current event table. To create a copy of an event table object use qd2 <-qd\$copy ()
- expand() Expands the event table for multi-subject solving. This is done by qd\$expand(400) for a 400 subject data expansion

Author(s)

Matthew Fidler, Melissa Hallow and Wenping Wang

See Also

et(), RxODE()

Examples

```
# create dosing and observation (sampling) events
# QD 50mg dosing, 5 days followed by 25mg 5 days
#
qd <- eventTable(amount.units = "mg", time.units = "days")
#
qd$add.dosing(dose = 50, nbr.doses = 5, dosing.interval = 1, do.sampling = FALSE)
#
# sample the system's drug amounts hourly the first day, then every 12 hours
# for the next 4 days
qd$add.sampling(seq(from = 0, to = 1, by = 1 / 24))
qd$add.sampling(seq(from = 1, to = 5, by = 12 / 24))
#
# print(qd$get.dosing()) # table of dosing records
print(qd$get.nobs()) # number of observation (not dosing) records
#
# BID dosing, 5 days
bid <- eventTable("mg", "days") # only dosing
bid$add.dosing(
    dose = 10000, nbr.doses = 2 * 5,
    dosing.interval = 12, do.sampling = FALSE
)
#
# Use the copy() method to create a copy (clone) of an existing
# event table (simple assignments just create a new reference to
# the same event table object (closure)).
#
bid.ext <- bid$copy() # three-day extension for a 2nd cohort
bid.ext$add.dosing(
    dose = 5000, nbr.doses = 2 * 3,
    start.time = 120, dosing.interval = 12, do.sampling = FALSE
)
```

```
# You can also use the Piping operator to create a table
qd2 <- eventTable(amount.units = "mg", time.units = "days") %>%
    add.dosing(dose = 50, nbr.doses = 5, dosing.interval = 1, do.sampling = FALSE) %>%
    add.sampling(seq(from = 0, to = 1, by = 1 / 24)) %>%
    add.sampling(seq(from = 1, to = 5, by = 12 / 24))
# print(qd2$get.dosing()) # table of dosing records
print(qd2$get.nobs()) # number of observation (not dosing) records
# Note that piping with %>% will update the original table.
qd3 <- qd2 %>% add.sampling(seq(from = 5, to = 10, by = 6 / 24))
print(qd2$get.nobs())
print(qd3$get.nobs())
```


Description

Force using base order for RxODE radix sorting

Usage

forderForceBase(forceBase = FALSE)

Arguments

forceBase boolean indicating if RxODE should use R's order () for radix sorting instead of data. table's parallel radix sorting.

Value

NILL; called for side effects

Examples

forderForceBase(TRUE) \# Use base `order` for RxODE sorts
forderForceBase(FALSE) \# Use `data.table` for RxODE sorts
gammap Gammap: normalized lower incomplete gamma function

Description

This is the gamma_p from the boost library

Usage

gammap(a, z)

Arguments

a The numeric 'a' parameter in the normalized lower incomplete gamma
Z The numeric 'z' parameter in the normalized lower incomplete gamma

Details

The gamma p function is given by:
gammap $=$ lowergamma $(a, z) / \operatorname{gamma}(a)$

Value

gammap results

Author(s)

Matthew L. Fidler

Examples

```
gammap(1, 3)
gammap(1:3, 3)
gammap(1, 1:3)
```

gammapDer \quad gammapDer: derivative of gammap

Description

This is the gamma_p_derivative from the boost library

Usage

gammapDer(a, z)

Arguments

a The numeric 'a' parameter in the upper incomplete gamma
z The numeric ' z ' parameter in the upper incomplete gamma

Value

lowergamma results

Author(s)

Matthew L. Fidler

Examples

gammapDer (1:3, 3)
gammapDer (1, 1:3)

| gammapInv |
| :--- | :--- |
| gammapInv and gammapInva: Inverses of normalized gammap func-
 tion |

Description

gammapInv and gammapInva: Inverses of normalized gammap function

Usage

gammapInv(a, p)
gammapInva(x, p)

Arguments

a
p
x

The numeric 'a' parameter in the upper incomplete gamma
The numeric ' p ' parameter in the upper incomplete gamma
The numeric ' x ' parameter in the upper incomplete gamma

Details

With the equation:
$\mathrm{p}=\operatorname{gammap}(\mathrm{a}, \mathrm{x})$
The 'gammapInv' function returns a value 'x' that satisfies the equation above
The 'gammapInva' function returns a value ' q ' that satisfies the equation above NOTE: gammapInva is slow

Value

inverse gammap results

Author(s)

Matthew L. Fidler

Examples

```
    gammapInv(1:3, 0.5)
    gammapInv(1, 1:3 / 3.1)
    gammapInv(1:3, 1:3 / 3.1)
    gammapInva(1:3, 1:3 / 3.1)
```

 gammaq Gammaq: normalized upper incomplete gamma function

Description

This is the gamma_q from the boost library

Usage

gammaq(a, z)

Arguments

a
z
The numeric 'a' parameter in the normalized upper incomplete gamma
The numeric ' z ' parameter in the normalized upper incomplete gamma

Details

The gamma q function is given by:
gammaq $=$ uppergamma $(a, z) / \operatorname{gamma}(a)$

Value

gammaq results

Author(s)

Matthew L. Fidler

Examples

```
gammaq(1, 3)
gammaq(1:3, 3)
gammaq(1, 1:3)
```

gammaqInv
gammaqInv and gammaqInva: Inverses of normalized gammaq func-
tion

Description

gammaqInv and gammaqInva: Inverses of normalized gammaq function

Usage

$\operatorname{gammaqInv(a,q)}$
gammaqInva(x, q)

Arguments

a
q
The numeric 'a' parameter in the upper incomplete gamma
The numeric ' q ' parameter in the upper incomplete gamma
X
The numeric ' x ' parameter in the upper incomplete gamma

Details

With the equation:
$\mathrm{q}=\operatorname{gammaq}(\mathrm{a}, \mathrm{x})$
The 'gammaqInv' function returns a value 'x' that satisfies the equation above
The 'gammaqInva' function returns a value 'a' that satisfies the equation above
NOTE: gammaqInva is slow

Value

inverse gammaq results

Author(s)

Matthew L. Fidler

Examples

```
gammaqInv(1:3, 0.5)
gammaqInv(1, 1:3 / 3)
gammaqInv(1:3, 1:3 / 3.1)
gammaqInva(1:3, 1:3 / 3.1)
```


Description

Create a complete shiny application for exploring dosing regimens given a (hardcoded) $\mathrm{PK} / \mathrm{PD}$ model.

Usage

genShinyApp.template(appDir = "shinyExample", verbose = TRUE, ODE. config = list (ode ="model", params $=c(K A=0.294)$, inits $=c(e f f=1)$, method $=$ "lsoda", atol $=1 \mathrm{e}-08$, rtol $=1 \mathrm{e}-06$)
)
write.template.server(appDir)
write.template.ui(appDir, statevars)

Arguments

appDir a string with a directory where to store the shiny app, by default is "shinyExample". The directory appDir will be created if it does not exist.
verbose logical specifying whether to write messages as the shiny app is generated. Defaults to TRUE.

ODE.config model name compiled and list of parameters sent to rxSolve().
statevars List of statevars passed to to the write.template. ui() function. This usually isn't called directly.
A PK/PD model is defined using $\operatorname{RxODE}()$, and a set of parameters and initial values are defined. Then the appropriate R scripts for the shiny's user interface ui.R and the server logic server.R are created in the directory appDir.
The function evaluates the following PK/PD model by default:

```
C2 = centr/V2;
C3 = peri/V3;
d/dt(depot) =-KA*depot;
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
d/dt(peri) = Q*C2 - Q*C3;
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
```

This can be changed by the ODE. config parameter.
To launch the shiny app, simply issue the runApp (appDir) R command.

Value

None, these functions are used for their side effects.

Note

These functions create a simple, but working example of a dosing regimen simulation web application. Users may want to modify the code to experiment creating shiny applications for their specific RxODE models.

See Also

RxODE(), eventTable(), and the package shiny (https://shiny.rstudio.com).

Examples

```
# create the shiny app example (template)
genShinyApp.template(appDir = "myapp")
# run the shiny app
library(shiny)
# runApp("myapp") # Won't launch in environments without browsers
unlink("myapp", recursive = TRUE, force = TRUE) # remove myapp
```


Description

Get/Set the number of threads that RxODE uses

```
Usage
    getRxThreads(verbose = FALSE)
    setRxThreads(threads = NULL, percent = NULL, throttle = NULL)
    rxCores(verbose = FALSE)
```


Arguments

verbose	Display the value of relevant OpenMP settings threads NULL (default) rereads environment variables. 0 means to use all logical CPUs available. Otherwise a number $>=1$
percent	If provided it should be a number between 2 and 100 ; the percentage of logical
throttle	CPUs to use. By default on startup, 50 percent. 2 (default) means that, roughly speaking, a single thread will be used when number subjects solved for is $<=2,2$, threads when the number of all points is $<=4$, etc. The throttle is to speed up small data tasks especially when repeated
many times) by not incurring the overhead of managing multiple threads.	
The throttle will also suppress sorting which ID will be solved first when there	
are (nsubject solved)*throttle <= nthreads. In RxODE this sorting occurs to min-	
imize the time for waiting for another thread to finish. If the last item solved	
is has a long solving time, all the other solving have to wait for that last costly	
solving to occur. If the items which are likely to take more time are solved first,	
this wait is less likely to have an impact on the overall solving time.	

Value

number of threads that RxODE uses

```
invWR1d
One correlation sample from the Inverse Wishart distribution
```


Description

This correlation is constructed by transformation of the Inverse Wishart random covariate to a correlation.

Usage

invWR1d(d, nu, omegaIsChol = FALSE)

Arguments

d
The dimension of the correlation matrix
nu
Degrees of freedom of the Wishart distribution
omegaIsChol is an indicator of if the omega matrix is in the Cholesky decomposition. This is only used when codetype="invWishart"

Value

One correlation sample from the inverse wishart

Author(s)

Matthew Fidler
logit
logit and inverse logit (expit) functions

Description

logit and inverse logit (expit) functions

Usage

logit(x, low = 0, high = 1)
expit(alpha, low $=0$, high $=1$)
logitNormInfo(mean $=0$, sd $=1$, low $=0$, high $=1$, abs.tol $=1 \mathrm{e}-06, \ldots$)
probitNormInfo(mean $=0$, sd $=1$, low $=0$, high $=1$, abs.tol $=1 \mathrm{e}-06, \ldots$)

Arguments

x	Input value(s) in range [low,high] to translate -Inf to Inf
low	Lowest value in the range
high	Highest value in the range
alpha	Infinite value(s) to translate to range of [low, high]
mean	logit-scale mean
sd	logit-scale standard deviation
abs.tol	absolute accuracy requested.
\ldots	other parameters passed to integrate()

Details

logit is given by:
$\operatorname{logit}(\mathrm{p})=-\log (1 / \mathrm{p}-1)$
where:
$\mathrm{p}=\mathrm{x}$-low/high-low
expit is given by:
$\operatorname{expit}(\mathrm{p}$, low, high $)=($ high-low $) /(1+\exp (-$ alpha $))+$ low
The logitNormInfo() gives the mean, variance and coefficient of variability on the untransformed scale.

Value

values from logit and expit

Examples

$\operatorname{logit}(0.25)$
expit(-1.09)
logitNormInfo(logit(0.25), sd = 0.1)
$\operatorname{logitNormInfo(logit}(1,0,10), s d=1$, low $=0$, high $=10)$
lowergamma
lowergamma: upper incomplete gamma function

Description

This is the tgamma_lower from the boost library

Usage

lowergamma(a, z)

Arguments

a The numeric 'a' parameter in the upper incomplete gamma
z
The numeric 'z' parameter in the upper incomplete gamma

Details

The lowergamma function is given by:

$$
\operatorname{lowergamma}(a, z)=\int_{0}^{z} t^{a-1} \cdot e^{-t} d t
$$

Value

lowergamma results

Author(s)

Matthew L. Fidler

Examples

```
lowergamma(1, 3)
```

lowergamma(1:3, 3)
lowergamma(1, 1:3)
phi
Cumulative distribution of standard normal

Description

Cumulative distribution of standard normal

Usage

phi (q)

Arguments

$q \quad$ vector of quantiles.

Value

cumulative distribution of standard normal distribution

Author(s)

Matthew Fidler

Examples

```
# phi is equivalent to pnorm(x)
phi(3)
# See
pnorm(3)
# This is provided for NONMEM-like compatibility in RxODE models
```

 probit probit and inverse probit functions

Description

probit and inverse probit functions

Usage

probit(x, low = 0, high = 1)
probitInv(x, low = 0, high = 1)

Arguments

$x \quad$ Input value(s) in range [low,high] to translate -Inf to Inf
low Lowest value in the range
high Highest value in the range

Value

values from probit, probitInv and probitNormInfo

Examples

probit(0.25)
probitInv(-0.674)
probitNormInfo(probit(0.25), sd $=0.1$)
probitNormInfo(probit(1, 0, 10), sd = 1, low = 0, high = 10)
rinvchisq Scaled Inverse Chi Squared distribution

Description

Scaled Inverse Chi Squared distribution

Usage

$$
\text { rinvchisq(n = 1L, nu = } 1, \text { scale }=1 \text {) }
$$

Arguments

n	Number of random samples
nu	degrees of freedom of inverse chi square
scale	Scale of inverse chi squared distribution (default is 1).

Value

a vector of inverse chi squared deviates.

Examples

```
rinvchisq(3, 4, 1) ## Scale = 1, degrees of freedom = 4
rinvchisq(2, 4, 2) ## Scale = 2, degrees of freedom = 4
```

rLKJ1 One correlation sample from the LKJ distribution

Description

One correlation sample from the LKJ distribution

Usage

rLKJ1 (d, eta $=1$, cholesky = FALSE)

Arguments

d
eta The scaling parameter of the LKJ distribution. Must be >1. Also related to the degrees of freedom nu. eta $=(n u-1) / 2$.
cholesky boolean; If TRUE return the cholesky decomposition.

Value

A correlation sample from the LKJ distribution

Author(s)

Matthew Fidler (translated to RcppArmadillo) and Emma Schwager

rxAllowUnload Allow unloading of dlls

Description

Allow unloading of dlls

Usage

rxAllowUnload(allow)

Arguments

allow boolean indicating if garbage collection will unload of RxODE dlls.

Value

Boolean allow; called for side effects

Author(s)

Matthew Fidler

Examples

\# Garbage collection will not unload un-used RxODE dlls
rxAllowUnload(FALSE);
\# Garbage collection will unload unused RxODE dlls
rxAllowUnload(TRUE);
rxAssignPtr Assign pointer based on model variables

Description
Assign pointer based on model variables

Usage

rxAssignPtr (object = NULL)

Arguments

object RxODE family of objects

Value

nothing, called for side effects
rxbeta Simulate beta variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxbeta(shape1, shape2, $\mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

shape1 non-negative parameters of the Beta distribution.
shape2 non-negative parameters of the Beta distribution.
$n \quad$ number of observations. If length $(n)>1$, the length is taken to be the number required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

beta random deviates

Examples

```
## Use threefry engine
rxbeta(0.5, 0.5, n = 10) # with rxbeta you have to explicitly state n
rxbeta(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxbeta(1, 3)
## This example uses `rxbeta` directly in the model
rx <- RxODE({
    a <- rxbeta(2, 2)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

 rxbinom Simulate Binomial variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https: // www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxbinom(size, prob, $\mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

size number of trials (zero or more).
prob probability of success on each trial.
$\mathrm{n} \quad$ number of observations. If length $(\mathrm{n})>1$, the length is taken to be the number required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RXODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

binomial random deviates

Examples

```
## Use threefry engine
rxbinom(10, 0.9, n = 10) # with rxbinom you have to explicitly state n
rxbinom(3, 0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxbinom(4, 0.7)
## This example uses `rxbinom` directly in the model
rx <- RxODE({
    a <- rxbinom(1, 0.5)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

 rxcauchy
 Simulate Cauchy variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https: // www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxcauchy(location $=0$, scale $=1, n=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

location location and scale parameters.
scale location and scale parameters.
$\mathrm{n} \quad$ number of observations. If length $(\mathrm{n})>1$, the length is taken to be the number required.
ncores \quad Number of cores for the simulation rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RXODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed ()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

Cauchy random deviates

Examples

```
## Use threefry engine
rxcauchy(0, 1, n = 10) # with rxcauchy you have to explicitly state n
rxcauchy(0.5, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxcauchy(3)
## This example uses `rxcauchy` directly in the model
rx <- RxODE({
    a <- rxcauchy(2)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

rxCbindStudyIndividual
Bind the study parameters and individual parameters

Description

Bind the study parameters and individual parameters

Usage

rxCbindStudyIndividual(studyParameters, individualParameters)

Arguments

studyParameters
These are the study parameters, often can be generated by sampling from a population. This can be either a matrix or a data frame
individualParameters
A data frame of individual parameters

Value

Data frame that can be used in RxODE simulations

Author(s)

Matthew Fidler

Examples

```
# Function for coverting coefficient of covariance into a variance
lognCv <- function(x){log((x/100)^2+1)}
set.seed(32)
nSub <- 100
nStud <- 10
#define theta
theta <- c(lka=log(0.5), # log ka
    lCl=log(5), # log Cl
    lV=log(300) # log V
    )
#define theta Matrix
```

```
thetaMat <- lotri(lCl ~ lognCv(5),
    lV ~ lognCv(5),
    lka ~ lognCv(5))
nev <- nSub*nStud
ev1 <- data.frame(COV1=rnorm(nev,50,30),COV2=rnorm(nev,75,10),
    COV3=sample(c(1.0,2.0),nev,replace=TRUE))
tmat <-rxRmvn(nStud, theta[dimnames(thetaMat)[[1]]], thetaMat)
rxCbindStudyIndividual(tmat, ev1)
```

rxChain rxChain Chain or add item to solved system of equations

Description

Add item to solved system of equations

Usage

```
rxChain(obj1, obj2)
\#\# S3 method for class 'solveRxDll'
obj1 + obj2
```


Arguments

obj1 Solved object.
obj2 New object to be added/piped/chained to solved object.

Value

When newObject is an event table, return a new solved object with the new event table.

Author(s)

Matthew L. Fidler

rxchisq Simulate chi-squared variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www.johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxchisq(df, $n=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

df
degrees of freedom (non-negative, but can be non-integer).
$\mathrm{n} \quad$ number of observations. If length $(\mathrm{n})>1$, the length is taken to be the number required.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

chi squared random deviates

Examples

```
## Use threefry engine
```

rxchisq(0.5, $n=10)$ \# with rxchisq you have to explicitly state n rxchisq(5, $\mathrm{n}=10$, ncores $=2$) \# You can parallelize the simulation using openMP

```
    rxchisq(1)
    ## This example uses `rxchisq` directly in the model
    rx <- RxODE({
        a <- rxchisq(2)
    })
    et <- et(1, id = 1:2)
    s <- rxSolve(rx, et)
```

 rxClean Cleanup anonymous DLLs by unloading them

Description

This cleans up any RxODE loaded DLLs

Usage

rxClean(wd)

Arguments

wd
What directory should be cleaned; (DEPRECIATED), this no longer does anything.
This unloads all RxODE anonymous dlls.

Value

TRUE if successful

Author(s)

Matthew L. Fidler
rxCompile Compile a model if needed

Description

This is the compilation workhorse creating the RxODE model DLL files.

Usage

```
rxCompile(
    model,
    dir,
    prefix,
    force = FALSE,
    modName = NULL,
    package = NULL,
)
## S3 method for class 'rxModelVars'
rxCompile(
    model,
    dir = NULL,
    prefix = NULL,
    force = FALSE,
    modName = NULL,
    package = NULL,
)
## S3 method for class 'character'
rxCompile(
    model,
    dir = NULL,
    prefix = NULL,
    force = FALSE,
    modName = NULL,
    package = NULL,
    )
## S3 method for class 'rxDll'
rxCompile(model, ...)
## S3 method for class 'RxODE'
rxCompile(model, ...)
```


Arguments

model | This is the ODE model specification. It can be: |
| :--- |
| - a string containing the set of ordinary differential equations (ODE) and |
| other expressions defining the changes in the dynamic system. |
| - a file name where the ODE system equation is contained |
| An ODE expression enclosed in $\backslash\{\backslash\}$ |
| (see also the filename argument). For details, see the sections "Details" and |
| RxODE Syntax below. |
| This is the model directory where the C file will be stored for compiling. |
| If unspecified, the C code is stored in a temporary directory, |
| then the model is compiled and moved to the current directory. |
| Afterwards the C code is removed. |
| prefix |
| If specified, the C code is stored in the specified directory |
| and then compiled in that directory. The C code is not removed |
| after the DLL is created in the same directory. This can be |
| useful to debug the c-code outputs. |
| is a string indicating the prefix to use in the C based functions. If missing, it is |
| calculated based on file name, or md5 of parsed model. |
| is a boolean stating if the (re)compile should be forced if RxODE detects that |
| the models are the same as already generated. |

modName \quad| a string to be used as the model name. This string is used for naming various |
| :--- |
| aspects of the computations, including generating C symbol names, dynamic |
| libraries, etc. Therefore, it is necessary that modName consists of simple ASCII |

alphanumeric characters starting with a letter.

Value

An rxDll object that has the following components

- dllDLL path
- modelmodel specification
-. cA function to call C code in the correct context from the DLL using the .C() function.
- . callA function to call C code in the correct context from the DLL using the . Call() function.
- argsA list of the arguments used to create the rxDll object.

Author(s)

Matthew L.Fidler

See Also

RxODE()

rxCreateCache	This will create the cache directory for $R x O D E$ sions

Description

When run, if the R_user_dir for RxODE's cache isn't present, create the cache

Usage

rxCreateCache()

Value

nothing

Author(s)

Matthew Fidler

$$
r \times D
$$ Add to RxODE's derivative tables

Description

Add to RxODE's derivative tables

Usage

$r x D$ (name, derivatives)

Arguments

name Function Name
derivatives A list of functions. Each function takes the same number of arguments as the original function. The first function will construct the derivative with respect to the first argument; The second function will construct the derivitive with respect to the second argument, and so on.

Value

nothing

Author(s)

Matthew Fidler

Examples

```
## Add an arbitrary list of derivative functions
## In this case the fun(x,y) is assumed to be 0.5*x^2+0.5*y^2
rxD("fun", list(
    function(x, y) {
        return(x)
    },
    function(x, y) {
        return(y)
    }
))
```

rxDelete Delete the DLL for the model

Description

This function deletes the DLL, but doesn't delete the model information in the object.

Usage

rxDelete(obj)

Arguments

obj RxODE family of objects

Value

A boolean stating if the operation was successful.

Author(s)

Matthew L.Fidler
rxDerived Calculate derived parameters for the 1-, 2-, and 3-compartment linear models.

Description

This calculates the derived parameters based on what is provided in a data frame or arguments

Usage

rxDerived(..., verbose $=$ FALSE, digits $=0$)

Arguments

$$
\left.\begin{array}{ll}
\ldots . & \text { The input can be: } \\
\text { • A data frame with PK parameters in it; This should ideally be a data frame } \\
\text { with one pk parameter per row since it will output a data frame with one } \\
\text { PK parameter per row. }
\end{array}\right] \begin{aligned}
& \text { • PK parameters as either a vector or a scalar } \\
& \text { verbose } \\
& \text { boolean that when TRUE provides a message about the detected pk parameters } \\
& \text { and the detected compartmental model. By default this is FALSE. } \\
& \text { digits }
\end{aligned} \begin{aligned}
& \text { represents the number of significant digits for the output; If the number is zero } \\
& \text { or below (default), do not round. }
\end{aligned}
$$

Value

Return a data.frame of derived PK parameters for a 1-, 2-, or 3-compartment linear model given provided clearances and volumes based on the inferred model type.

The model parameters that will be provided in the data frame are:

- vc: Central Volume (for 1-, 2- and 3- compartment models)
- kel: First-order elimination rate (for 1-, 2-, and 3-compartment models)
- k12: First-order rate of transfer from central to first peripheral compartment; (for 2- and 3compartment models)
- k21: First-order rate of transfer from first peripheral to central compartment, (for 2- and 3compartment models)
- k13: First-order rate of transfer from central to second peripheral compartment; (3-compartment model)
- k31: First-order rate of transfer from second peripheral to central compartment (3-compartment model)
- vp: Peripheral Volume (for 2- and 3- compartment models)
- vp2: Peripheral Volume for 3rd compartment (3- compartment model)
- vss: Volume of distribution at steady state; (1-, 2-, and 3-compartment models)
- t12alpha: $t_{1 / 2, \alpha}$; (1-, 2-, and 3-compartment models)
- t12beta: $t_{1 / 2, \beta}$; (2- and 3-compartment models)
- t12gamma: $t_{1 / 2, \gamma}$; (3-compartment model)
- alpha: α; (1-, 2-, and 3-compartment models)
- beta: β; (2- and 3-compartment models)
- gamma: β; (3-compartment model)
- A: true A; (1-, 2-, and 3-compartment models)
- B: true B; (2- and 3-compartment models)
- C: true C; (3-compartment model)
- fracA: fractional A; (1-, 2-, and 3-compartment models)
- fracB: fractional B; (2- and 3-compartment models)
- fracC: fractional C; (3-compartment model)

Author(s)

Matthew Fidler and documentation from Justin Wilkins, justin.wilkins@occams.com

References

Shafer S. L. CONVERT. XLS
Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications (4th). Clipping Williams \& Wilkins, Philadelphia, 2010.

Examples

```
## Note that RxODE parses the names to figure out the best PK parameter
    params <- rxDerived(cl = 29.4, v = 23.4, Vp = 114, vp2 = 4614, q = 270, q2 = 73)
    ## That is why this gives the same results as the value before
    params <- rxDerived(CL = 29.4, V1 = 23.4, V2 = 114, V3 = 4614, Q2 = 270, Q3 = 73)
    ## You may also use micro-constants alpha/beta etc.
    params <- rxDerived(k12 = 0.1, k21 = 0.2, k13 = 0.3, k31 = 0.4, kel = 10, v = 10)
    ## or you can mix vectors and scalars
    params <- rxDerived(CL = 29.4, V = 1:3)
    ## If you want, you can round to a number of significant digits
    ## with the `digits` argument:
    params <- rxDerived(CL = 29.4, V = 1:3, digits = 2)
```

 rxDfdy Jacobian and parameter derivatives

Description

Return Jacobain and parameter derivatives

Usage

rxDfdy (obj)

Arguments

obj
RxODE family of objects

Value

A list of the jacobian parameters defined in this RxODE object.

Author(s)

Matthew L. Fidler
rxEvid EVID formatting for tibble and other places.

Description

This is to make an EVID more readable by non pharmacometricians. It displays what each means and allows it to be displayed in a tibble.

Usage

```
rxEvid(x)
as.rxEvid(x)
## S3 method for class 'rxEvid'
c(x, ...)
## S3 method for class 'rxEvid'
x[...]
## S3 method for class 'rxEvid'
as.character(x, ...)
## S3 method for class 'rxEvid'
x[[...]]
## S3 method for class 'rxRateDur'
c(x, ...)
## S3 method for class 'rxEvid'
format(x, ...)
## S3 method for class 'rxRateDur'
format(x, ...)
## S3 method for class 'rxEvid'
print(x, ...)
```


Arguments

x
Item to be converted to a RxODE EVID specification.
... Other parameters

Value

rxEvid specification

Examples

```
rxEvid(1:7)
```

rxexp Simulate exponential variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxexp(rate, $\mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

rate
n
ncores
vector of rates.
number of observations. If length $(n)>1$, the length is taken to be the number required.

Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RXODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with $r x \operatorname{SetSeed}()$

Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

exponential random deviates

Examples

```
## Use threefry engine
rxexp(0.5, n = 10) # with rxexp you have to explicitly state n
rxexp(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxexp(1)
## This example uses `rxexp` directly in the model
rx <- RxODE({
    a <- rxexp(2)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

rxf Simulate F variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https: // www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

$r x f(d f 1, d f 2, n=1 L$, ncores $=1 L)$

Arguments

df1 degrees of freedom. Inf is allowed.
df2 degrees of freedom. Inf is allowed.
$n \quad$ number of observations. If length $(n)>1$, the length is taken to be the number required.
ncores \quad Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

f random deviates

Examples

```
## Use threefry engine
rxf(0.5, 0.5, n = 10) # with rxf you have to explicitly state n
rxf(5, 1, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxf(1, 3)
## This example uses `rxf` directly in the model
rx <- RxODE({
    a <- rxf(2, 2)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```


Description

This adds a user function to RxODE that can be called. If needed, these functions can be differentiated by numerical differences or by adding the derivatives to RxODE's internal derivative table with rxD()

Usage

rxFun(name, args, cCode)
rxRmFun(name)

Arguments

$$
\begin{array}{ll}
\text { name } & \text { This gives the name of the user function } \\
\text { args } & \text { This gives the arguments of the user function } \\
\text { cCode } & \text { This is the C-code for the new function }
\end{array}
$$

Value

nothing

Author(s)

Matthew L. Fidler

Examples

```
## Right now RxODE is not aware of the function f
## Therefore it cannot translate it to symengine or
## Compile a model with it.
try(RxODE("a=fun(a,b,c)"))
## Note for this approach to work, it cannot interfere with C
## function names or reserved RxODE specical terms. Therefore
## f(x) would not work since f is an alias for bioaviability.
fun <- "
double fun(double a, double b, double c) {
    return a*a+b*a+c;
}
" ## C-code for function
rxFun("fun", c("a", "b", "c"), fun) ## Added function
## Now RxODE knows how to translate this function to symengine
rxToSE("fun(a,b,c)")
```

```
## And will take a central difference when calculating derivatives
rxFromSE("Derivative(fun(a,b,c),a)")
## Of course, you could specify the derivative table manually
rxD("fun", list(
    function(a, b, c) {
        paste0("2*", a, "+", b)
    },
    function(a, b, c) {
        return(a)
    },
    function(a, b, c) {
        return("0.0")
    }
))
rxFromSE("Derivative(fun(a,b,c),a)")
# You can also remove the functions by `rxRmFun`
rxRmFun("fun")
```


Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxgamma(shape, rate $=1 /$ scale, scale $=1, n=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

shape shape and scale parameters. Must be positive, scale strictly.
rate an alternative way to specify the scale.
scale shape and scale parameters. Must be positive, scale strictly.
$n \quad$ number of observations. If length $(n)>1$, the length is taken to be the number required.
ncores \quad Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RXODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

gamma random deviates

Examples

```
## Use threefry engine
rxgamma(0.5, n = 10) # with rxgamma you have to explicitly state n
rxgamma(5, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxgamma(1)
## This example uses `rxbeta` directly in the model
rx <- RxODE({
    a <- rxgamma(2)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

rxgeom Simulate geometric variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxgeom(prob, $\mathrm{n}=1 \mathrm{~L}$, ncores = 1L)

Arguments

prob
n
ncores
probability of success in each trial. $0<$ prob $<=1$.
number of observations. If length $(n)>1$, the length is taken to be the number required.

Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

geometric random deviates

Examples

```
## Use threefry engine
rxgeom(0.5, n = 10) # with rxgeom you have to explicitly state n
rxgeom(0.25, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxgeom(0.75)
## This example uses `rxgeom` directly in the model
rx <- RxODE({
    a <- rxgeom(0.24)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```


Description

Get the linear compartment model true function

Usage

```
rxGetLin(
    model,
    linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
    verbose = FALSE
    )
```


Arguments

model This is the ODE model specification. It can be:

- a string containing the set of ordinary differential equations (ODE) and other expressions defining the changes in the dynamic system.
- a file name where the ODE system equation is contained

An ODE expression enclosed in $\backslash\{\backslash\}$
(see also the filename argument). For details, see the sections "Details" and RxODE Syntax below.
linCmtSens The method to calculate the linCmt() solutions
verbose When TRUE be verbose with the linear compartmental model

Value

model with $\operatorname{linCmt}()$ replaced with $\operatorname{linCmtA}()$

Author(s)

Matthew Fidler

rxGetRxODE

Get RxODE model from object

Description

Get RxODE model from object

Usage

rxGetRxODE(obj)

Arguments

obj
RxODE family of objects

Value

RxODE model

Description

Format rxSolve and related objects as html.

Usage

rxHtml(x, ...)
\#\# S3 method for class 'rxSolve'
rxHtml (x, \ldots)

Arguments

x
RxODE object
... Extra arguments sent to kable

Value

html code for rxSolve object

Author(s)

Matthew L. Fidler

Description

Set the preferred factoring by state

Usage

rxIndLinState (preferred $=$ NULL)

Arguments

preferred A list of each state's preferred factorization

Value

Nothing

Author(s)

Matthew Fidler
rxIndLinStrategy This sets the inductive linearization strategy for matrix building

Description

When there is more than one state in a ODE that cannot be separated this specifies how it is incorporated into the matrix exponential.

Usage

rxIndLinStrategy (strategy = c("curState", "split"))

Arguments

strategy \quad The strategy for inductive linearization matrix building

- curState Prefer parameterizing in terms of the current state, followed by the first state observed in the term.
- split Split the parameterization between all states in the term by dividing each by the number of states in the term and then adding a matrix term for each state.

Value

Nothing

Author(s)

Matthew L. Fidler
rxInv Invert matrix using RcppArmadillo.

Description

Invert matrix using RcppArmadillo.

Usage

rxInv(matrix)

Arguments

matrix matrix to be inverted.

Value

inverse or pseudo inverse of matrix.

Description

Checks if the RxODE object was built with the current build

Usage

rxIsCurrent(obj)

Arguments

obj RxODE family of objects

Value

boolean indicating if this was built with current RxODE

rxLhs Left handed Variables

Description

This returns the model calculated variables

Usage

rxLhs(obj)

Arguments

obj RxODE family of objects

Value

a character vector listing the calculated parameters

Author(s)

Matthew L.Fidler

See Also
RxODE

> rxLock Lock/unlocking of RxODE dll file

Description

Lock/unlocking of RxODE dll file

Usage

rxLock(obj)
rxUnlock(obj)

Arguments

obj A RxODE family of objects

Value
nothing; called for side effects
rxNorm Get the normalized model

Description

This get the syntax preferred model for processing

Usage

rxNorm(obj, condition $=$ NULL, removeInis, removeJac, removeSens)

Arguments

obj
RxODE family of objects
condition Character string of a logical condition to use for subsetting the normalized model. When missing, and a condition is not set via rxCondition, return the whole code with all the conditional settings intact. When a condition is set with rxCondition, use that condition.
removeInis A boolean indicating if parameter initialization will be removed from the model
removeJac A boolean indicating if the Jacobians will be removed.
removeSens A boolean indicating if the sensitivities will be removed.

Value

Normalized Normal syntax (no comments)

Author(s)

Matthew L. Fidler

rxnorm | Simulate random normal variable from threefry/vandercorput genera- |
| :--- |
| tor | tor

Description

Simulate random normal variable from threefry/vandercorput generator

Usage

rxnorm(mean $=0$, sd $=1, \mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)
$r x n o r m V(m e a n=0, s d=1, n=1 L, ~ n c o r e s=1 L)$

Arguments

mean	vector of means.
$s d$	vector of standard deviations.
n	number of observations
ncores	Number of cores for the simulation \quadconorm simulates using the threefry sitmo generator; rxnormV uses the vander-

Value

normal random number deviates

Examples

```
## Use threefry engine
rxnorm(n = 10) # with rxnorm you have to explicitly state n
rxnorm(n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxnorm(2, 3) ## The first 2 arguments are the mean and standard deviation
## This example uses `rxnorm` directly in the model
rx <- RxODE({
    a <- rxnorm()
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
## Use vandercorput generator
rxnormV(n = 10) # with rxnorm you have to explicitly state n
rxnormV(n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxnormV(2, 3) ## The first 2 arguments are the mean and standard deviation
## This example uses `rxnormV` directly in the model
rx <- RxODE({
    a <- rxnormV()
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```


Description

Create a dynamic ODE-based model object suitably for translation into fast C code

```
Usage
    RxODE(
        model,
        modName = basename(wd),
        wd = getwd(),
        filename = NULL,
        extraC = NULL,
        debug = FALSE,
        calcJac = NULL,
        calcSens = NULL,
        collapseModel = FALSE,
        package = NULL,
        ..,
    linCmtSens = c("linCmtA", "linCmtB", "linCmtC"),
        indLin = FALSE,
        verbose = FALSE
    )
```


Arguments

model
wd

This is the ODE model specification. It can be:

- a string containing the set of ordinary differential equations (ODE) and other expressions defining the changes in the dynamic system.
- a file name where the ODE system equation is contained

An ODE expression enclosed in $\backslash\{\backslash\}$
(see also the filename argument). For details, see the sections "Details" and RxODE Syntax below.
modName a string to be used as the model name. This string is used for naming various aspects of the computations, including generating C symbol names, dynamic libraries, etc. Therefore, it is necessary that modName consists of simple ASCII alphanumeric characters starting with a letter.
character string with a working directory where to create a subdirectory according to modName. When specified, a subdirectory named after the "modName.d" will be created and populated with a C file, a dynamic loading library, plus various other working files. If missing, the files are created (and removed) in the temporary directory, and the RxODE DLL for the model is created in the current directory named rx_?????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691e1e_i386.dll

filename	A file name or connection object where the ODE-based model specification re- sides. Only one of model or filename may be specified.
extraC	Extra c code to include in the model. This can be useful to specify functions in the model. These C functions should usually take double precision arguments, and return double precision values.
debug	is a boolean indicating if the executable should be compiled with verbose de- bugging information turned on. boolean indicating if RxODE will calculate the Jacobain according to the spec- ified ODEs.
calcJac	boolean indicating if RxODE will calculate the sensitivities according to the specified ODEs.
calcSens	
collapseModel	boolean indicating if RxODE will remove all LHS variables when calculating sensitivities.
package	Package name for pre-compiled binaries. ignored arguments.
linCmtSens	The method to calculate the linCmt() solutions
indLin	Calculate inductive linearization matrices and compile with inductive lineariza- tion support.
verbose	When TRUE be verbose with the linear compartmental model

Details

The $R x$ in the name RxODE is meant to suggest the abbreviation $R x$ for a medical prescription, and thus to suggest the package emphasis on pharmacometrics modeling, including pharmacokinetics (PK), pharmacodynamics (PD), disease progression, drug-disease modeling, etc.
The ODE-based model specification may be coded inside a character string or in a text file, see Section RxODE Syntax below for coding details. An internal RxODE compilation manager object translates the ODE system into C, compiles it, and dynamically loads the object code into the current R session. The call to RxODE produces an object of class RxODE which consists of a list-like structure (environment) with various member functions (see Section Value below).

For evaluating RxODE models, two types of inputs may be provided: a required set of time points for querying the state of the ODE system and an optional set of doses (input amounts). These inputs are combined into a single event table object created with the function eventTable() or et ().
An RxODE model specification consists of one or more statements optionally terminated by semicolons ; and optional comments (comments are delimited by \# and an end-of-line).

A block of statements is a set of statements delimited by curly braces, $\{\ldots\}$.
Statements can be either assignments, conditional if/else if/else, while loops (can be exited by break), special statements, or printing statements (for debugging/testing)

Assignment statements can be:

- simple assignments, where the left hand is an identifier (i.e., variable)
- special time-derivative assignments, where the left hand specifies the change of the amount in the corresponding state variable (compartment) with respect to time e.g., $\mathrm{d} / \mathrm{dt}(\mathrm{depot})$:
- special initial-condition assignments where the left hand specifies the compartment of the initial condition being specified, e.g. $\operatorname{depot}(0)=0$
- special model event changes including bioavailability $(f($ depot $)=1)$, lag time (alag $($ depot $)=0)$, modeled rate (rate $($ depot $)=2$) and modeled duration (dur (depot) $=2$). An example of these model features and the event specification for the modeled infusions the RxODE data specification is found in RxODE events vignette.
- special change point syntax, or model times. These model times are specified by mtime(var)=time
- special Jacobian-derivative assignments, where the left hand specifies the change in the compartment ode with respect to a variable. For example, if $d / d t(y)=d y$, then a Jacobian for this compartment can be specified as $d f(y) / d y(d y)=1$. There may be some advantage to obtaining the solution or specifying the Jacobian for very stiff ODE systems. However, for the few stiff systems we tried with LSODA, this actually slightly slowed down the solving.

Note that assignment can be done by $=,<-$ or \sim.
When assigning with the \sim operator, the simple assignments and time-derivative assignments will not be output.

Special statements can be:

- Compartment declaration statements, which can change the default dosing compartment and the assumed compartment number(s) as well as add extra compartment names at the end (useful for multiple-endpoint nlmixr models); These are specified by cmt (compartmentName)
- Parameter declaration statements, which can make sure the input parameters are in a certain order instead of ordering the parameters by the order they are parsed. This is useful for keeping the parameter order the same when using 2 different ODE models. These are specified by param(par1, par2,...)

An example model is shown below:

```
# simple assignment
C2 = centr/V2;
# time-derivative assignment
d/dt(centr) = F*KA*depot - CL*C2 - Q*C2 + Q*C3;
```

Expressions in assignment and if statements can be numeric or logical, however, no character nor integer expressions are currently supported.

Numeric expressions can include the following numeric operators $+,-, *, /, \wedge$ and those mathematical functions defined in the C or the R math libraries (e.g., fabs, exp, log, sin, abs).
You may also access the R's functions in the R math libraries, like lgammafn for the log gamma function.
The RxODE syntax is case-sensitive, i.e., $A B C$ is different than $a b c, A b c, A B c$, etc.

Identifiers:

Like R, Identifiers (variable names) may consist of one or more alphanumeric, underscore _ or period . characters, but the first character cannot be a digit or underscore _.
Identifiers in a model specification can refer to:

- State variables in the dynamic system (e.g., compartments in a pharmacokinetics model).
- Implied input variable, t (time), tl ast (last time point), and podo (oral dose, in the undocumented case of absorption transit models).
- Special constants like pi or R's predefined constants.
- Model parameters (e.g., ka rate of absorption, CL clearance, etc.)
- Others, as created by assignments as part of the model specification; these are referred as LHS (left-hand side) variable.

Currently, the RxODE modeling language only recognizes system state variables and "parameters", thus, any values that need to be passed from R to the ODE model (e.g., age) should be either passed in the params argument of the integrator function $r x \operatorname{Solve}()$ or be in the supplied event data-set.
There are certain variable names that are in the RxODE event tables. To avoid confusion, the following event table-related items cannot be assigned, or used as a state but can be accessed in the RxODE code:

- cmt
- dvid
- addl
- ss
- rate
- id

However the following variables are cannot be used in a model specification:

- evid
- ii

Sometimes RxODE generates variables that are fed back to RxODE. Similarly, nlmixr generates some variables that are used in nlmixr estimation and simulation. These variables start with the either the $r \times$ or nlmixr prefixes. To avoid any problems, it is suggested to not use these variables starting with either the $r x$ or nlmixr prefixes.

Logical Operators:

Logical operators support the standard R operators $==,!=>=<=>$ and $<$. Like R these can be in if() or while() statements, ifelse() expressions. Additionally they can be in a standard assignment. For instance, the following is valid:

```
cov1 = covm*(sexf == "female") + covm*(sexf != "female")
```

Notice that you can also use character expressions in comparisons. This convenience comes at a cost since character comparisons are slower than numeric expressions. Unlike R, as .numeric or as.integer for these logical statements is not only not needed, but will cause an syntax error if you try to use the function.

Value

An object (environment) of class RxODE (see Chambers and Temple Lang (2001)) consisting of the following list of strings and functions:

```
* `model` a character string holding the source model specification.
* `get.modelVars`a function that returns a list with 3 character
    vectors, `params`, `state`, and `lhs` of variable names used in the model
```

specification. These will be output when the model is computed (i.e., the ODE solved by integration).

* `solve`\{this function solves (integrates) the ODE. This is done by passing the code to [rxSolve()]. This is as if you called ‘rxSolve(RxODEobject, ...)', but returns a matrix instead of a rxSolve object.
`params`: a numeric named vector with values for every parameter in the ODE system; the names must correspond to the parameter identifiers used in the ODE specification;
`events`: an `eventTable` object describing the input (e.g., doses) to the dynamic system and observation sampling time points (see [eventTable()]);
`inits`: a vector of initial values of the state variables
(e.g., amounts in each compartment), and the order in this vector must be the same as the state variables (e.g., PK/PD compartments);
'stiff': a logical ('TRUE` by default) indicating whether the ODE system is stiff or not.

For stiff ODE systems (`stiff = TRUE`), `RxODE` uses
the LSODA (Livermore Solver for Ordinary Differential Equations) Fortran package, which implements an automatic method switching for stiff and non-stiff problems along the integration interval, authored by Hindmarsh and Petzold (2003).

For non-stiff systems (`stiff = FALSE`), `RxODE` uses `DOP853`, an explicit Runge-Kutta method of order $8(5,3)$ of Dormand and Prince as implemented in C by Hairer and Wanner (1993).
`trans_abs`: a logical (`FALSE` by default) indicating whether to fit a transit absorption term
(TODO: need further documentation and example);
`atol`: a numeric absolute tolerance (1e-08 by default);
`rtol`: a numeric relative tolerance (1e-06 by default).e
The output of \dQuote\{solve\} is a matrix with as many rows as there are sampled time points and as many columns as system variables (as defined by the ODEs and additional assignments in the RxODE model code).\}

* `isValid` a function that (naively) checks for model validity, namely that the C object code reflects the latest model
specification.
* 'version' a string with the version of the `RxODE'
object (not the package).
* ‘dynLoad`a function with one`force = FALSE` argument that dynamically loads the object code if needed.
* ‘dynUnload` a function with no argument that unloads
the model object code.
* 'delete` removes all created model files, including C and DLL files. The model object is no longer valid and should be removed, e.g., 'rm(m1)`.
* ‘run`deprecated, use`solve`.
* `get.index' deprecated.
* `getObj` internal (not user callable) function.

Author(s)

Melissa Hallow, Wenping Wang and Matthew Fidler

References

Chamber, J. M. and Temple Lang, D. (2001) Object Oriented Programming in R. R News, Vol. 1, No. 3, September 2001. https://cran.r-project.org/doc/Rnews/Rnews_2001-3.pdf.
Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.
Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems. 2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).
Plevyak, J. dparser, http://dparser. sourceforge.net. Web. 12 Oct. 2015.

See Also

eventTable(), et(), add.sampling(), add.dosing()

Examples

```
# Step 1 - Create a model specification
ode <- "
    # A 4-compartment model, 3 PK and a PD (effect) compartment
    # (notice state variable names 'depot', 'centr', 'peri', 'eff')
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
"
```

```
m1 <- RxODE(model = ode)
print(m1)
# Step 2 - Create the model input as an EventTable,
# including dosing and observation (sampling) events
# QD (once daily) dosing for 5 days.
qd <- eventTable(amount.units = "ug", time.units = "hours")
qd$add.dosing(dose = 10000, nbr.doses = 5, dosing.interval = 24)
# Sample the system hourly during the first day, every 8 hours
# then after
qd$add.sampling(0:24)
qd$add.sampling(seq(from = 24 + 8, to = 5 * 24, by = 8))
# Step 3 - set starting parameter estimates and initial
# values of the state
theta <-
    c(
        KA = .291, CL = 18.6,
        V2 = 40.2, Q = 10.5, V3 = 297.0,
        Kin = 1.0, Kout = 1.0, EC50 = 200.0
    )
# init state variable
inits <- c(0, 0, 0, 1)
# Step 4 - Fit the model to the data
qd.cp <- m1$solve(theta, events = qd, inits)
head(qd.cp)
# This returns a matrix. Note that you can also
# solve using name initial values. For example:
inits <- c(eff = 1)
qd.cp <- solve(m1, theta, events = qd, inits)
print(qd.cp)
plot(qd.cp)
```


Description

This optimizes RxODE code for computer evaluation by only calculating redundant expressions once.

Usage

rxOptExpr(x, msg = "model")

Arguments

x
msg

RxODE model that can be accessed by rxNorm
This is the name of type of object that RxODE is optimizing that will in the message when optimizing. For example "model" will produce the following message while optimizing the model:
finding duplicate expressions in model...

Value

Optimized RxODE model text. The order and type lhs and state variables is maintained while the evaluation is sped up. While parameters names are maintained, their order may be modified.

Author(s)

Matthew L. Fidler

rxParams

Description

This returns the model's parameters that are required to solve the ODE system, and can be used to pipe parameters into an RxODE solve

Usage

```
    rxParams(obj, ...)
    ## S3 method for class 'RxODE'
    rxParams(
        obj,
        constants = TRUE,
    ...,
    params = NULL,
    inits = NULL,
    iCov = NULL,
    keep = NULL,
    thetaMat = NULL,
```

```
    omega = NULL,
    dfSub = NULL,
    sigma = NULL,
    dfObs = NULL,
    nSub = NULL,
    nStud = NULL
)
## S3 method for class 'rxSolve'
rxParams(
    obj,
    constants = TRUE,
    params = NULL,
    inits = NULL,
    iCov = NULL,
    keep = NULL,
    thetaMat = NULL,
    omega = NULL,
    dfSub = NULL,
    sigma = NULL,
    dfObs = NULL,
    nSub = NULL,
    nStud = NULL
)
## S3 method for class 'rxEt'
rxParams(
    obj,
    ...,
    params = NULL,
    inits = NULL,
    iCov = NULL,
    keep = NULL,
    thetaMat = NULL,
    omega = NULL,
    dfSub = NULL,
    sigma = NULL,
    dfObs = NULL,
    nSub = NULL,
    nStud = NULL
)
rxParam(obj, ...)
```


Arguments

obj RxODE family of objects

	Other arguments including scaling factors for each compartment. This includes S\# = numeric will scale a compartment \# by a dividing the compartment amount by the scale factor, like NONMEM.
constants	is a boolean indicting if constants should be included in the list of parameters. Currently RxODE parses constants into variables in case you wish to change them without recompiling the RxODE model.
params	a numeric named vector with values for every parameter in the ODE system; the names must correspond to the parameter identifiers used in the ODE specification;
inits	a vector of initial values of the state variables (e.g., amounts in each compartment), and the order in this vector must be the same as the state variables (e.g., PK/PD compartments);
iCov	A data frame of individual non-time varying covariates to combine with the events dataset by merge.
keep	Columns to keep from either the input dataset or the iCov dataset. With the iCov dataset, the column is kept once per line. For the input dataset, if any records are added to the data LOCF (Last Observation Carried forward) imputation is performed.
thetaMat	Named theta matrix.
omega	Estimate of Covariance matrix. When omega is a list, assume it is a block matrix and convert it to a full matrix for simulations.
dfSub	Degrees of freedom to sample the between subject variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
sigma	Named sigma covariance or Cholesky decomposition of a covariance matrix. The names of the columns indicate parameters that are simulated. These are simulated for every observation in the solved system.
dfObs	Degrees of freedom to sample the unexplained variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
nSub	Number between subject variabilities (ETAs) simulated for every realization of the parameters.
nStud	Number virtual studies to characterize uncertainty in estimated parameters.

Value

When extracting the parameters from an RxODE model, a character vector listing the parameters in the model.

Author(s)

Matthew L.Fidler

rxPkg

Description

Creates a package from compiled RxODE models

```
Usage
    rxPkg(
        ...,
        package,
        wd = getwd(),
        action = c("install", "build", "binary", "create"),
        license = c("gpl3", "lgpl", "mit", "agpl3"),
        name = "Firstname Lastname",
        fields = list()
    )
```


Arguments

$$
\begin{array}{ll}
\ldots . & \text { Models to build a package from } \\
\text { package } & \begin{array}{l}
\text { String of the package name to create } \\
\text { character string with a working directory where to create a subdirectory accord- } \\
\text { ing to modName. When specified, a subdirectory named after the "modName.d" } \\
\text { will be created and populated with a C file, a dynamic loading library, plus var- } \\
\text { ious other working files. If missing, the files are created (and removed) in the } \\
\text { temporary directory, and the RxODE DLL for the model is created in the current } \\
\text { directory named rx_????_platform, for example rx_129f8f97fb94a87ca49ca8dafe691e1e_i386.dll }
\end{array} \\
& \begin{array}{l}
\text { Type of action to take after package is created }
\end{array} \\
\text { action } & \begin{array}{l}
\text { is the type of license for the package. }
\end{array} \\
\text { license } & \begin{array}{l}
\text { Full name of author }
\end{array} \\
\text { name } & \begin{array}{l}
\text { A named list of fields to add to DESCRIPTION, potentially overriding default val- } \\
\text { ues. See use_description() for how you can set personalized defaults using } \\
\text { package options }
\end{array}
\end{array}
$$

Value

this function returns nothing and is used for its side effects

Author(s)

Matthew Fidler

rxpois

Simulate random Poisson variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxpois(lambda, $\mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

lambda vector of (non-negative) means.
$n \quad$ number of random values to return.
ncores Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

poission random number deviates

Examples

```
## Use threefry engine
rxpois(lambda = 3, n = 10) # with rxpois you have to explicitly state n
rxpois(lambda = 3, n = 10, ncores = 2) # You can parallelize the simulation using openMP
rxpois(4) ## The first arguments are the lambda parameter
```

```
    ## This example uses `rxpois` directly in the model
    rx <- RxODE({
    a <- rxpois(3)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

 rxPp Simulate a from a Poisson process

Description

Simulate a from a Poisson process

Usage

```
rxPp(
    n,
    lambda,
    gamma = 1,
    prob = NULL,
    t0 = 0,
    tmax = Inf,
    randomOrder = FALSE
)
```


Arguments

prob When specified, this is a probability function with one argument, time, that gives
n

lambda

gamma
to

Number of time points to simulate in the Poisson process
Rate of Poisson process
Asymmetry rate of Poisson process. When gamma $=1.0$, this simulates a homogenous Poisson process. When gamma<1.0, the Poisson process has more events early, when gamma >1.0, the Poisson process has more events late in the process.
When gamma is non-zero, the tmax should not be infinite but indicate the end of the Poisson process to be simulated. In most pharamcometric cases, this will be the end of the study. Internally this uses a rate of:
$1(\mathrm{t})=$ lambdagamma $(\mathrm{t} / \mathrm{tmax})^{\wedge}($ gamma- 1$)$ the probability that a Poisson time t is accepted as a rejection time.

tmax	the maximum time of the Poisson process
randomOrder	when TRUE randomize the order of the Poisson events. By default (FALSE) it
returns the Poisson process is in order of how the events occurred.	

Value

This returns a vector of the Poisson process times; If the dropout is $>=$ tmax, then all the rest of the times are $=$ tmax to indicate the dropout is equal to or after tmax.

Author(s)

Matthew Fidler

Examples

```
## Sample homogenous Poisson process of rate 1/10
rxPp(10, 1 / 10)
## Sample inhomogenous Poisson rate of 1/10
rxPp(10, 1 / 10, gamma = 2, tmax = 100)
## Typically the Poisson process times are in a sequential order,
## using randomOrder gives the Poisson process in random order
rxPp(10, 1 / 10, gamma = 2, tmax = 10, randomOrder = TRUE)
## This uses an arbitrary function to sample a non-homogenous Poisson process
rxPp(10, 1 / 10, prob = function(x) {
    1 / x
})
```

```
rxProgress
```


Description

rxProgress sets up the progress bar

Usage

rxProgress(num, core $=0 \mathrm{~L}$)
rxTick()
rxProgressStop(clear = TRUE)
rxProgressAbort(error = "Aborted calculation")

Arguments

num	Tot number of operations to track
core	Number of cores to show. If below 1, don't show number of cores
clear	Boolean telling if you should clear the progress bar after completion (as if it wasn't displayed). By default this is TRUE
error	With rxProgressAbort this is the error that is displayed

Details

rxTick is a progress bar tick
rxProgressStop stop progress bar
rxProgressAbort shows an abort if rxProgressStop wasn't called.

Value

All return NULL invisibly.

Author(s)

Matthew L. Fidler

Examples

```
f <- function() {
    on.exit({
        rxProgressAbort()
    })
    rxProgress(100)
    for (i in 1:100) {
            rxTick()
            Sys.sleep(1 / 100)
    }
    rxProgressStop()
}
f()
```


Description

Create a random "normal" matrix using vandercorput generator

Usage

rxRandNV (nrow = 1, ncol = 1)

Arguments

nrow	Number of rows
ncol	Number of Columns

Value

Matrix of random numbers

Author(s)

Matthew Fidler

Examples

rxRandNV (1, 1)
rxRandNV (3, 2)
rxRateDur Creates a rxRateDur object

Description

This is primarily to display information about rate

Usage

```
rxRateDur(x)
    ## S3 method for class 'rxRateDur'
    x[...]
    as.rxRateDur(x)
    ## S3 method for class 'rxRateDur'
    as.character (x, ...)
    ## S3 method for class 'rxRateDur'
    x[[...]]
```


Arguments

x rxRateDur data
... Other parameters

Value

rxRateDur object
rxReservedKeywords A list and description of Rode supported reserved keywords

Description

A list and description of Rode supported reserved keywords

Usage

rxReservedKeywords

Format

A data frame with 3 columns and 98 or more rows
Reserved Name Reserved Keyword Name
Meaning Reserved Keyword Meaning
Alias Keyword Alias
rxRmvn Simulate from a (truncated) multivariate normal

Description

This is simulated with the fast, thread-safe threefry simulator and can use multiple cores to generate the random deviates.

Usage

rxRmvn (
n ,
$m u=N U L L$,
sigma,
lower = -Inf,
upper = Inf,
ncores $=1$,
isChol = FALSE,
keepNames = TRUE,
a $=0.4$,
tol $=2.05$,
nlTol $=1 \mathrm{e}-10$, nlMaxiter $=100 \mathrm{~L}$
)

Arguments

n	Number of random row vectors to be simulated OR the matrix to use for simulation (faster).
mu	mean vector
sigma	Covariance matrix for multivariate normal or a list of covariance matrices. If a list of covariance matrix, each matrix will simulate n matrices and combine them to a full matrix
lower	is a vector of the lower bound for the truncated multivariate norm
upper	is a vector of the upper bound for the truncated multivariate norm
ncores	Number of cores used in the simulation
isChol	A boolean indicating if sigma is a cholesky decomposition of the covariance matrix.
keepNames	Keep the names from either the mean or covariance matrix.
a	threshold for switching between methods; They can be tuned for maximum speed; There are three cases that are considered: case 1: $\mathrm{a}<1<\mathrm{u}$ case 2: $1<\mathrm{u}<-\mathrm{a}$ case 3: otherwise where l=lower and $u=$ upper
tol	When case 3 is used from the above possibilities, the tol value controls the acceptance rejection and inverse-transformation; When abs(u-l)>tol, uses accept-reject from randn
nlTol	Tolerance for newton line-search
nlMaxiter	Maximum iterations for newton line-search

Value

If $n==$ integer (default) the output is an ($n \mathrm{x}$ d) matrix where the i -th row is the i -th simulated vector.

If is.matrix(n) then the random vector are store in n, which is provided by the user, and the function returns NULL invisibly.

Author(s)

Matthew Fidler, Zdravko Botev and some from Matteo Fasiolo

References

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw (2011). Parallel Random Numbers: As Easy as 1, 2, 3. D. E. Shaw Research, New York, NY 10036, USA.
The thread safe multivariate normal was inspired from the mvnfast package by Matteo Fasiolo https://CRAN.R-project.org/package=mvnfast

The concept of the truncated multivariate normal was taken from Zdravko Botev Botev (2017) doi: $10.1111 / \mathrm{rssb} .12162$ and Botev and L'Ecuyer (2015) doi: 10.1109/WSC.2015.7408180 and converted to thread safe simulation;

Examples

```
## From mvnfast
## Unlike mvnfast, uses threefry simulation
d<- 5
mu <- 1:d
# Creating covariance matrix
tmp <- matrix(rnorm(d^2), d, d)
mcov <- tcrossprod(tmp, tmp)
set.seed(414)
rxRmvn(4, 1:d, mcov)
set.seed(414)
rxRmvn(4, 1:d, mcov)
set.seed(414)
rxRmvn(4, 1:d, mcov, ncores = 2) # r.v. generated on the second core are different
###### Here we create the matrix that will hold the simulated
# random variables upfront.
A <- matrix(NA, 4, d)
class(A) <- "numeric" # This is important. We need the elements of A to be of class "numeric".
set.seed(414)
rxRmvn(A, 1:d, mcov, ncores = 2) # This returns NULL ...
A # ... but the result is here
## You can also simulate from a truncated normal:
rxRmvn(10, 1:d, mcov, lower = 1:d - 1, upper = 1:d + 1)
# You can also simulate from different matrices (if they match
# dimensions) by using a list of matrices.
matL <- lapply(1:4, function(...) {
    tmp <- matrix(rnorm(d^2), d, d)
        tcrossprod(tmp, tmp)
})
rxRmvn(4, setNames(1:d, paste0("a", 1:d)), matL)
```


Description

Load a model into a symengine environment

Usage

rxS (x, doConst $=$ TRUE, promoteLinSens = FALSE)

Arguments

x
doConst Load constants into the environment as well.
promoteLinSens Promote solved linear compartment systems to sensitivity-based solutions.

Value

RxODE/symengine environment

Author(s)

Matthew Fidler

rxSetIni0	Set Initial conditions to time zero instead of the first observed/dosed time

Description

Set Initial conditions to time zero instead of the first observed/dosed time

Usage

rxSetIni0(ini0 = TRUE)

Arguments

ini0 When TRUE (default), set initial conditions to time zero. Otherwise the initial conditions are the first observed time.

Value

the boolean ini0, though this is called for its side effects

Description

Defunct setting of product

Usage

rxSetProd(type = c("long double", "double", "logify"))

Arguments

type used to be type of product

Value

nothing

rxSetProgressBar Set timing for progress bar

Description

Set timing for progress bar

Usage

rxSetProgressBar (seconds $=1$)

Arguments

seconds This sets the number of seconds that need to elapse before drawing the next segment of the progress bar. When this is zero or below this turns off the progress bar.

Value

nothing, used for side effects

Author(s)

Matthew Fidler

Description

This sets the seed for the RxODE parallel random number generation. If set, then whenever a seed is set for the threefry or vandercorput simulation engine, it will use this seed, increment for the number of seeds and continue with the sequence the next time the random number generator is called.

Usage

rxSetSeed(seed)

Arguments

seed An integer that represents the RxODE parallel and internal random number generator seed. When positive, use this seed for random number generation and increment and reseed any parallel or new engines that are being called. When negative, turn off the RxODE seed and generate a seed from the R's uniform random number generator. Best practice is to set this seed.

Details

In contrast, when this is not called, the time that the vandercorput or threefry simulation engines are seeded it comes from a uniform random number generated from the standard R random seed. This may cause a duplicate seed based on the R seed state. This means that there could be correlations between simulations that do not exist This will avoid the birthday problem picking exactly the same seed using the seed state of the R random number generator. The more times the seed is called, the more likely this becomes.

Value

Nothing, called for its side effects

Author(s)

Matthew Fidler

References

JD Cook. (2016). Random number generator seed mistakes. https://tinyurl.com/m62v3kv9

Examples

```
    rxSetSeed(42)
    # seed with generator 42
    rxnorm()
    # Use R's random number generator
    rnorm(1)
    rxSetSeed(42)
    # reproduces the same number
    rxnorm()
    # But R's random number is not the same
    rnorm(1)
    # If we reset this to use the R's seed
    # (internally RxODE uses a uniform random number to span seeds)
    # This can lead to duplicate sequences and seeds
    rxSetSeed(-1)
    # Now set seed works for both.
    # This is not recommended, but illustrates the different types of
    # seeds that can be generated.
    set.seed(42)
    rxnorm()
    rnorm(1)
    set.seed(42)
    rxnorm()
    rnorm(1)
```

 rxSetSum
 Defunct setting of sum

Description

Defunct setting of sum

Usage

rxSetSum(type = c("pairwise", "fsum", "kahan", "neumaier", "c"))

Arguments

type used to be type of product

Value

nothing
rxShiny Use Shiny to help develop an RxODE model

Description

Use Shiny to help develop an RxODE model

Usage

```
rxShiny(
    object,
    params = NULL,
    events = NULL,
    inits = NULL,
    ...,
    data = data.frame()
)
    ## S3 method for class 'rxSolve'
    rxShiny(
        object,
        params = NULL,
        events = NULL,
        inits = NULL,
        ...,
        data = data.frame()
)
    ## Default S3 method:
    rxShiny(
        object = NULL,
        params = NULL,
        events = NULL,
        inits = NULL,
        ...,
        data = data.frame()
)
```


Arguments

object A RxODE family of objects. If not supplied a 2-compartment indirect effect model is used. If it is supplied, use the model associated with the RxODE object for the model exploration.
params Initial parameters for model
events Event information (currently ignored)
inits Initial estimates for model
... Other arguments passed to rxShiny. Currently doesn't do anything.
data Any data that you would like to plot. If the data has a time variable as well as a compartment or calculated variable that matches the RxODE model, the data will be added to the plot of a specific compartment or calculated variable.

Value

Nothing; Starts a shiny server

Author(s)

Zufar Mulyukov and Matthew L. Fidler

Description

Simulate Parameters from a Theta/Omega specification

Usage

```
rxSimThetaOmega(
    params = NULL,
    omega = NULL,
    omegaDf = NULL,
    omegaLower = as.numeric(c(R_NegInf)),
    omegaUpper = as.numeric(c(R_PosInf)),
    omegaIsChol = FALSE,
    omegaSeparation = "auto",
    omegaXform = 1L,
    nSub = 1L,
    thetaMat = NULL,
    thetaLower = as.numeric(c(R_NegInf)),
    thetaUpper = as.numeric(c(R_PosInf)),
    thetaDf = NULL,
    thetaIsChol = FALSE,
    nStud = 1L,
```

```
    sigma = NULL,
    sigmaLower = as.numeric(c(R_NegInf)),
    sigmaUpper = as.numeric(c(R_PosInf)),
    sigmaDf = NULL,
    sigmaIsChol = FALSE,
    sigmaSeparation = "auto",
    sigmaXform = 1L,
    nCoresRV = 1L,
    nObs = 1L,
    dfSub = 0,
    dfObs = 0,
    simSubjects = TRUE
)
```


Arguments

params Named Vector of RxODE model parameters
omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix and convert it to a full matrix for simulations.
omegaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL which is equivalent to Inf degrees, or to simulate from a normal distribution instead of a t-distribution.
omegaLower Lower bounds for simulated ETAs (by default -Inf)
omegaUpper Upper bounds for simulated ETAs (by default Inf)
omegaIsChol Indicates if the omega supplied is a Cholesky decomposed matrix instead of the traditional symmetric matrix.
omegaSeparation
Omega separation strategy
Tells the type of separation strategy when simulating covariance with parameter uncertainty with standard deviations modeled in the thetaMat matrix.

- "lkj" simulates the correlation matrix from the rLKJ1 matrix with the distribution parameter eta equal to the degrees of freedom nu by (nu-1)/2
- "separation" simulates from the identity inverse Wishart covariance matrix with nu degrees of freedom. This is then converted to a covariance matrix and augmented with the modeled standard deviations. While computationally more complex than the "lkj" prior, it performs better when the covariance matrix size is greater or equal to 10
- "auto" chooses "lkj" when the dimension of the matrix is less than 10 and "separation" when greater than equal to 10 .
omegaXform When taking omega values from the the taMat simulations (using the separation strategy for covariance simulation), how should the thetaMat values be turned int standard deviation values:
- identity This is when standard deviation values are directly modeled by the params and thetaMat matrix
- variance This is when the params and thetaMat simulates the variance that are directly modeled by the thetaMat matrix
- \log This is when the params and thetaMat simulates $\log (\mathrm{sd})$
- nlmixrSqrt This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $x^{\wedge} 2$ modeled along the diagonal. This only works with a diagonal matrix.
- nlmixrLog This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $\exp \left(x^{\wedge} 2\right)$ along the diagonal. This only works with a diagonal matrix.
- nlmixrIdentity This is when the params and thetaMat simulates the inverse cholesky decomposed matrix. This only works with a diagonal matrix.

nSub	Number between subject variabilities (ETAs) simulated for every realization of the parameters. Named theta matrix.
thetaMat	Lower bounds for simulated population parameter variability (by default -Inf)
thetaLower	
thetaUpper	Upper bounds for simulated population unexplained variability (by default Inf) The degrees of freedom of a t-distribution for simulation. By default this is NULL which is equivalent to Inf degrees, or to simulate from a normal distribution instead of a t-distribution.
thetaDf	Indicates if the theta supplied is a Cholesky decomposed matrix instead of the traditional symmetric matrix.
thetaIsChol	

Tells the type of separation strategy when simulating covariance with parameter uncertainty with standard deviations modeled in the thetaMat matrix.

- " lkj " simulates the correlation matrix from the rLKJ1 matrix with the distribution parameter eta equal to the degrees of freedom nu by (nu-1)/2
- "separation" simulates from the identity inverse Wishart covariance matrix with nu degrees of freedom. This is then converted to a covariance matrix and augmented with the modeled standard deviations. While computationally more complex than the " 1 kj " prior, it performs better when the covariance matrix size is greater or equal to 10
- "auto" chooses "lkj" when the dimension of the matrix is less than 10 and "separation" when greater than equal to 10 .
sigmaXform When taking sigma values from the thetaMat simulations (using the separation strategy for covariance simulation), how should the thetaMat values be turned int standard deviation values:
- identity This is when standard deviation values are directly modeled by the params and thetaMat matrix
- variance This is when the params and thetaMat simulates the variance that are directly modeled by the thetaMat matrix
- log This is when the params and thetaMat simulates $\log (s d)$
- nlmixrSqrt This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $x^{\wedge} 2$ modeled along the diagonal. This only works with a diagonal matrix.
- nlmixrLog This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $\exp \left(x^{\wedge} 2\right)$ along the diagonal. This only works with a diagonal matrix.
- nlmixrIdentity This is when the params and thetaMat simulates the inverse cholesky decomposed matrix. This only works with a diagonal matrix.
nCoresRV Number of cores used for the simulation of the sigma variables. By default this is 1 . To reproduce the results you need to run on the same platform with the same number of cores. This is the reason this is set to be one, regardless of what the number of cores are used in threaded ODE solving.
nObs Number of observations to simulate (with sigma matrix)
dfSub Degrees of freedom to sample the between subject variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
dfObs Degrees of freedom to sample the unexplained variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
simSubjects boolean indicated RxODE should simulate subjects in studies (TRUE, default) or studies (FALSE)

Value

a data frame with the simulated subjects

Author(s)

Matthew L.Fidler
rxSolve $\quad \begin{aligned} & \text { Solving \& Simulation of a ODE/solved system (and solving options) } \\ & \text { equation }\end{aligned}$ equation

Description

This uses RxODE family of objects, file, or model specification to solve a ODE system. There are many options for a solved RxODE model, the first are the required object, and events with the some-times optional params and inits.

Usage

```
rxSolve(
    object,
    params = NULL,
    events = NULL,
    inits = NULL,
    scale = NULL,
    method = c("liblsoda", "lsoda", "dop853", "indLin"),
    transitAbs = NULL,
    atol = 1e-08,
    rtol = 1e-06,
    maxsteps = 70000L,
    hmin = 0,
    hmax = NA_real_,
    hmaxSd = 0,
    hini = 0,
    maxordn = 12L,
    maxords = 5L,
    ...,
    cores,
    covsInterpolation = c("locf", "linear", "nocb", "midpoint"),
    addCov = FALSE,
    matrix = FALSE,
    sigma = NULL,
    sigmaDf = NULL,
    sigmaLower = -Inf,
    sigmaUpper = Inf,
    nCoresRV = 1L,
    sigmaIsChol = FALSE,
    sigmaSeparation = c("auto", "lkj", "separation"),
    sigmaXform = c("identity", "variance", "log", "nlmixrSqrt", "nlmixrLog",
        "nlmixrIdentity"),
    nDisplayProgress = 10000L,
    amountUnits = NA_character_,
    timeUnits = "hours",
    stiff,
    theta = NULL,
    thetaLower = -Inf,
    thetaUpper = Inf,
    eta = NULL,
    addDosing = FALSE,
    stateTrim = Inf,
    updateObject = FALSE,
    omega = NULL,
    omegaDf = NULL,
    omegaIsChol = FALSE,
    omegaSeparation = c("auto", "lkj", "separation"),
    omegaXform = c("variance", "identity", "log", "nlmixrSqrt", "nlmixrLog",
```

```
    "nlmixrIdentity"),
omegaLower = -Inf,
omegaUpper = Inf,
nSub = 1L,
thetaMat = NULL,
thetaDf = NULL,
thetaIsChol = FALSE,
nStud = 1L,
dfSub = 0,
dfObs = 0,
returnType = c("rxSolve", "matrix", "data.frame", "data.frame.TBS", "data.table",
    "tbl", "tibble"),
seed = NULL,
nsim = NULL,
minSS = 10L,
maxSS = 1000L,
infSSstep = 12,
strictSS = TRUE,
istateReset = TRUE,
subsetNonmem = TRUE,
maxAtolRtolFactor = 0.1,
from = NULL,
to = NULL,
by = NULL,
length.out = NULL,
iCov = NULL,
keep = NULL,
indLinPhiTol = 1e-07,
indLinPhiM = 0L,
indLinMatExpType = c("expokit", "Al-Mohy", "arma"),
indLinMatExpOrder = 6L,
drop = NULL,
idFactor = TRUE,
mxhnil = 0,
hmxi = 0,
warnIdSort = TRUE,
warnDrop = TRUE,
ssAtol = 1e-08,
ssRtol = 1e-06,
safeZero = TRUE,
sumType = c("pairwise", "fsum", "kahan", "neumaier", "c"),
prodType = c("long double", "double", "logify"),
sensType = c("advan", "autodiff", "forward", "central"),
linDiff = c(tlag = 1.5e-05, f = 1.5e-05, rate = 1.5e-05, dur = 1.5e-05, tlag2 =
    1.5e-05, f2 = 1.5e-05, rate2 = 1.5e-05, dur2 = 1.5e-05),
linDiffCentral = c(tlag = TRUE, f = TRUE, rate = TRUE, dur = TRUE, tlag2 = TRUE, f2 =
    TRUE, rate2 = TRUE, dur2 = TRUE),
resample = NULL,
```

```
    resampleID = TRUE,
    maxwhile = 1e+05
)
## Default S3 method:
rxSolve(
    object,
    params = NULL,
    events = NULL,
    inits = NULL,
    ...,
    theta = NULL,
    eta = NULL
)
## S3 method for class 'rxSolve'
update(object, ...)
## S3 method for class 'RxODE'
predict(object, ...)
## S3 method for class 'rxSolve'
predict(object, ...)
## S3 method for class 'rxEt'
predict(object, ...)
## S3 method for class 'rxParams'
predict(object, ...)
## S3 method for class 'RxODE'
simulate(object, nsim = 1L, seed = NULL, ...)
## S3 method for class 'rxSolve'
simulate(object, nsim = 1L, seed = NULL, ...)
## S3 method for class 'rxParams'
simulate(object, nsim = 1L, seed = NULL, ...)
## S3 method for class 'rxSolve'
solve(a, b, ...)
## S3 method for class 'RxODE'
solve(a, b, ...)
## S3 method for class 'rxParams'
solve(a, b, ...)
```

```
## S3 method for class 'rxEt'
solve(a, b, ...)
rxControl(..., params = NULL, events = NULL, inits = NULL)
```


Arguments

object is a either a RxODE family of objects, or a file-name with a RxODE model specification, or a string with a RxODE model specification.
params a numeric named vector with values for every parameter in the ODE system; the names must correspond to the parameter identifiers used in the ODE specification;
events an eventTable object describing the input (e.g., doses) to the dynamic system and observation sampling time points (see eventTable());
inits a vector of initial values of the state variables (e.g., amounts in each compartment), and the order in this vector must be the same as the state variables (e.g., PK/PD compartments);
scale a numeric named vector with scaling for ode parameters of the system. The names must correspond to the parameter identifiers in the ODE specification. Each of the ODE variables will be divided by the scaling factor. For example scale=c (center=2) will divide the center ODE variable by 2.
method The method for solving ODEs. Currently this supports:

- "liblsoda" thread safe lsoda. This supports parallel thread-based solving, and ignores user Jacobian specification.
- "lsoda" - LSODA solver. Does not support parallel thread-based solving, but allows user Jacobian specification.
- "dop853" - DOP853 solver. Does not support parallel thread-based solving nor user Jacobain specification
- "indLin" - Solving through inductive linearization. The RxODE dll must be setup specially to use this solving routine.
transitAbs boolean indicating if this is a transit compartment absorption
atol a numeric absolute tolerance ($1 \mathrm{e}-8$ by default) used by the ODE solver to determine if a good solution has been achieved; This is also used in the solved linear model to check if prior doses do not add anything to the solution.
r tol a numeric relative tolerance (1 e-6 by default) used by the ODE solver to determine if a good solution has been achieved. This is also used in the solved linear model to check if prior doses do not add anything to the solution.
maxsteps maximum number of (internally defined) steps allowed during one call to the solver. (5000 by default)
hmin The minimum absolute step size allowed. The default value is 0 .
hmax The maximum absolute step size allowed. When hmax=NA (default), uses the average difference +hmaxSd *s in times and sampling events. The hmaxSd is a user specified parameter and which defaults to zero. When hmax=NULL RxODE uses the maximum difference in times in your sampling and events. The value 0 is equivalent to infinite maximum absolute step size.

hmaxSd	The number of standard deviations of the time difference to add to hmax. The default is 0
hini	The step size to be attempted on the first step. The default value is determined by the solver (when hini $=0$)
maxordn	The maximum order to be allowed for the nonstiff (Adams) method. The default is 12 . It can be between 1 and 12 .
maxords	The maximum order to be allowed for the stiff (BDF) method. The default value is 5 . This can be between 1 and 5 .
	Other arguments including scaling factors for each compartment. This includes S\# = numeric will scale a compartment \# by a dividing the compartment amount by the scale factor, like NONMEM.
cores	Number of cores used in parallel ODE solving. This is equivalent to calling setRxThreads()
covsInterpolation	
	specifies the interpolation method for time-varying covariates. When solving ODEs it often samples times outside the sampling time specified in events. When this happens, the time varying covariates are interpolated. Currently this can be:
	- "linear" interpolation, which interpolates the covariate by solving the line between the observed covariates and extrapolating the new covariate value. - "constant" - Last observation carried forward (the default). - "NOCB" - Next Observation Carried Backward. This is the same method that NONMEM uses.
	- "midpoint" Last observation carried forward to midpoint; Next observation carried backward to midpoint.
addCov	A boolean indicating if covariates should be added to the output matrix or data frame. By default this is disabled.
matrix	A boolean indicating if a matrix should be returned instead of the RxODE's solved object.
sigma	Named sigma covariance or Cholesky decomposition of a covariance matrix. The names of the columns indicate parameters that are simulated. These are simulated for every observation in the solved system.
sigmaDf	Degrees of freedom of the sigma t-distribution. By default it is equivalent to Inf, or a normal distribution.
sigmaLower	Lower bounds for simulated unexplained variability (by default -Inf)
sigmaUpper	Upper bounds for simulated unexplained variability (by default Inf)
nCoresRV	Number of cores used for the simulation of the sigma variables. By default this is 1 . To reproduce the results you need to run on the same platform with the same number of cores. This is the reason this is set to be one, regardless of what the number of cores are used in threaded ODE solving.
sigmaIsChol	Boolean indicating if the sigma is in the Cholesky decomposition instead of a symmetric covariance

sigmaSeparation
separation strategy for sigma;
Tells the type of separation strategy when simulating covariance with parameter uncertainty with standard deviations modeled in the thetaMat matrix.

- " 1 kj " simulates the correlation matrix from the rLKJ1 matrix with the distribution parameter eta equal to the degrees of freedom nu by (nu-1)/2
- "separation" simulates from the identity inverse Wishart covariance matrix with nu degrees of freedom. This is then converted to a covariance matrix and augmented with the modeled standard deviations. While computationally more complex than the " 1 kj " prior, it performs better when the covariance matrix size is greater or equal to 10
- "auto" chooses " 1 kj " when the dimension of the matrix is less than 10 and "separation" when greater than equal to 10 .
sigmaXform When taking sigma values from the thetaMat simulations (using the separation strategy for covariance simulation), how should the thetaMat values be turned int standard deviation values:
- identity This is when standard deviation values are directly modeled by the params and thetaMat matrix
- variance This is when the params and thetaMat simulates the variance that are directly modeled by the thetaMat matrix
- \log This is when the params and thetaMat simulates $\log (\mathrm{sd})$
- nlmixrSqrt This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $x^{\wedge} 2$ modeled along the diagonal. This only works with a diagonal matrix.
- nlmixrLog This is when the params and thetaMat simulates the inverse cholesky decomposed matrix with the $\exp \left(x^{\wedge} 2\right)$ along the diagonal. This only works with a diagonal matrix.
- nlmixrIdentity This is when the params and thetaMat simulates the inverse cholesky decomposed matrix. This only works with a diagonal matrix.
nDisplayProgress
An integer indicating the minimum number of c -based solves before a progress bar is shown. By default this is 10,000 .
amountUnits This supplies the dose units of a data frame supplied instead of an event table. This is for importing the data as an RxODE event table.
timeUnits This supplies the time units of a data frame supplied instead of an event table. This is for importing the data as an RxODE event table.
stiff a logical (TRUE by default) indicating whether the ODE system is stiff or not.

```
For stiff ODE systems (`stiff = TRUE`), `RxODE` uses the
LSODA (Livermore Solver for Ordinary Differential Equations)
Fortran package, which implements an automatic method switching
for stiff and non-stiff problems along the integration
interval, authored by Hindmarsh and Petzold (2003).
For non-stiff systems (`stiff = FALSE`), `RxODE` uses
```

```
DOP853, an explicit Runge-Kutta method of order 8(5, 3) of
Dormand and Prince as implemented in C by Hairer and Wanner (1993).
If stiff is not specified, the `method` argument is used instead.
```

theta	A vector of parameters that will be named THETA$\#$ and added to parameters
thetaLower	Lower bounds for simulated population parameter variability (by default -Inf)
thetaUpper	Upper bounds for simulated population unexplained variability (by default Inf)
eta	A vector of parameters that will be named ETA$\#$ and added to parameters
addDosing	Boolean indicating if the solve should add RxODE EVID and related columns. This will also include dosing information and estimates at the doses. Be default, RxODE only includes estimates at the observations. (default FALSE). When addDosing is NULL, only include EVID=0 on solve and exclude any model-times or EVID=2. If addDosing is NA the classic RxODE EVID events are returned. When addDosing is TRUE add the event information in NONMEM-style format; If subsetNonmem=FALSE RxODE will also include extra event types (EVID) for ending infusion and modeled times:

- EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)
- EVID=-2 When the modeled duration infusions are turned off (matches rate=-2)
- EVID $=-10$ When the specified rate infusions are turned off (matches rate>0)
- EVID $=-20$ When the specified dur infusions are turned off (matches dur>0)
- EVID=101,102,103,... Modeled time where 101 is the first model time, 102 is the second etc.
stateTrim When amounts/concentrations in one of the states are above this value, trim them to be this value. By default Inf. Also trims to -stateTrim for large negative amounts/concentrations. If you want to trim between a range say $c(0,2000000)$ you may specify 2 values with a lower and upper range to make sure all state values are in the reasonable range.
updateObject This is an internally used flag to update the RxODE solved object (when supplying an RxODE solved object) as well as returning a new object. You probably should not modify it's FALSE default unless you are willing to have unexpected results.
omega Estimate of Covariance matrix. When omega is a list, assume it is a block matrix and convert it to a full matrix for simulations.
omegaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL which is equivalent to Inf degrees, or to simulate from a normal distribution instead of a t-distribution.
omegaIsChol Indicates if the omega supplied is a Cholesky decomposed matrix instead of the traditional symmetric matrix.
omegaSeparation
Omega separation strategy
Tells the type of separation strategy when simulating covariance with parameter uncertainty with standard deviations modeled in the thetaMat matrix.
- " 1 kj " simulates the correlation matrix from the rLKJ1 matrix with the distribution parameter eta equal to the degrees of freedom nu by (nu-1)/2
- "separation" simulates from the identity inverse Wishart covariance matrix with nu degrees of freedom. This is then converted to a covariance matrix and augmented with the modeled standard deviations. While computationally more complex than the " 1 kj " prior, it performs better when the covariance matrix size is greater or equal to 10
- "auto" chooses "lkj" when the dimension of the matrix is less than 10 and "separation" when greater than equal to 10 .
omegaLower Lower bounds for simulated ETAs (by default -Inf)
omegaUpper Upper bounds for simulated ETAs (by default Inf)
nSub Number between subject variabilities (ETAs) simulated for every realization of the parameters.
thetaMat Named theta matrix.
thetaDf The degrees of freedom of a t-distribution for simulation. By default this is NULL which is equivalent to Inf degrees, or to simulate from a normal distribution instead of a t-distribution.
thetaIsChol Indicates if the theta supplied is a Cholesky decomposed matrix instead of the traditional symmetric matrix.
nStud Number virtual studies to characterize uncertainty in estimated parameters.
dfSub Degrees of freedom to sample the between subject variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
dfObs Degrees of freedom to sample the unexplained variability matrix from the inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.
returnType This tells what type of object is returned. The currently supported types are:
- "rxSolve" (default) will return a reactive data frame that can change easily change different pieces of the solve and update the data frame. This is the currently standard solving method in RxODE, is used for $r x$ Solve (object, . . .), solve(object, ...),
- "data.frame" - returns a plain, non-reactive data frame; Currently very slightly faster than returnType="matrix"
- "matrix" - returns a plain matrix with column names attached to the solved object. This is what is used object\$run as well as object\$solve
- "data. table" - returns a data.table; The data. table is created by reference (ie setDt()), which should be fast.
- "tbl" or "tibble" returns a tibble format.
\(\left.$$
\begin{array}{ll}\text { seed } & \begin{array}{l}\text { an object specifying if and how the random number generator should be initial- } \\
\text { ized }\end{array} \\
\text { nsim } & \begin{array}{l}\text { represents the number of simulations. For RxODE, if you supply single subject } \\
\text { event tables (created with [eventTable()]) }\end{array}
$$

minSS

maxSS

Minimum number of iterations for a steady-state dose

Maximum number of iterations for a steady-state dose\end{array}\right]\)| Step size for determining if a constant infusion has reached steady state. By |
| :--- |
| default this is large value, 420. |
| strictSS |
| Boolean indicating if a strict steady-state is required. If a strict steady-state is |
| (TRUE) required then at least minSS doses are administered and the total number |
| of steady states doses will continue until maxSS is reached, or atol and rtol |
| for every compartment have been reached. However, if ODE solving problems |
| occur after the minSS has been reached the whole subject is considered an invalid |
| solve. If strictSS is FALSE then as long as minSS has been reached the last good |
| solve before ODE solving problems occur is considered the steady state, even |
| though either atol, rtol or maxSS have not been achieved. |

The maximum atol/rtol that FOCEi and other routines may adjust to. By default 0.1
from When there is no observations in the event table, start observations at this value. By default this is zero.
to When there is no observations in the event table, end observations at this value. By default this is $24+$ maximum dose time.
by When there are no observations in the event table, this is the amount to increment for the observations between from and to.
length. out The number of observations to create if there isn't any observations in the event table. By default this is 200.
iCov A data frame of individual non-time varying covariates to combine with the events dataset by merge.

keep | Columns to keep from either the input dataset or the iCov dataset. With the iCov |
| :--- |
| dataset, the column is kept once per line. For the input dataset, if any records |
| are added to the data LOCF (Last Observation Carried forward) imputation is |
| performed. |
| the requested accuracy tolerance on exponential matrix. |
| indLinPhiTol |
| indLinPhim |
| indLinMatExpType maximum size for the Krylov basis |

This is them matrix exponential type that is use for RxODE. Currently the fol-
lowing are supported:

- Al-Mohy Uses the exponential matrix method of Al-Mohy Higham (2009)
• arma Use the exponential matrix from RcppArmadillo
- expokit Use the exponential matrix from Roger B. Sidje (1998)

```
sensType \(\quad\) Sensitivity type for linCmt () model:
    advan Use the direct advan solutions
    autodiff Use the autodiff advan solutions
    forward Use forward difference solutions
    central Use central differences
linDiff This gives the linear difference amount for all the types of linear compartment
    model parameters where sensitivities are not calculated. The named components
    of this numeric vector are:
    - "lag" Central compartment lag
    - "f" Central compartment bioavailability
    - "rate" Central compartment modeled rate
    - "dur" Central compartment modeled duration
    - "lag2" Depot compartment lag
    - "f2" Depot compartment bioavailability
    - "rate2" Depot compartment modeled rate
    - "dur2" Depot compartment modeled duration
linDiffCentral This gives the which parameters use central differences for the linear compart-
    ment model parameters. The are the same components as linDiff
resample A character vector of model variables to resample from the input dataset; This
    sampling is done with replacement. When NULL or FALSE no resampling is done.
    When TRUE resampling is done on all covariates in the input dataset
resampleID boolean representing if the resampling should be done on an individual basis
    TRUE (ie. a whole patient is selected) or each covariate is resampled independent
    of the subject identifier FALSE. When resampleID=TRUE correlations of param-
    eters are retained, where as when resampleID=FALSE ignores patient covariate
    correaltions. Hence the default is resampleID=TRUE.
maxwhile represents the maximum times a while loop is evaluated before exiting. By
    default this is 100000
a when using solve(), this is equivalent to the object argument. If you specify
    object later in the argument list it overwrites this parameter.
b when using solve(), this is equivalent to the params argument. If you specify
    params as a named argument, this overwrites the output
```


Details

The rest of the document focus on the different ODE solving methods, followed by the core solving method's options, RxODE event handling options, RxODE's numerical stability options, RxODE's output options, and finally internal RxODE options or compatibility options.

Value

An "rxSolve" solve object that stores the solved value in a special data.frame or other type as determined by returnType. By default this has as many rows as there are sampled time points and as many columns as system variables (as defined by the ODEs and additional assignments in the

RxODE model code). It also stores information about the call to allow dynamic updating of the solved object.
The operations for the object are similar to a data-frame, but expand the \$ and [[""]] access operators and assignment operators to resolve based on different parameter values, initial conditions, solver parameters, or events (by updating the time variable).

You can call the eventTable() methods on the solved object to update the event table and resolve the system of equations.

Author(s)

Matthew Fidler, Melissa Hallow and Wenping Wang

References

"New Scaling and Squaring Algorithm for the Matrix Exponential", by Awad H. Al-Mohy and Nicholas J. Higham, August 2009
Roger B. Sidje (1998). EXPOKIT: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software 24(1), 130-156.
Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers. Scientific Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 55-64.

Petzold, L. R. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations. Siam J. Sci. Stat. Comput. 4 (1983), pp. 136-148.
Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I, nonstiff problems. 2nd edition, Springer Series in Computational Mathematics, Springer-Verlag (1993).

See Also

RxODE()
rxStack Stack a solved object for things like ggplot

Description

Stack a solved object for things like ggplot

Usage

rxStack(Data, vars = NULL)

Arguments

Data is a RxODE object to be stacked.
vars Variables to include in stacked data; By default this is all the variables when vars is NULL.

Value

Stacked data with value and trt, where value is the values and trt is the state and 1 hs variables.

Author(s)

Matthew Fidler
rxState State variables

Description

This returns the model's compartments or states.

Usage

rxState(obj $=$ NULL, state $=$ NULL)

Arguments

obj RxODE family of objects
state is a string indicating the state or compartment that you would like to lookup.

Value

If state is missing, return a character vector of all the states.
If state is a string, return the compartment number of the named state.

Author(s)

Matthew L.Fidler

See Also
RxODE()

rxSumProdModel Recast model in terms of sum/prod

Description

Recast model in terms of sum/prod

Usage

rxSumProdModel(model, expand $=$ FALSE, sum $=$ TRUE, prod $=$ TRUE)

Arguments

model	RxODE model
expand	Boolean indicating if the expression is expanded.
sum	Use sum(...)
prod	Use $\operatorname{prod}(\ldots)$

Value

model string with prod(.) and sum(.) for all these operations.

Author(s)

Matthew L. Fidler

Description

Get list of supported functions

Usage

rxSupportedFuns()

Value

list of supported functions in RxODE

Examples

rxSuppressMsg \quad Respect suppress messages

Description

This turns on the silent REprintf in C when suppressMessages() is turned on. This makes the REprintf act like messages in R, they can be suppressed with suppressMessages()

Usage

rxSuppressMsg()

Value

Nothing

Author(s)

Matthew Fidler

Examples

\# rxSupressMsg() is called with RxODE()
\# Note the errors are output to the console
try(RxODE("d/dt(matt)=/3"), silent = TRUE)
\# When using suppressMessages, the output is suppressed
suppressMessages(try(RxODE("d/dt(matt)=/3"), silent = TRUE))
\# In RxODE, we use REprintf so that interrupted threads do not crash R
\# if there is a user interrupt. This isn't captured by R's messages, but
\# This interface allows the ‘suppressMessages()` to suppress the C printing
\# as well
\# If you want to suppress messages from RxODE in other packages, you can use
\# this function

Description

Get Omega^ ${ }^{\wedge}-1$ and derivatives

Usage

```
rxSymInvChol(
    invObjOrMatrix,
    theta = NULL,
        type = "cholOmegaInv",
        thetaNumber = 0L
    )
```


Arguments

invObjOrMatrix Object for inverse-type calculations. If this is a matrix, setup the object for inversion rxSymInvCholCreate() with the default arguments and return a reactive s3 object. Otherwise, use the inversion object to calculate the requested derivative/inverse.
theta Thetas to be used for calculation. If missing (NULL), a special s3 class is created and returned to access Omega^1 objects as needed and cache them based on the theta that is used.
type \quad The type of object. Currently the following types are supported:

- cholOmegaInv gives the Cholesky decomposition of the Omega Inverse matrix.
- omegaInv gives the Omega Inverse matrix.
- d(omegaInv) gives the $d\left(O m e g a^{\wedge}-1\right)$ withe respect to the theta parameter specified in thetaNumber.
- $d(D)$ gives the $d($ diagonal (Omega^-1)) with respect to the theta parameter specified in the thetaNumber parameter
thetaNumber For types d (omegaInv) and $d(D)$, the theta number that the derivative is taken against. This must be positive from 1 to the number of thetas defining the Omega matrix.

Value

Matrix based on parameters or environment with all the matrixes calculated in variables omega, omegaInv, dOmega, dOmegaInv.

Author(s)

Matthew L. Fidler
rxSyncOptions Sync options with RxODE variables

Description

Accessing RxODE options via getOption slows down solving. This allows the options to be synced with variables.

Usage

rxSyncOptions(setDefaults = c("none", "permissive", "strict"))

Arguments

setDefaults This will setup RxODE's default solving options with the following options:

- "none" leave the options alone
- "permissive" This is a permissive option set similar to R language specifications.
- "strict" This is a strict option set similar to the original $\operatorname{RxODE}()$. It requires semicolons at the end of lines and equals for assignment

Value

nothing; called for side effects

Author(s)

Matthew L. Fidler
rxSyntaxFunctions A list and description of Rode supported syntax functions

Description

A list and description of Rode supported syntax functions

Usage

rxSyntaxFunctions

Format

A data frame with 3 columns and 98 or more rows
Function Reserved function Name
Description Description of function
Aliases Function Aliases

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

$$
\text { rxt }(\mathrm{df}, \mathrm{n}=1 \mathrm{~L}, \text { ncores }=1 \mathrm{~L})
$$

Arguments

df
degrees of freedom (>0, maybe non-integer). $\mathrm{df}=\operatorname{Inf}$ is allowed.
$\mathrm{n} \quad$ number of observations. If length $(\mathrm{n})>1$, the length is taken to be the number required.
ncores Number of cores for the simulation rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

t-distribution random numbers

Examples

```
## Use threefry engine
```

rxt (df = 3, $\mathrm{n}=10$) \# with rxt you have to explicitly state n
rxt(df = 3, $\mathrm{n}=10$, ncores = 2) \# You can parallelize the simulation using openMP

```
    rxt(4) ## The first argument is the df parameter
    ## This example uses `rxt` directly in the model
    rx <- RxODE({
    a <- rxt(3)
    })
    et <- et(1, id = 1:2)
    s <- rxSolve(rx, et)
```

 rxTempDir
 Get the RxODE temporary directory

Description

Get the RxODE temporary directory

Usage

rxTempDir()

Value

RxODE temporary directory.
rxTheme rxTheme is the RxODE theme for plots

Description

rxTheme is the RxODE theme for plots

Usage

rxTheme(
base_size = 11, base_family = "", base_line_size = base_size/22, base_rect_size = base_size/22, grid $=$ TRUE

)

Arguments

base_size	base font size, given in pts.
base_family	base font family
base_line_size	base size for line elements
base_rect_size	base size for rect elements
grid	a Boolean indicating if the grid is on (TRUE) or off (FALSE). This could also be a character indicating x or y.

Value

ggplot2 theme used in RxODE

```
rxToSE RxODE to symengine environment
```


Description

RxODE to symengine environment

Usage

$r x T o S E(x$, envir $=$ NULL, progress $=$ FALSE, promoteLinSens $=$ TRUE)
.$r x T o S E(x$, envir $=$ NULL, progress $=$ FALSE $)$
rxFromSE(x, unknownDerivatives = c("forward", "central", "error"))
.rxFromSE(x)

Arguments

x	expression
envir	default is NULL; Environment to put symengine variables in.
progress	shows progress bar if true.
promoteLinSens	Promote solved linear compartment systems to sensitivity-based solutions.
unknownDerivatives	

When handling derivatives from unknown functions, the translator will translate into different types of numeric derivatives. The currently supported methods are:

- `forward` for forward differences
- ‘central` for central differences
- `error` for throwing an error for unknown derivatives

Value

An rxode symengine environment

Author(s)

Matthew L. Fidler

| rxTrans \quad Translate the model to C code if needed |
| :--- | :--- |

Description

This function translates the model to C code, if needed

Usage

```
rxTrans(
    model,
    modelPrefix = "",
    md5 = "",
    modName = NULL,
    modVars = FALSE,
)
## Default S3 method:
rxTrans(
    model,
    modelPrefix = "",
    md5 = "",
    modName = NULL,
    modVars = FALSE,
)
## S3 method for class 'character'
rxTrans(
    model,
    modelPrefix = "",
    md5 = "",
    modName = NULL,
    modVars = FALSE,
)
```


Arguments

model | This is the ODE model specification. It can be: |
| :--- |
| - a string containing the set of ordinary differential equations (ODE) and |
| other expressions defining the changes in the dynamic system. |
| - a file name where the ODE system equation is contained |
| An ODE expression enclosed in $\backslash\{\backslash\}$ |
| (see also the filename argument). For details, see the sections "Details" and |
| RxODE Syntax below. |

modelPrefix \quad| Prefix of the model functions that will be compiled to make sure that multiple |
| :--- |
| RxODE objects can coexist in the same R session. |
| md5 |
| modName |
| Is the md5 of the model before parsing, and is used to embed the md5 into DLL, |
| and then provide for functions like rxModelVars(). |
| a string to be used as the model name. This string is used for naming various |
| aspects of the computations, including generating C symbol names, dynamic |
| libraries, etc. Therefore, it is necessary that modName consists of simple ASCII |
| alphanumeric characters starting with a letter. |

modVars \quad| returns the model variables instead of the named vector of translated properties. |
| :--- |

Ignored parameters.

Value

a named vector of translated model properties including what type of jacobian is specified, the C function prefixes, as well as the C functions names to be called through the compiled model.

Author(s)

Matthew L.Fidler

See Also
RxODE(), rxCompile().

rxunif

Simulate uniform variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https: // www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxunif(min $=0, \max =1, \mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

\min	lower and upper limits of the distribution. Must be finite.
\max	lower and upper limits of the distribution. Must be finite.
ncores	number of observations. If length $(n)>1$, the length is taken to be the number required.
Number of cores for the simulation rxnorm simulates using the threefry sitmo generator; rxnormV uses the vander- corput generator	

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.

The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()
Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

uniform random numbers

Examples

```
## Use threefry engine
rxunif(min = 0, max = 4, n = 10) # with rxunif you have to explicitly state n
rxunif(min = 0, max = 4, n= 10, ncores = 2) # You can parallelize the simulation using openMP
rxunif()
## This example uses `rxunif` directly in the model
rx <- RxODE({
    a <- rxunif(0, 3)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```


Description

Unloads all RxODE compiled DLLs

Usage

rxUnloadAll()

Value

List of RxODE dlls still loaded
boolean of if all RxODE dlls have been unloaded

Examples

print(rxUnloadAll())
rxUse Use model object in your package

Description

Use model object in your package

Usage

rxUse(obj, overwrite = TRUE, compress = "bzip2", internal = FALSE)

Arguments

obj model to save.
overwrite By default, use_data() will not overwrite existing files. If you really want to do so, set this to TRUE.
compress Choose the type of compression used by save(). Should be one of "gzip", "bzip2", or "xz".
internal If this is run internally. By default this is FALSE

Value

Nothing; This is used for its side effects and shouldn't be called by a user
rxValidate
Validate RxODE This allows easy validation/qualification of nlmixr by running the testing suite on your system.

Description

Validate RxODE This allows easy validation/qualification of nlmixr by running the testing suite on your system.

Usage

```
    rxValidate(type = NULL)
```

 rxTest (type \(=\) NULL)

Arguments

type \quad Type of test or filter of test type

Value

nothing

Author(s)

Matthew L. Fidler
rxweibull
Simulate Weibull variable from threefry generator

Description

Care should be taken with this method not to encounter the birthday problem, described https:// www. johndcook.com/blog/2016/01/29/random-number-generator-seed-mistakes/. Since the sitmo threefry, this currently generates one random deviate from the uniform distribution to seed the engine threefry and then run the code.

Usage

rxweibull(shape, scale $=1, \mathrm{n}=1 \mathrm{~L}$, ncores $=1 \mathrm{~L}$)

Arguments

shape
scale
n
ncores
shape and scale parameters, the latter defaulting to 1 .
shape and scale parameters, the latter defaulting to 1 .
number of observations. If length $(n)>1$, the length is taken to be the number required.
Number of cores for the simulation
rxnorm simulates using the threefry sitmo generator; rxnormV uses the vandercorput generator

Details

Therefore, a simple call to the random number generated followed by a second call to random number generated may have identical seeds. As the number of random number generator calls are increased the probability that the birthday problem will increase.
The key to avoid this problem is to either run all simulations in the RxODE environment once (therefore one seed or series of seeds for the whole simulation), pre-generate all random variables used for the simulation, or seed the RxODE engine with rxSetSeed()

Also care should be made that the computer you will be running on can run the same number of cores as you are running so they can reproduce your results.

Value

Weibull random deviates

Examples

```
## Use threefry engine
# with rxweibull you have to explicitly state n
rxweibull(shape = 1, scale = 4, n = 10)
# You can parallelize the simulation using openMP
rxweibull(shape = 1, scale = 4, n = 10, ncores = 2)
rxweibull(3)
## This example uses `rxweibull` directly in the model
rx <- RxODE({
    a <- rxweibull(1, 3)
})
et <- et(1, id = 1:2)
s <- rxSolve(rx, et)
```

```
    rxWinSetup Setup Windows components for RxODE
```


Description

Setup Windows components for RxODE

Usage

rxWinSetup(rm.rtools = TRUE)

Arguments

rm.rtools Remove the Rtools from the current path specs.

Value

nothing, used for its side effects

Author(s)

Matthew L. Fidler

```
    stat_amt Dosing/Amt geom/stat
```


Description

This is a dosing geom that shows the vertical lines where a dose occurs

Usage

```
stat_amt(
    mapping = NULL,
    data = NULL,
    position = "identity",
    show.legend = NA,
    inherit.aes = TRUE,
    )
    geom_amt(
        mapping = NULL,
        data = NULL,
        position = "identity",
        show.legend = NA,
```

```
    inherit.aes = TRUE,
)
```


Arguments

mapping	Set of aesthetic mappings created by aes() or aes_(). If specified and inherit. ae = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
The data to be displayed in this layer. There are three options:	
If NULL, the default, the data is inherited from the plot data as specified in the	
call to ggplot().	
A data.frame, or other object, will override the plot data. All objects will be	
fortified to produce a data frame. See fortify () for which variables will be	
created.	
A function will be called with a single argument, the plot data. The return	
value must be a data.frame, and will be used as the layer data. A function	
can be created from a formula (e.g. ~head $. x, 10)$).	

Details

Requires the following aesthetics:

- x representing the x values, usually time
- amt representing the dosing values; They are missing or zero when no dose is given

Value

This returns a stat_amt in context of a ggplot2 plot

```
stat_cens Censoring geom/stat
```


Description

This is a censoring geom that shows the left or right censoring specified in the nlmixr input data-set or fit

Usage

```
stat_cens(
    mapping = NULL,
    data = NULL,
    position = "identity",
    show.legend = NA,
    inherit.aes = TRUE,
    width = 0.01,
    )
    geom_cens(
    mapping = NULL,
    data = NULL,
    position = "identity",
    show.legend = NA,
    inherit.aes = TRUE,
    width = 0.01,
    ...
    )
```


Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit. aes $=$ TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~head (.x, 10)).
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().
width represents the width (in \backslash censoring box
Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour $=$ "red" or size $=3$. They may also be parameters to the paired geom/stat.

Details

Requires the following aesthetics:

- x Represents the independent variable, often the time scale
- y represents the dependent variable
- CENS for the censoring information; (-1 right censored, 0 no censoring or 1 left censoring)
- LIMIT which represents the corresponding limit ()

Will add boxes representing the areas of the fit that were censored.

Value

This returns a ggplot2 stat
summary.RxODE
Print expanded information about the RxODE object.

Description

This prints the expanded information about the RxODE object.

Usage

\#\# S3 method for class 'RxODE'
summary (object, ...)

Arguments

object	RxODE object
\ldots	Ignored parameters

Value

object is returned

Author(s)

Matthew L.Fidler
uppergamma uppergamma: upper incomplete gamma function

Description

This is the tgamma from the boost library

Usage

uppergamma(a, z)

Arguments

a
The numeric 'a' parameter in the upper incomplete gamma
z
The numeric ' z ' parameter in the upper incomplete gamma

Details

The uppergamma function is given by: $\operatorname{uppergamma}(a, z)=\int_{z}^{\infty} t^{a-1} \cdot e^{-t} d t$

Value

uppergamma results

Author(s)

Matthew L. Fidler

Examples

uppergamma(1, 3)
uppergamma(1:3, 3)
uppergamma(1, 1:3)

Index

```
* Nonlinear regression
    eventTable, 31
    RxODE,76
* ODE models
    RxODE,76
* Ordinary differential equations
    RxODE,76
* PK/PD
    genShinyApp.template, 38
* Pharmacodynamics (PD)
    eventTable, 31
    RxODE,76
* Pharmacokinetics (PK)
        eventTable, 31
        RxODE,76
* datasets
        rxReservedKeywords,92
        rxSyntaxFunctions,120
* data
    eventTable, 31
* models
    eventTable, 31
        RxODE,76
* nonlinear
        genShinyApp.template, 38
        RxODE,76
* ordinary differential equations
        eventTable, 31
* pharmacometrics
        genShinyApp.template, 38
* simulation
        genShinyApp.template, 38
+.solveRxDll (rxChain), 52
.C(),56
.Call(),56
    .rxFromSE (rxToSE), 123
    .rxGenFoce,5
    .rxToSE (rxToSE), 123
    .rxWithOptions,6
```

gammap, 34
gammapDer, 35
gammapInv, 35
gammapInva (gammapInv), 35
gammaq, 36
gammaqInv, 37
gammaqInva (gammaqInv), 37
genShinyApp.template, 38
geom_amt (stat_amt), 130
geom_cens (stat_cens), 132
getRxThreads, 39
ggplot(), 131, 132
invWR1d, 40
layer(),131,133
logit, 41
logitNormInfo(logit), 41
lowergamma, 42
order(), 33
phi, 43
predict.rxEt (rxSolve), 103
predict.RxODE (rxSolve), 103
predict.rxParams (rxSolve), 103
predict.rxSolve (rxSolve), 103
print.rxEvid (rxEvid), 61
probit, 44
probitInv (probit), 44
probitNormInfo(logit), 41
rbind.rxEt (etRbind), 22
rep.rxEt (etRep), 25
rinvchisq, 44
rLKJ1, 45
rLKJ1(), 14
rxAllowUnload, 46
rxAssignPtr, 46
rxbeta, 47
rxbinom, 48
rxcauchy, 49
rxCbindStudyIndividual, 51
rxChain, 52
rxchisq, 53
rxClean, 54
rxCompile, 55
rxCompile(), 125
rxControl (rxSolve), 103
rxCores (getRxThreads), 39
rxCreateCache, 57
rxD, 57
rxD(), 65
rxDelete, 58
rxDerived, 58
rxDfdy, 60
rxEvid, 61
rxexp, 62
rxf, 63
rxFromSE (rxToSE), 123
rxFun, 64
rxgamma, 66
rxgeom, 67
rxGetLin, 69
rxGetRxODE, 69
rxHtml, 70
rxIndLinState, 71
rxIndLinStrategy, 71
rxInv, 72
rxIsCurrent, 72
rxLhs, 73
rxLock, 73
rxModelVars(), 125
rxNorm, 74
rxnorm, 74
rxnormV (rxnorm), 74
RxODE, 9, 11, 19, 23, 26, 29, 73, 76
RxODE(), 32, 39, 56, 115, 116, 125
rxOptExpr, 82
rxParam (rxParams), 83
rxParams, 83
rxPkg, 86
rxpois, 87
rxPp, 88
rxProgress, 89
rxProgressAbort (rxProgress), 89
rxProgressStop (rxProgress), 89
rxRandNV, 90
rxRateDur, 91
rxReservedKeywords, 92
rxRmFun (rxFun), 64
rxRmvn, 92
rxS, 94
rxSetIni0, 95
rxSetProd, 96
rxSetProgressBar, 96
rxSetSeed, 97

```
rxSetSum, 98
rxShiny,99
rxSimThetaOmega,100
rxSolve,103
rxSolve(),38
rxStack,115
rxState,116
rxSumProdModel, 117
rxSupportedFuns,117
rxSuppressMsg,118
rxSymInvChol,119
rxSymInvCholCreate(),119
rxSyncOptions,120
rxSyntaxFunctions,120
rxt,121
rxTempDir, 122
rxTest(rxValidate),128
rxTheme, 122
rxTick (rxProgress), 89
rxToSE, 123
rxTrans,124
rxTrans(),56
rxunif, 125
rxUnloadAll, 127
rxUnlock (rxLock), 73
rxUse,127
rxValidate,128
rxweibull, 128
rxWinSetup,130
save(),127
seq.rxEt (etSeq), 28
setRxThreads (getRxThreads), 39
setRxThreads(),108
simulate.RxODE (rxSolve), 103
simulate.rxParams (rxSolve), 103
simulate.rxSolve(rxSolve),103
solve.rxEt (rxSolve), 103
solve.RxODE (rxSolve), 103
solve.rxParams(rxSolve), }10
solve.rxSolve (rxSolve), 103
stat_amt,130
stat_cens,132
summary.RxODE, 133
sys.call,18
update.rxSolve (rxSolve), 103
uppergamma, }13
use_description(), 86
```

write.template.server
(genShinyApp.template), 38
write.template.ui
(genShinyApp.template), 38
write.template.ui(), 39

