Package ‘SACOBRA’

March 26, 2020
Type Package
Title Self-Adjusting COBRA
Version 1.2
Date 2020-03-26

Author Wolfgang Konen <wolfgang.konen@th-koeln.de> [aut],
Samineh Bagheri <samineh.bagheri@th-koeln.de> [aut,cre],
Patrick Koch [aut], Thomas Baeck <t.h.w.baeck@liacs.leidenuniv.nl> [aut]

Maintainer Samineh Bagheri <samineh.bagheri@th-koeln.de>
Description Performs surrogate-assisted optimization for expensive black-box constrained problems.
License GPL (>=2)
Depends R (>=2.14.0),
Suggests nloptr, FNN, MASS, dfoptim, DEoptim, lhs, rgl, grDevices,
scales, numDeriv, pracma, reshape2, data.table
Imports testit, methods, mgcv, R6

Collate 'cobralnit.R' 'cobraPhasel.R' 'cobraPhasell.R' 'debugModel.R’
'defaultDebugRBE.R' 'defaultRI.R' 'defaultSAC.R' 'defaultTR.R'
'defaultCA.R' 'drawSurrogate3d.R' 'evalReal.R' 'fnArchive.R'
'getPredY.R' 'initialHjkb.R' 'innerFuncs.R' 'isres2.R’
‘modifyEquCons.R' 'modelSelection.R' 'multiRunPlot.R’
'multiRunPlot_2.R' 'multiCOBRA.R' 'nmkb2.R' 'RbfInter.R'
'repairChootinan.R' 'repairlnfeasRI2.R' 'SACOBRA.R'
'startCobra.R' 'trainSurrogates.R' 'trustRegion.R’
'updateSaveCobra.R' 'Gproblems.R'

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-26 16:10:02 UTC

R topics documented:

SACOBRA-package



2 SACOBRA-package
cobralnit . . . . . . ... 4
cobraPhasel . . . . . . . . . . 9
cobraPhasell . . . . . . . . . . . .. e 10
COP . . . e 13
defaultCA . . . . . . e 15
defaultDebugRBF . . . . . . . . . . . . . e 16
defaultEquMu . . . . . . . . o e 16
defaultMS . . . . . . e 18
defaultRI . . . . . . . . . e e 19
defaultSAC . . . . . . e e e 20
defaultTR . . . . . . . . e 22
disthine . . . . . ... e 22
DRCL . . . e 23
DRCS . . . e 23
evalReal . . . . . . . . e e e 24
forwardRescale . . . . . . . . .. 26
getFbest . . . . . e e 26
GetXDESt . . . . e e e 27
intern.archive.env . . . . . . . . . . . .. e e e e e e e e e 28
interpRBF . . . . . . 28
inverseRescale . . . . . . . . L 29
multiCOBRA . . . . . e 29
multiRunPlot . . . . . . ... 32
multiRunPlot_2 . . . . . . . .. . e 33
PlOg . . e 35
plogReverse . . . . . . . . L 35
predict.RBFinter . . . . . . . . . . L 36
repairChootinan . . . . . . . . . . .. e e e e e e 37
repairlnfeasRI2 . . . . . . . . . L 38
rescaleWrapper . . . . . .. L. 39
SELOPLS . . o o e e e e e 40
startCobra . . . . ... 40
trainCubicRBF . . . . . . . . . 42
trainGaussRBF . . . . . . . 43
trainMQRBF . . . . . . 45
trustRegion . . . . . ... 47

Index 48

SACOBRA-package Self-adjusting Constrained Optimization with RBF Surrogates

Description

Self-adjusting Constrained Optimization with RBF Surrogates

Details



SACOBRA-package 3

Package: SACOBRA

Type: Package
Version: 1.1
Date: 16.08.2019

License: GPL (>=2)
LazyLoad: yes

SACOBRA is a package for numeric constrained optimization of expensive black-box functions
under severely limited budgets. The problem to solve is:

-

Minimize f(%),Z € [d@,b] C R?
subjectto  ¢;(%) <0,i=1,...,m
h](f) :O,j: 1,...,7’.

SACOBRA is an extension of the COBRA algorithm by Regis (R. Regis: "Constrained optimiza-
tion by radial basis function interpolation for high-dimensional expensive black-box problems with
infeasible initial points", Engineering Optimization, Taylor & Francis, 46, p. 218-243, 2013)

These extensions include:

1) A repair algorithm for infeasible solutions,

2) an algorithm for handling equality constraints,

3) several internal optimizers and several initial design generation methods,

4) self-adjusting random restart algorithm,

5) self-adjusting logarithmic transform for objective functions with large output ranges,

6) range normalization of constraint functions,

7) self-adjusting DRC (distance requirement cycle) selection,

8) online model selection to select the best type of RBF for objective and constraint functions,
9) online whitening for unconstrained optimization of functions with high conditioning.
(Please note that the online whitening implementation is still underway and at this stage it is not
recommended to be applied to expensive problems)

SACOBRA performs optimization with a minimum of true function evaluations. It has proven to
work well on problems with high dimensions (e.g. d=124) and many constraints (e.g. 60). It is
usable for all kind of numerical optimization of continuous functions, but not for combinatorial
optimization.

For more details see:

* Bagheri, S.; Konen, W.; Emmerich, M.; Baeck, T.: "Self-adjusting parameter control for
surrogate-assisted constrained optimization under limited budgets". In: Journal of Applied
Soft Computing, Band 61, pages 377-393, 2017, https: //www.researchgate.net/publication/
319012980_Self-adjusting_parameter_control_for_surrogate-assisted_constrained_
optimization_under_limited_budgets

* Bagheri, S.; Konen, W.; Baeck, T.:"Online selection of surrogate models for constrained
black-box optimization". In: IEEE Symposium Series on Computational Intelligence (SSCI),
2016, http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh16-SSCI.pdf


https://www.researchgate.net/publication/319012980_Self-adjusting_parameter_control_for_surrogate-assisted_constrained_optimization_under_limited_budgets
https://www.researchgate.net/publication/319012980_Self-adjusting_parameter_control_for_surrogate-assisted_constrained_optimization_under_limited_budgets
https://www.researchgate.net/publication/319012980_Self-adjusting_parameter_control_for_surrogate-assisted_constrained_optimization_under_limited_budgets
http://www.gm.fh-koeln.de/~konen/Publikationen/Bagh16-SSCI.pdf

4 cobralnit

* Koch, P.; Bagheri, S.; Konen, W. et al.: "A New Repair Method For Constrained Optimiza-
tion". In: Proceedings of the 17th Genetic and Evolutionary Computation Conference, 2015,
http://www.gm.fh-koeln.de/~konen/Publikationen/Koch2015a-GECCO. pdf

* Koch, P; Bagheri, S. et al.: "Constrained Optimization with a Limited Number of Function
Evaluations" In: W. Hoffmann, F. & Huellermeier, E. (Eds.), Proceedings 24. Workshop
Computational Intelligence, Universitaetsverlag Karlsruhe, 2014, 119-134, http://www.gm.
fh-koeln.de/~konen/Publikationen/Koch2014a-GMA-CI. pdf.

The main entry point functions are cobralnit and startCobra. See cobralnit for an overview
of adjustable SACOBRA-parameters. Examples are found in

* startCobra: solve a 13d-problem with 9 inequality constraints (GO1)

e cobralnit: a problem with equality constraint

* cobraPhasell: unconstrained sphere problem

* multiCOBRA: solve G11 problem nrun=4 times

* COP: load and solve G24, load and solve the scalable problem G03 with d=3

Author(s)

Samineh Bagheri (<Samineh.Bagheri@th-koeln.de>),
Wolfgang Konen (<Wolfgang.Konen@th-koeln.de>),
Patrick Koch, Thomas Baeck (<t.h.w.baeck@liacs.leidenuniv.nl>)

References

http://1wibs@1.gm.fh-koeln.de/blogs/ciop/research/monrep/

cobralnit Initial phase for SACOBRA optimizer

Description

In this phase the important parameters are set and the initial design population are evaluated on the
real function. The problem to solve is:

o=
N

=

a

Minimize f(%),7 € [d


http://www.gm.fh-koeln.de/~konen/Publikationen/Koch2015a-GECCO.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Koch2014a-GMA-CI.pdf
http://www.gm.fh-koeln.de/~konen/Publikationen/Koch2014a-GMA-CI.pdf
http://lwibs01.gm.fh-koeln.de/blogs/ciop/research/monrep/

cobralnit

Usage

cobralnit(
xStart,
fn,
fName,
lower,
upper,
feval,
initDesign = "LHS",
initDesPoints = 2 x length(xStart) + 1,
initDesOptP = NULL,
initBias = 0.005,
skipPhasel = TRUE,
seqOptimizer = "COBYLA",
seqFeval = 1000,
seqTol = 1e-06,
ptail = TRUE,
squares = TRUE,
conTol = 0,
DOSAC = 1,
sac = defaultSAC(DOSAC),
repairInfeas = FALSE,
ri = defaultRI(),
RBFmodel = "cubic”,

RBFwidth = -1,
GaussRule = "One"”,
widthFactor = 1,
RBFrho = 0,

MS = defaultMS(),

equHandle = defaultEquMu(),
rescale = TRUE,

newlower = -1,

newupper 1,

XI = DRCL,

TrustRegion = FALSE,

TRlist = defaultTR(),
conditioningAnalysis = defaultCA(),
penaF = c(3, 1.7, 3e+@5),
sigmaD = c(3, 2, 100),
constraintHandling = "DEFAULT",
verbose = 1,

verboselter = 10,

DEBUG_RBF = defaultDebugRBF(),
DEBUG_TR = FALSE,

DEBUG_TRU = FALSE,

DEBUG_RS = FALSE,

DEBUG_XI = FALSE,
trueFuncForSurrogates = FALSE,



cobralnit

savelntermediate = FALSE,
saveSurrogates = FALSE,

epsilonInit
epsilonMax

solu = NULL,
cobraSeed =

Arguments

xStart

fn

fName

lower

upper

feval
initDesign
initDesPoints

initDesOptP

initBias
skipPhasel

seqOptimizer

seqgFeval

seqTol

ptail

squares

conTol
DOSAC

sac
repairInfeas
ri

RBFmodel

NULL,

NULL,

42

a vector of dimension d containing the starting point for the optimization prob-
lem

objective and constraint functions: fn is a function accepting a d-dimensional
vector & and returning an (14+m-+r)-dimensional vector c(f, g1, - - - , Gm, P1, - - -

s he)
the results of cobraPhasell are saved to <fname>.Rdata

lower bound a of search space, same dimension as xStart

upper bound b of search space, same dimension as xStart

maximum number of function evaluations

["LHS"] one out of ["RANDOM","LHS","BIASED","OPTIMIZED","OPTBIASED"]
[2xd+1] number of initial points, must be smaller than feval

[NULL] only for initDesign=="OPTBIASED": number of points for the "OPT"
phase. If NULL, take initDesPoints.

[0.005] bias for normal distribution in "OPTBIASED" and "BIASED"
[TRUE] if TRUE, then skip cobraPhasel

["COBYLA"] string defining the optimization method for COBRA phases I and
11, one out of ["COBYLA","ISRES","HJKB","NMKB","ISRESCOBY"]

[1000] maximum number of function evaluations on the surrogate model

[1e-6] convergence tolerance for sequential optimizer, see param tol in nmkb or
param control$xtol_rel in cobyla

[TRUE] TRUE: with, FALSE: without polynomial tail in trainRBF

[TRUE] set to TRUE for including the second order polynomials in building the
fitness and constraint surrogates in trainRBF

[0.0] constraint violation tolerance

[1] set one out of [OI112].

0: COBRA-R settings,

1: SACOBRA settings,

2: SACOBRA settings with fewer parameters.

The precise settings are documented in defaul tSAC.

[defaultSAC(DOSAC)] list with other parameters for SACOBRA.

[FALSE] if TRUE, trigger the repair of appropriate infeasible solutions
[defaultRI()] list with other parameters for repairInfeasRI2

["cubic"] a string for the type of the RBF model, "cubic", "Gaussian" or "MQ"



cobralnit 7

RBFwidth [-1] only relevant for Gaussian RBF model. Determines the width o. For more
details see parameter width in trainGaussRBF in RBFinter.R.

GaussRule ["One"] only relevant for Gaussian RBF model, see trainGaussRBF

widthFactor [1.0] only relevant for Gaussian RBF model. Additional constant factor applied
to each width o

RBFrho [0.0] experimental: O: interpolating, > 0, approximating (spline-like) Gaussian
RBFs

MS [defaultMS()] list of online model selection parameters described in defaultMS.
If MS$active = TRUE then the type of RBF models for each function will be se-
lected automatically and the RBFmodel parameter becomes irrelevant.

equHandle [defaultEquMu()] list with of parameters for equality constraint handling de-
scribed in defaultEquMu(). equHandle$active is set to TRUE by default.

rescale [TRUE] if TRUE, transform the input space from [lower,upper] to hypercube
[newlower, newupper]*d

newlower [-1] lower bound of each rescaled input space dimension, if rescale==TRUE

newupper [+1] upper bound of each rescaled input space dimension, if rescale==TRUE

XI [DRCL] magic parameters for the distance requirement cycle (DRC)

TrustRegion [FALSE] if TRUE, perform trust region algorithm trustRegion.

TR1list [defaultTR()] a list of parameters, needed only in case TrustRegion==TRUE.

conditioningAnalysis
[defaultCA()] A list with setting for the objective function conditioning anal-
ysis and online whitening

penaF [c(3,1.7,3e5)] parameters for dynamic penalty factor (fct subProb in cobraPhaseII):
c(start,augment,max), only relevant if seqOptimizer==HJKB or seqOptimizer==NMKB

sigmaD [c(3,2.0,100)] parameters for dynamic distance factor (fct subProb in cobraPhaseII):
c(start,augment,max),, only relevant if seqOptimizer==HJKB or seqOptimizer==NMKB

constraintHandling
["DEFAULT"] (other choices: "JOINESHOUCK", "SMITHTATE", "COIT",
"BAECKKHURI"; experimental, only relevant if seqOptimizer==HJKB or seqOptimizer==NMKB
see the code in function subProb in cobraPhaselIl)

verbose [1] set one out of [0I112], how much output to print

verboselter [10] an interegr value. Printing the summarized results after each verboselter
iterations.

DEBUG_RBF [defaultDebugRBF ()] list with settings for visualization RBF (only for d==2)

DEBUG_TR [FALSE] prints information about trust region status and visualisation for d==2
(coming soon)

DEBUG_TRU [FALSE] visualize trust-region RBF (only for dimension==2)

DEBUG_RS [FALSE] prints the RS probability in each iteration in the console

DEBUG_XI [FALSE] if TRUE, then print in cobraPhaseII extra debug information: xStart

in every iteration to console and add some extra debug columns to cobra$df

trueFuncForSurrogates

[FALSE] if TRUE, use the true (constraint & fitness) functions instead of surro-
gates (only for debug analysis)



8 cobralnit

savelntermediate
[FALSE] if TRUE, then cobraPhasell saves intermediate results in dir ’re-
sults/’ (create it, if necessary)

saveSurrogates [FALSE] if TRUE, then cobraPhasell returns the last surrogate models in co-
bra$fitnessSurrogate and cobra$constraintSurrogates

epsilonInit [NULL] initial constant added to each constraint to maintain a certain margin to
boundary

epsilonMax [NULL] maximum for constant added to each constraint

solu [NULL] the best-known solution (only for diagnostics). This is normally a vec-

tor of length d. If there are multiple solutions, it is a matrix with d columns
(each row is a solution). If NULL, then the current best point will be used in
cobraPhasell. solu is given in original input space.

cobraSeed [42] seed for random number generator

Details

IfepsilonInit or epsilonMax are NULL on input, then cobra$epsilonInit and cobra$epsilonMax,
resp., are set to @.005*1 where 1 is the smallest side of the search box.

Note that the parameters penaF, sigmaD, constraintHandling are only relevant for penalty-based
internal optimizers nmkb or HIKB. They are NOT relevant for default optimizer cobyla.

Although the software was originally designed to handle only constrained optimization problems,
it can also address unconstrained optimization problems

How to code which constraint is equality constraint? - Function fn should return an (1 + m + 7)-
dimensional vector with named elements. The first element is the objective, the other elements are
the constraints. All equality constraints should carry the name equ. (Yes, it is possible that multiple
elements of a vector have the same name.)

Value

cobra, an object of class COBRA, this is a (long) list containing most of the argument settings (see
above) and in addition (among others):

A (feval x dim)-matrix containing the initial design points in input . space. If
rescale==TRUE, all points are in rescaled input space.

Fres a vector of the objective values of the initial design points

Gres a matrix of the constraint values of the initial design points

nConstraints the total number m + r of constraints

Tfeas the threshhold parameter for the number of consecutive iterations that yield fea-
sible solutions before margin epsilon is reduced

Tinfeas the threshhold parameter for the number of consecutive iterations that yield in-
feasible solutions before margin epsilon is increased

numViol number of constraint violations

maxViol maximum constraint violation

trueMaxViol maximum constraint violation



cobraPhasel 9

trustregX A vector of all refined solutions generated by trust region algorithm (see trustRegion)

Note that cobra$Fres, cobra$fbest, cobra$fbestArray and similar contain always the objective
values of the orignial function cobra$fn[1]. (The surrogate models may be trained on a plog-
transformed version of this function.)

Author(s)

Wolfgang Konen, Samineh Bagheri, Patrick Koch, Cologne University of Applied Sciences

See Also

startCobra, cobraPhasel, cobraPhasell

Examples

## Initialize cobra. The problem to solve is the sphere function sum(x*2)

## with the equality constraint that the solution is on a circle with

## radius 2 and center at c(1,0).

d=2

fName="onCircle"

cobra <- cobraInit(xStart=rep(5,d), fName=fName,
fn=function(x){c(obj=sum(x*2),equ=(x[1]1-1)*2+(x[2]1-0)*2-4)},
lower=rep(-10,d), upper=rep(10,d), feval=40)

## Run sacobra optimizer
cobra <- cobraPhaselII(cobra)

## The true solution is at solu = c(-1,0) (the point on the circle closest
## to the origin) where the true optimum is fn(solu)[1] = optim =1

## The solution found by SACOBRA:

print(getXbest(cobra))

print(getFbest(cobra))

## Plot the resulting error (best-so-far feasible optimizer result - true optimum)

## on a logarithmic scale:

optim = 1

plot(abs(cobra$df$Best-optim),log="y", type="1",ylab="error",xlab="iteration”,main=fName)

cobraPhasel Find a feasible solution.

Description

Find a feasible solution using the COBRA optimizer phase I by searching new infill points. Please
note that this phase can be skipped by setting the cobra$skipPhasel parameter to TRUE in the
initialization phase cobraInit()



10 cobraPhasell

Usage
cobraPhaseI(cobra)
Arguments
cobra an object of class COBRA, this is a (long) list containing all settings from
cobralnit
Value

cobra, an object of class COBRA

Author(s)
Wolfgang Konen, Samineh Bagheri, Patrick Koch, Cologne University of Applied Sciences

See Also

cobraPhasell, cobralnit

cobraPhaselIl Improve the feasible solution by searching new infill points

Description

Improve the feasible solution using the SACOBRA optimizer phase II by searching new infill points
with the help of RBF surrogate models. May be even called if no feasible solution is found yet, then
phase II will try to find feasible solutions.

The problem to solve iteratively is:

Minimize f(%),7 € [d,

]
subjectto  ¢;(Z) <0,i=1,...,m
0 1

In this phase the main optimization steps are repeated in a loop as long as the budget is not ex-
hausted. In every iteration the surrogate models are updated and an optimization on the surrogates
is done in order to find a better feasible solution.

Usage
cobraPhasell(cobra)
Arguments
cobra an object of class COBRA, this is a (long) list containing all settings from

cobralnit



cobraPhasell 11

Value

cobra, an object of class COBRA from cobralnit, enhanced here by the following elements
(among others):

fn function accepting a d-dimensional vector & and returning an (1+m+r)-vector
c(f,91,---9m,h1,-..,h.). This function may be a rescaled and plog-transformed
version of the original fn passed into cobralnit. The original fn is stored in
cobrasoriginalFn.

df data frame with summary of the optimization run (see below)

df2 data frame with additional summary information (see below)

dftr data frame with additional summary information for TR (see below)

A (feval x d)-matrix containing all evaluated points in input space. If rescale==TRUE,
all points are in rescaled input space.

Fres a vector of the objective values of all evaluated points

Gres a (feval x m)-matrix of the constraint values of all evaluated points

predC a (feval x m)-matrix with the prediction of cobra$constraintSurrogates at
all evaluated points

fbest the best feasible objective value found

xbest the point in input space yielding the best feasible objective value

ibest the corresponding iteration number (row of cobra$df, of cobra$A)

PLOG If TRUE, then the objective surrogate model is trained on the plog-transformed

objective function.

Note that cobra$Fres, cobra$fbest, cobra$fbestArray and similar contain always the objective
values of the orignial function cobra$fn[1]. (The surrogate models may be trained on a plog-
transformed version of this function.)

feval = cobra$feval is the maximum number of function evaluations.

The data frame cobra$df contains one row per iteration with columns

iter iteration index
y true objective value Fres

predY surrogate objective value. Note: The surrogate may be trained on plog-transformed training
data, but predyY is transformed back to the original objective range. NA for the initial design
points.

predSolu surrogate objective value at best-known solution cobra$solu, if given. If cobra$solu is
NULL, take the current point instead. Note: The surrogate may be trained on plog-transformed
training data, but predSolu is transformed back to the original objective range. NA for the
initial design points.

feasible boolean indicating the feasibiltiy of infill point
feasPred boolean indicating if each infill point is feasible for cobra$constraintSurrogates
nViolations number of violated constraints

maxViolation maximum constraint violation.



12 cobraPhasell

FEval number of function evaluations in sequential optimizer. NA if it was a repair step

Best ever-best feasible objective value fbest. As long as there is no feasible point, take among
those with minimum number of violated constraints the one with minimum Fres.

optimizer e.g. "COBYLA"
optimizationTime in sec
conv optimizer convergence code

dist distance of the current point (row of cobra$A) to the true solution cobra$solu in rescaled
space. If there is more than one solution, take the one which has the minimum distance
element (since this is the solution to which the current run converges).

distOrig same as dist, but in original space
XI the DRC element used in the current iteration

seed the used seed in every run
The data frame cobra$df2 contains one row per phase-II-iteration with columns

iter iteration index

predY surrogate objective value. Note: The surrogate may be trained on plog-transformed training
data, but predyY is transformed back to the original objective range. NA for the initial design
points.

predVal surrogate objective value + penalty

predSolu surrogate objective value at true solution (see cobra$df$predSolu)
predSoluPenal surrogate objective value + penalty at true solution (only diagnostics)
sigmaD the sigmaD element used in the current iteration (see cobralnit)

penaF penalty factor used in the current iteration (see cobralnit)

XI the DRC element used in the current iteration

EPS the current used margin for constraint function modeling (see epsilonInit in cobralnit)

Author(s)

Wolfgang Konen, Samineh Bagheri, Patrick Koch, Cologne University of Applied Sciences

See Also

cobraPhasel, cobralnit

Examples

## Initialize cobra. The problem to solve is the unconstrained sphere function sum(x*2).

## In version 1.1 and higher there is no need for defining a dummy

## constraint function for the unconstrained problems

d=2

fName="sphere"”

cobra <- cobralInit(xStart=rep(5,d), fName=fName,
fn=function(x){c(obj=sum(x*2))},
lower=rep(-10,d), upper=rep(10,d), feval=40)



COP 13

## Run cobra optimizer
cobra <- cobraPhaselI(cobra)

## The true solution is at solu = c(0,0)

## where the true optimum is fn(solu)[1] = optim = @
## The solution found by SACOBRA:
print(getXbest(cobra))

print(getFbest(cobra))

## Plot the resulting error (best-so-far feasible optimizer result - true optimum)
## on a logarithmic scale:

optim = @

plot(cobra$df$Best-optim,log="y", type="1",ylab="error",xlab="iteration",main=fName)

COP Constraint Optimization Problem Benchmark (G Function Suite)

Description

COP is an object of class R6ClassGenerator which can be used to access G problems (aka G
functions) implementations in R, by simply generating a new instance of COP for each G function
problem<-COP.new("problem”). The COP instances have the following useful attributes:

* name : name of the problem given by the user

* dimension: dimension of the problem. For the scalable problems G@2 and G@3, the dimension
should be given by users, otherwise it will be set automaticaly

* lower: lower boundary of the problem

* upper: upper boundary of the problem

 fn: the COP function which can be passed to SACOBRA. (see fn description in cobralnit)

* nConstraints: number of constraints

» xStart: The suggested optimization starting point

* solu: the best known solution, (only for diagnostics purposes)

¢ info: information about the problem
G function suite is a set of 24 constrained optimization problems with various properties like dimen-
sion, number of equality/ inequality constraint, feasibilty ratio, etc. Although these problems were
introduced as a suite in a technical report at CEC 2006, many of them have been used by different
autors earlier.
For more details see: Liang, J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P,
Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006 special ses-

sion on constrained real-parameter optimization. Journal of Applied Mechanics 41, 8 (2006),
http://www.lania.mx/~emezura/util/files/tr_cec@6.pdf


http://www.lania.mx/~emezura/util/files/tr_cec06.pdf

14 COP

Methods

Public methods:

* COP$new()
* COP$clone()

Method new():
Usage:
COP$new(name, dimension)

Method clone(): The objects of this class are cloneable with this method.

Usage:
COP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Samineh Bagheri, Wolfgang Konen

Examples

#i#creating an instance for G24 problem
G24<-COP$new("G24")

##initializing SACOBRA

cobra <- cobralInit(xStart=G24$lower, fName=G24$name,
fn=G24$fn,
lower=G24$lower, upper=G24$upper, feval=25)

## Run sacobra optimizer
cobra <- cobraPhaselII(cobra)

## The true solution is at solu = G24$solu

## The solution found by SACOBRA:

print(getXbest(cobra))

print(getFbest(cobra))
plot(abs(cobra$df$Best-G24$fn(G24$solu)[1]),log="y", type="1",
ylab="error",xlab="iteration",main=G24$name)

## creating an instance for G@3 in 2-dimensional space
GO3<-COP$new("G03",2)

## Initializing sacobra
cobra <- cobralnit(xStart=G@3$lower, fn=G03$fn,
fName=G@3$name, lower=G@3$lower, upper=G0O3$upper, feval=40)



defaultCA 15

defaultCA Default settings for online whitening functionality

Description

Sets default values for the online whitening functionality in order to handle function with high con-
ditioning. With the call setOpts(cobra$CA,defaultCA()) it is possible to extend a partial list
cobra$CA to a list containing all CA-elements (the missing ones are taken from defaultCA()).

As RBF interpolations face severe difficulties to deliver reasonable models for functions with high
conditioning, we try to transform the function with high conditioning f(Z) to a better conditioned
one g(&) which is easier to model.

9(%) = fF(M(Z — 7))
A possible transformation matrix M is the squared inverse of the Hessian matrix H~%%, assuming
that M is chosen with the following assumption:

P9(&) _
o2
Usage
defaultCA()
Details

The current version is only relevant for unconstrained problems. It this stage it is not recommended
to apply the online whitening to expensive optimization problems As it demands large number of
function evaluations. Every online whitening call demands 4d? + 4d function evaluations.

Value
CA, a list of the follwing elements:

active Set to TRUE if an online whitening of the fitness function is desired

HessianType ["real"] You can choose if the Hessian amtrix is evaluted on the real function or
on the surrogate model ["real", "surrogate"]. Please note that the determination
of Hessian matrix on the real function at each point costs 4*d*2+d real function
evalautions

ITERS [seq(10,500,10)], pass a vector of integers to this paramter then the Hessian ma-
trix will be updated only in the given iterations, we recommended applying the
online-whitening each 10 iterations after the 10+*d initial iterations.
seq(10*d,maxIter,10), where d is the dimensionality of the optimization prob-
lem . If set as the charachter "all" then the Hessian matrix will be updated in
each iteration and whitening procedure will be repeated

alpha [1] you can assign any real value to this parameter. Only values between 0 to 2
are suggested. This value is used in order to modify the transformation center
tCenter as follows: xbest+alpha*(grad), and grad is the direction of the last
improvment



16 defaultEquMu

See Also

setOpts

defaultDebugRBF Default settings for debug visualization RBF (only for d==2)

Description

Sets default values for debug visualization RBF of SACOBRA.

Usage
defaultDebugRBF ()

Value
DEBUG_RBF a list of the follwing elements:
active If set to TRUE then debugVisualizeRBF is called every DEBUG_RBF $every it-
erations
overlayTrueZ  If set to TRUE overlay the true objective function

DO_SNAPSHOT do rgl.snapshot every DEBUG_RBF $every iteration and store it
in sprintf("images.d/%s-%03d.png",cobra$fname,npts)

every Frequency of calling the debugVisualizeRBF function
See Also
debugVisualizeRBF
defaultEquMu Default settings for equality handling mechanism
Description

Sets suitable defaults for the equality handling part of SACOBRA.

The EH technique transforms each equality constraint h(Z) = 0 into two inequality constraints
h(Z) — p < 0 and —h(Z) — p < 0 with an adaptively decaying margin /.

If refine parameter is set to TRUE, then a refine mechanism is applied to shift the best found so-
lution within the equality margin p toward the feasible subspace by minimizing the sum of squared
constraint surrogates with a conjugate gradient method.

Minimize Z(maaz(o, gi(z))?) + Z(hj (z)?)

%



defaultEquMu 17

Usage

defaultEquMu()

Details

With the call setOpts(equHandle, defaultEquMu()) itis possible to extend a partial list equHandle
list which is set by user to a list containing all equHandle-elements (the missing ones are taken from
defaultEquMu()). These settings are used by cobralInit for initializing the equality margin p and
by the internal functions updateCobraEqu and modifyMu. The minimization step of refine mecha-
nism is done by L-BFGS-B method in optim function from stats package.

Value

equHandle, a list with the following elements:

active [TRUE] if set to TRUE the equality-handling (EH) technique is activated. The
EH technique transforms each equality constraint h(Z) = 0 into two inequality
constraints h(Z) — p < 0 and —h(Z) — p < 0 with an adaptively decaying
margin .

equEpsFinal [1e-07] lower bound for margin p. equEpsFinal should be set to a small but
non-zero value (larger than machine accuracy).

initType ["TAV"] the equality margin . can be initialized with one of these approaches:
["TAV"I"TMV"I"EMV"["useGrange"]
TAV: (Total Absolute Violation) takes the median of the sum of violations of the
initial population.
TMYV: (Total Maximum Violation) takes the median of the maximum violation
of the initial population
EMYV: takes the median of the maximum violation of equality constraints of the
initial population
useGrange: takes the average of the ranges of the equality constraint functions
epsType ["SAexpFunc"] type of the function used to modify margin u during the op-

timization process can be one of ["SAexpFunc"|"expFunc"|"Zhang"|"CONS"].
see modifyMu.

dec [1.5] decay factor for margin p. see modifyMu
refine [TRUE] enables the refine mechanism f the equality handling mechanism.
refineMaxit maximum number of iterations used in the refine step. Note that the refine step
runs on the surrogate models and does not impose any extra real function evalu-
ation.
See Also

updateCobraEqu, modifyMu



18

defaultMS

defaultMS

Default settings for the model-selection part of SACOBRA.

Description

Sets default values for the model-selection part cobra$MS of SACOBRA.

It is shown that different types of RBFs can deliver different qualites in modeling different functions.
Using the online model selection functionality boosted the overall performace of SACOBRA on a
large set of constrained problems. The algorithm trains every function (objective and constraints)
with a given pool of models including different RBF types and width parameters. The type of model
which performs the best in the last iterations WinS will be selected for each function. The quality of
the models are determined by different measures of approximation error in each iteration

Usage

defaultMS()

Details

f(fnew) - S(fnew)

With the call setOpts(MS,defaultMS()) itis possible to extend a partial list MS to a list containing
all MS-elements (the missing ones are taken from defaultMS()).

NOTE: Because of common crash observation, it is not recommended to include Gaussian model
in the set of models especially for problems which require more than 100 function evaluations.

Value

MS, a list with the following elements

active

models

widths

freq

slidingW

[F] If set to TRUE then selectModel calculates the best model for each con-
straint(s)/objective function

[c("cubic","MQ")] a set of model types that will be used to build the pool of
models. Three types of RBF are implemneted "cubic", "Gaussian" and "MQ"
(multiquadric). Users can select one or combination of these models. Users can
select a set of "width parameters" for "MQ" and "Gaussian" by setting widths
parameter.

[c(0.01,0.1,1,10)] a set of values for width parameter of RBF models. Only
relevant if models include "Gaussian" or "MQ".

[1] controls how often selectModel is called. In every freq iterations all the
selected models are trained for all constraint/objective function(s)

[T] when set to FALSE it uses the information taken from all the past iterations
to asses the quality of the models. When set to TRUE, activates the sliding
window functionality and it takes the information of the last WinS iterations (see
WinsS).



defaultRI 19

WinS [1] size of the sliding window

quant [3] 3: median, 2:0.25, 4:0.75. The measure used to compare the quality of the
model in the last window.

apply [T] if set to FALSE then the selected models are not used during the optimiza-
tion. Only for debugging purposes.

considerxXI [F] If set to T then a subset of the approximation errors which are related to the
current (DRC element) are considered to make the model selection decision

Author(s)

Samineh Bagheri

See Also

setOpts

defaultRI Default settings for repairInfeasRI2 and repairChootinan.

Description

Sets suitable defaults for the repair-infeasible part of SACOBRA.
With the call setOpts(myRI,defaultRI()) it is possible to extend a partial list myRI to a list
containing all ri-elements (the missing ones are taken from defaultRI())
Usage
defaultRI(repairMargin = 0.01)

Arguments

repairMargin [1e-2] repair only solutions whose infeasibility is less than this margin

Details

The infeasibility of a solution is its maximum constraint violation (0 for a feasible solution).

Value

a list with the following elements:

RIMODE [2] one out of {0,1,2,3 } with 0,1: deprecated older versions of RI2, 2: the
recommended RI2-case, see repairInfeasRI2, 3: Chootinan’s method, see
repairChootinan

eps1 [1e-4] include all constraints not eps1-feasible into the repair mechanism

eps2 [1e-4] selects the solution with the shortest shift among all random realizations

which are eps2-feasible



20 defaultSAC

q [3.0] draw coefficients «, from uniform distribution U|0, ¢]
mmax [1000] draw mmax random realizations

repairMargin  repair only solutions whose infeasibility is less than this margin.

repairOnlyFresBetter
[FALSE] if TRUE, then repair only iterates with
fitness < so-far-best-fitness + marFres

marFres [0.0] only relevant if repairOnlyFresBetter==TRUE

A solution z is said to be e-feasible for constraint function f, if

(@) +e<0

Author(s)

Wolfgang Konen, Cologne University of Applied Sciences

See Also

repairInfeasRI2, repairChootinan

defaultSAC Default settings for the SACOBRA part of SACOBRA.

Description

Sets suitable defaults for the SACOBRA part of SACOBRA.
With the call setOpts(mySAC,defaultSAC()) it is possible to extend a partial list mySAC to a list
containing all sac-elements (the missing ones are taken from defaultSAC()).

Usage
defaul tSAC(DOSAC = 1)

Arguments
DOSAC [01112] with default 1.
0: COBRA-R settings (turn off SACOBRA),
1: SACOBRA settings,
2: SACOBRA settings with fewer parameters and more online adjustements
(aFF and aCF are done parameter free).
Details

For backward compatibility, a logical DOSAC (deprecated) is mapped from FALSE to 0 and from
TRUE to 1.



defaultSAC

Value

21

a list with the following elements (the values in parantheses [ | ] are the values for DOSAC=[0|1|2]):

RS
RStype

RSmax

RSmin

RSAUTO

aDRC
aFF
aCF

TFRange

TGR

Cs

adaptivePLOG

onlinePLOG

pEffectInit

Author(s)

flag for random start algorithm [FALSE | TRUE | TRUE]

type of the function to calculate probability to start the internal optimizer with a
random starting point[NA | "SIGMOID" | "CONSTANT "] (see function RandomStart
in SACOBRA.R)

maximum probability of a random start when RStype=="SIGMOID" (see RandomStart
in SACOBRA.R). If RStype=="CONSTANT" then random start is done with a con-
stant probability determined from mean(c(RSmax,RSmin)) [NA|@.3]0.3]

minimum probability of a random start when RStype=="SIGMOID" (see RandomStart
in SACOBRA.R) [NA|0.05]0.05]

If TRUE then in every iteration where the fraction of feasible points in the popu-
lation is smaller than 0.05, the RS probability is set to 0.3. [FALSE | FALSE | TRUE]

flag for automatic DRC adjustment [FALSE | TRUE | TRUE]
flag for automatic objective function transformation [FALSE | TRUE | TRUE]
flag for automatic constraint function transformation [FALSE | TRUE | TRUE]

threshold, if FRange is larger than TFRange, then apply automatic objective func-
tion transformation (see plog). [Inf|1e+05|-1]

threshold, if GRatio is larger than TGR, then apply automatic constraint function
transformation. GRatio is the ratio "largest GRange / smallest GRange" where
GRange is the min-max range of a specific constraint. If TGR < 1, then the trans-
formation is always performed. [Inf|1e+0@3|-1].

If Cs iterations in a row do not improve the ever-best feasible solution, then
perform a random restart. [10]|10]10]

(experimental) flag for objective function transformation with plog, where the
parameter pShif't is adapted during iterations. [FALSE |FALSE | FALSE]

flag for online decision making wether use plog or not according to p-effect
plog. [FALSE | FALSE | TRUE]

Initial pEffect value when using onlinePLOG. If pEffectInit >= 2 then the initial
model is built after plog transformation. [NA|NA|2]

Samineh Bagheri, Cologne University of Applied Sciences

See Also

cobralnit, cobraPhaselIl



22 distLine

defaultTR Default settings for the trust-region part of COBRA.

Description

Sets default values for the trust-region part cobra$TRlist of SACOBRA.
With the call setOpts(myTR,defaultTR()) it is possible to extend a partial list myTR to a list
containing all TR-elements (the missing ones are taken from defaultTR()).

Usage

defaultTR()

Value

a list with the following elements
shape ["cube"] Shape of the trust region can be chosen between cube or a sphere
[cube|sphere]

radiMin [0.01] A value betwwen O and 1, minimum fraction of the width of the search
space to be used as radius of the trust region

radiMax [0.8] A value between 0 and 1, maximum fraction of the width of the search
space to be used as radius of the trust region

radiInit [0.1] Initial radius of trust region

center [cobra$xbest] Center of the trust region can be the current bwst solution or the
new solution[ xbest | xnew]

See Also

setOpts, trustRegion

distlLine Euclidean distance of x to all xp

Description

Euclidean distance of x to a line of points xp

Usage

distLine(x, xp)



DRCL 23

Arguments
X vector of dimension d
Xp n points z; of dimension d are arranged in (n x d) matrix xp. If xp is a vector, it
is interpreted as (n x 1) matrix, i.e. d=1.
Details

distLine is up to 40x faster than using dist and taking only the first row or column of the distance
matrix returned.

Value

vector of length n, the Euclidean distances

DRCL Distance Requirement Cycle, long version

Description

Distance Requirement Cycle, long version: ¢(0.3,0.05, 0.001, 0.0005,0.0)

Usage
DRCL

Format

An object of class numeric of length 5.

DRCS Distance Requirement Cycle, short version

Description

Distance Requirement Cycle, short version: c(0.001,0.0)

Usage
DRCS

Format

An object of class numeric of length 2.



24 evalReal

evalReal Evaluate new iterate on real function(s)

Description

Helper for cobraPhaseIl: The new iterate xNew, which was found by optimization on the surrogate
models, is evaluated on the real function cobra$fn. In the case of equality constraints, evalReal
does the additional refine step (see Details).

Usage
evalReal(
cobra,
evl,
xNew,
fValue,
feval,
optimConv,
optimTime,
currentEps,
fitnessSurrogate = cobra$fitnessSurrogate
)
Arguments
cobra an object of class COBRA, this is a (long) list containing all settings from
cobraPhaselIl
evl a list, initially empty, gradually filled by calls to evalReal
xNew the new point, see cobraPhasell
fvalue fitness value estimated for xNew
feval function evaluations on surrogates needed by COBRA optimizer
optimConv see cobraPhasell
optimTime see cobraPhasell
currentEps artificial current margin for the equality constraints: A point is said to be artifi-

cially feasible, if 1;(z) — currentEps < 0, —h;(z) — currentEps < 0, for

all equality constraints and if it is feasible in the inequality constraints.
fitnessSurrogate

[cobra$fitnessSurrogate] see cobraPhasell

Details

If cobra$equHandle$active==TRUE, then xNew is first refined: The artificially feasible solution
xNew is replaced by a refined solution ev1$xNew. ev1$xNew is created by using optim to minimize

the function
E max(0, g;(z)) + E h?(x)
i J



evalReal 25

Ideally, the refined solution ev1$xNew should be on the equality constraints (within machine accu-
racy), but there is no guarantee that optim reaches this desired result.
Value

ev1, a list with the following n-dim vectors ( n = number of iterations, the last element is from the
new iterate / point xNew ):

predY prediction of fitnessSurrogate at xNew
predval fvalue (fitness + penalty in case of NMKB et al.)
feval function evaluations on surrogates needed by COBRA optimizer
optimizerConvergence
see cobraPhasell
optimizationTime

see cobraPhasell

predC prediction of cobra$constraintSurrogates at xNew
feas TRUE, if xNew is feasible for the current constraints
feasPred TRUE, if xNew is feasible for cobra$constraintSurrogates

In addition, ev1 has these elements:

xNew d-dim vector, the new point, refined in the case of equality handling
xNewEval cobra$fn(xNew), an (1+nConstraints)-dim vector (objective,constraints)
newNumViol scalar, the number of constraint violations (above cobra$conTol) on true con-

straints from xNewEval

newNumPred scalar, the number of constraint violations (above cobra$conTol) on constraint
surrogates for xNew

newMaxViol scalar, the maximum constraint violation (with currentEps subtracted) on true
constraints from xNewEval

trueMaxViol scalar, the maximum constraint violation (w/o currentEps subtracted) on true
constraints from xNewEval

If cobrasequHandle$active==TRUE, then the last four values are for xNew after the refine step. In
this case, the first three elements newNumViol, newNumPred, and newMaxViol refer to the artificially
enlarged equality constraints, i.e.

hj(xz) — currentEps < 0,—h;(x) — currentEps < 0,

and the true inequality constraints max (0, g;(x)). The last element trueMaxViol measures the
maximum violation among the true equality constraints |k ;(z)| and the true inequality constraints
max(0, gi(x)).

See Also

cobraPhasell



26 getFbest

forwardRescale Forward Rescaling

Description

Scale vector x in original space forward to rescaled space (usually [—1, 1]%)

Usage

forwardRescale(x, cobra)

Arguments
X a vector in the original input space
cobra list from cobraInit, we need here
originalLL a vector with lower bounds in original input space
originalU a vector with upper bounds in original input space
newlower a number, the rescaled lower bound for all dimensions
newupper a number, the rescaled upper bound for all dimensions
Value

z, scaled version of vector x

See Also

inverseRescale

getFbest Return best objective function value

Description

Return the original objective function value at the best feasible solution

Usage

getFbest(cobra)

Arguments

cobra an object of class COBRA (see cobralnit)



getXbest

Details

27

Note: We cannot take the best function value via cobra$fn, because this may be modified by

plog() or others )

Value

the original objective function value at the best feasible solution

See Also

getXbest

getXbest Return best feasible solution in original space

Description

Return best feasible solution in original space

Usage

getXbest (cobra)

Arguments

cobra an object of class COBRA (see cobralnit)

Value

the best feasible solution in original space

See Also

getFbest



28 interpRBF

intern.archive.env Archiving Environment

Description

intern.archive.env is an independent environment where every evaluated point and its evaluation by
the real function are stored in ARCHIVE and ARCHIVEY. This archive stores different values to
cobra$A and cobra$Fres often during dubugging and visualisation cases where the real function
is evaluated very often for debugging purposes.

Usage

intern.archive.env

Format

An object of class environment of length 0.

interpRBF Apply the trained cubic, MQ or Gaussian RBF interpolation to new
data for d>1.

Description

Apply the trained cubic, MQ or Gaussian RBF interpolation to new data for d>1.

Usage
interpRBF(x, rbf.model)

Arguments

X vector holding a point of dimension d

rbf.model trained RBF model (or set of models), see trainCubicRBF or trainGaussRBF
Value

value s(Z) of the trained model at &
- Or -
vector s; (%) with values for all trained models j = 1,...,m at &

Author(s)

Wolfgang Konen (<wolfgang.konen@th-koeln.de>)

See Also

trainCubicRBF, trainMQRBF, trainGaussRBF, predict.RBFinter



inverseRescale

29

inverseRescale Inverse Rescaling

Description

Scale vector x in rescaled space back to original space

Usage

inverseRescale(x, cobra)

Arguments
X a vector in the rescaled input space (usually [—1, 1]9)
cobra list from cobraInit, we need here
originallL a vector with lower bounds in original input space
originalU a vector with upper bounds in original input space
newlower a number, the rescaled lower bound for all dimensions
newupper a number, the rescaled upper bound for all dimensions
Value

z, inverse rescaling of vector x

See Also

forwardRescale

multiCOBRA Perform multiple COBRA runs

Description

Perform multiple COBRA runs. Each run starts with a different seed so that a different start point,

a different initial design and different random restarts are choosen.

Usage
multiCOBRA(
fn,
lower,
upper,
nrun = 10,
feval = 200,

funcName = "GXX",



30 multiCOBRA

fName = paste@("mult-", funcName, ".Rdata"),

path = NULL,
cobra = NULL,
optim = NULL,

target = 0.05,
saveRdata = FALSE,

ylim = c(1e-05, 10000),
plotPDF = FALSE,
startSeed = 41

)
Arguments

fn objective function that is to be minimized, should return a vector of the objective
function value and the constraint values

lower lower bound of search space

upper upper bound of search space

nrun [10] number of runs

feval [200] function evaluations per run

funcName ["GXX"] name of the problem

fName the results (dfAll and others) are saved to <fname>.Rdata (only if saveR-
data==TRUE)

path [NULL] optional path

cobra [NULL] list with COBRA settings. If NULL, initialize cobra with a suitable
call to cobralnit.

optim [NULL] the true optimum (or best known value) of the problem (only for diag-
nostics)

target [0.05] a single run meets the target, if the final error is smaller than target

saveRdata [FALSE] if TRUE, save results (dfAll,optim,target,fName,funcName) on <fName>.Rdata

ylim the y limits

plotPDF [FALSE] if TRUE, plot not only to current graphics device but to <fName>. pdf
as well

startSeed [41] after each run the seed is incremented by 1, starting with startSeed

Details

Side effect: An error plot showing each run and the mean and median of all runs (see multiRunPlot).
The results (dfAll and others) are saved to <fName>.Rdata.

Value
mres, a list containing

cobra the settings and results from last run

dfAall a data frame with a result summary for all runs (see below)



multiCOBRA 31

z a vector containing for each run the ever-best feasible objective value

z2 a data frame containing for each run the minimum error (if optim is available)

The data frame dfAll contains one row per iteration with columns (among others)

ffc fitness function calls (i.e. the iterations cobra$iter)
fitVal true fitness function value

fitSur surrogate fitness function value

feas is current iterate feasible on the true constraints?

feval number of evaluations of the internal optimizer on the surrogate functions (NA if it is a
repairInfeasible-step)

XI the DRC element used in the current iteration
everBestFeas the ever-best feasible fitness function value
run the number of the current run

X1,X2,... the solution in (original) input space

Author(s)

Wolfgang Konen, Samineh Bagheri, Cologne University of Applied Sciences

See Also

multiRunPlot, cobraPhasell

Examples

## solve G11 problem nrun times and plot the results of all nrun runs
nrun=4
feval=25

## Defining the constrained problem (G11)

fn <= function(x) {
y<-x[1Ixx[11+((x[2]1-1)*2)
y<-as.numeric(y)

gl <- as.numeric(+(x[2] - x[11*2))

return(c(objective=y, gl=gl1))
3
funcName="G11"
lower<-c(-1,-1)
upper<-c(+1,+1)

## Initializing and running cobra
cobra <- cobralnit(xStart=c(@,0), fn=fn, fName=funcName, lower=lower, upper=upper,

feval=feval, initDesPoints=3%2, DOSAC=1, cobraSeed=1)

mres <- multiCOBRA(fn,lower,upper,nrun=nrun,feval=feval,optim=0.75



32 multiRunPlot

,cobra=cobra, funcName=funcName
,ylim=c(1e-12,1e-0),plotPDF=FALSE, startSeed=42)

## There are two true solutions at

## solul = c(-sqrt(0.5),0.5) and solu2 = c(+sqrt(0.5),0.5)

## where the true optimum is f(solul) = f(solu2) = -0.75

## The solution from SACOBRA is close to one of the true solutions:
print(getXbest(mres$cobra))

print(getFbest(mres$cobra))

print(mres$z2)

multiRunPlot Plot the results from multipe COBRA runs.

Description

Plot for each run one black curve ’error vs. iterations’ and aggregate the mean curve (red) and the
median curve (green) of all runs. ’error’ is the distance between the ever-best feasible value and

optim.
Usage

multiRunPlot(
dfAll,
optim = NULL,
fName = "multiRun”,
main = "",
xlim = NULL,
ylim = c(1e-05, 10000),
ylog = TRUE,
xlog = FALSE,

target = 0.05,

plotPDF = FALSE,

subPDF = NULL,
legendWhere = "topright”,
absErr = FALSE

)
Arguments
dfAll the data frame of all runs, obtained with multiCOBRA or loaded from .Rdata file
optim [NULL] the true optimum (or best known value) of the problem (only for diag-
nostics). If optim==NULL, we plot instead of errors the ever-best feasible values.
fName ["multiRun"] the name of the .Rdata file, printed as subtitle

main [""] the name of the problem (e.g. "GO1 problem"), printed as title



multiRunPlot_2 33

x1lim the x limits
ylim the y limits
ylog [TRUE] logarithmic y-axis
xlog [FALSE] logarithmic x-axis
target [0.05] a single run meets the target, if the final error is smaller than target
plotPDF [FALSE] if TRUE, plot to ’fName’.pdf
subPDF [NULL] optional subdirectory where .pdf should go
legendWhere ["topright"]
absErr [FALSE] if TRUE, plot abs(error) instead of error.
Details

Print some diagnostic information: final median & mean error, percentage of runs which meet the
target (only if optim is available)).

Value

z3, a vector containing for each run the ever-best feasible objective value

Author(s)

Wolfgang Konen, Samineh Bagheri, Cologne University of Applied Sciences

See Also

multiRunPlot_2, multiCOBRA, cobraPhasell

multiRunPlot_2 Plot the results from multipe COBRA runs.

Description

Plot for each run one black curve ’error vs. iterations’ and aggregate the mean curve (red) and the
median curve (green) of all runs. DIFFERENCE to multiRunPlot: ’error’ is the distance of the
ever-best feasible point in input space to the true solution solu.

Usage
multiRunPlot_2(
dfAll,
solu,
fName = "multiRun”,
main = "",

xlim = NULL,



34 multiRunPlot_2

ylim = c(1e-05, 10000),
ylog = TRUE,

xlog = FALSE,

target = 0.05,

plotPDF = FALSE,

subPDF = NULL,
legendWhere = "topright”,
absErr = FALSE

)
Arguments
dfAll the data frame of all runs, obtained with multiCOBRA or loaded from .Rdata file
solu the true solution in input space of the problem (only for diagnostics).
fName ["multiRun"] the name of the .Rdata file, printed as subtitle
main [""] the name of the problem (e.g. "GO1 problem"), printed as title
x1lim the x limits
ylim the y limits
ylog [TRUE] logarithmic y-axis
xlog [FALSE] logarithmic x-axis
target [0.05] a single run meets the target, if the final error is smaller than target
plotPDF [FALSE] if TRUE, plot to <fName>. pdf
subPDF [NULL] optional subdirectory where .pdf should go
legendWhere ["topright"]
absErr [FALSE] if TRUE, plot abs(error) instead of error.
Details

Print some diagnostic information: final median & mean error, percentage of runs which meet the
target (only if optim is available)).

Value

z3, a vector containing for each run the ever-best feasible objective value

Author(s)

Wolfgang Konen, Samineh Bagheri, Cologne University of Applied Sciences

See Also

multiRunPlot, multiCOBRA, cobraPhasell



plog 35

plog Monotonic transform

Description

The function is introduced in [Regis 2014] and extended here by a parameter p,p;¢. It is used to
squash functions with a large range into a smalller range.

Let y/ = (y - psh,ift):
plog(y) =In(1+y"), if ¢ >0

plog(y) = —In(1—y'), if y <0

Usage
plog(y, pShift = @)

Arguments

y function argument
pShift shift

Value

plog(y)

See Also

plogReverse

plogReverse Inverse of plog

Description

Inverse of plog

Usage

plogReverse(y, pShift = @)

Arguments

y function argument

pShift shift



36 predict. RBFinter

Value

plog™'(y)

See Also

plog

predict.RBFinter Apply cubic or Gaussian or MQ RBF interpolation

Description

Apply cubic or Gaussian or MQ RBF interpolation to a set of new data points for d>1.

Usage
## S3 method for class 'RBFinter’
predict(rbf.model, newdata, ...)
Arguments
rbf.model trained RBF model (or set of models), see trainCubicRBF or trainGaussRBF
newdata matrix or data frame with d columns. Each row contains a data point x;, ¢ =
1,...,n
(not used)
Value

vector of model responses s(x; ), one element for each data point x;

- Or -
if rbf.model is a set of m models, a (n x m)-matrix containing in each row the response s;(x;) of
allmodels j =1,...,mtox;

Author(s)

Wolfgang Konen (<wolfgang.konen@th-koeln.de>)

See Also

trainCubicRBF, trainGaussRBF, interpRBF



repairChootinan 37

repairChootinan Repair an infeasible solution with the method of Chootinan.

Description

Implements the method of [Choo2006] Chootinan & Chen "Constraint handling in genetic algo-
rithms using a gradient-based repair method", Computers & Operations Research 33 (2006), p.
2263.

Usage

repairChootinan(x, gReal, rbf.model, cobra, checkIt = FALSE)

Arguments
X an infeasible solution vector Z of dimension d
gReal avector (g1(Z), ..., gm(Z), hi(Z), ..., h.(Z)) holding the real constraint values
at &
rbf.model the constraint surrogate models
cobra parameter list, we need here
lower lower bounds of search region
upper upper bounds of search region
ri alist with all parameters for repairChootinan
trueFuncForSurrogate if TRUE (only for diagnostics), use the true constraint
functions instead of the constraint surrogate models rbf.model
fn true functions, only needed in case of trueFuncForSurrogate==TRUE
checkIt [FALSE] if TRUE, perform a check whether the returned solution is really fea-
sible. Needs access to the true constraint function conFunc
Value

z, a vector of dimension d with a repaired (hopefully feasible) solution

Author(s)

Wolfgang Konen, Cologne University of Applied Sciences

See Also

repairInfeasRI2, cobraPhasell



38 repairlnfeasRI2

repairInfeasRI2 Repair an infeasible solution with the method RI2

Description

If the solution & is infeasible, i.e. if there is any i or any j such that

9:(Z) > Oor|h;(Z)| — currentEps > 0

1. Estimate the gradient of the constraint surrogate function(s) (go a tiny step in each dimension
in the direction of constraint increase).

2. Take cobra$ri$mmax random realizations in the ’feasible parallelepiped’ and select among
them the best feasible solution, based on the surrogates,

3. Check whether the new solution is for every dimension in the bounds [cobra$lower, cobra$upper]
of the search region. If not, set the gradient to 0 in these dimensions and re-iterate from step
2.

There is no guarantee but a good chance, that the returned solution z will be feasible.

Usage

repairInfeasRI2(x, gReal, rbf.model, cobra, checkIt = FALSE)

Arguments
X an infeasible solution vector Z of dimension d
gReal avector (g1(Z), ..., gm(Z), h1 (L), ..., h.(Z)) holding the real constraint values
atr
rbf.model the constraint surrogate models
cobra parameter list, we need here

lower lower bounds of search region
upper upper bounds of search region
ri alist with all parameters for repairInfeasRI2, see defaultRI

trueFuncForSurrogate if TRUE (only for diagnostics), use the true constraint
functions instead of the constraint surrogate models rbf.model

fn true functions, only needed in case of trueFuncForSurrogate==TRUE

checkIt [FALSE] if TRUE, perform a check whether the returned solution is really fea-
sible. Needs access to the true constraint functions.

Details

For further details see [Koch15a] Koch, P.; Bagheri, S.; Konen, W. et al. "A New Repair Method
For Constrained Optimization". Proc. 17th Genetic and Evolutionary Computation Conference
(GECCO), 2015.



rescaleWrapper

Value

z, a vector of dimension d with a repaired (hopefully feasible) solution

Author(s)

Wolfgang Konen, Cologne University of Applied Sciences

See Also

repairChootinan, cobraPhasell

39

rescaleWrapper Return a rescaled function

Description

Return a rescaled function

Usage

rescaleWrapper(fn, lower, upper, dimension, newlower, newupper)

Arguments
fn function with argument x to be rescaled
lower a vector with lower bounds in original input space
upper a vector with lower bounds in original input space
dimension length of vector lower and upper
newlower a number, the rescaled lower bound for all dimensions
newupper a number, the rescaled upper bound for all dimensions
Value

newfn, rescaled version of function fn

See Also

forwardRescale, inverseRescale



40 startCobra

setOpts Merge the options from a partial list and the default list

Description

Merge the options from a partial list and the default list

Usage

setOpts(opts, defaultOpt)

Arguments

opts a partial list of options

defaultOpt a list with default values for every element
Value

a list combined from opts and defaultOpt where every available element in opts overrides the
default. For the rest of the elements the value from defaultOpt is taken.
A warning is issued for every element appearing in opts but not in defaultOpt

Author(s)

Samineh Bagheri, Wolfgang Konen, Cologne University of Applied Sciences

See Also

defaultRI, defaultSAC, defaultTR, defaultEquMu

startCobra Start COBRA (constraint-based optimization) phase I and/or phase 11

Description

Start COBRA (constraint-based optimization) phase I and/or phase II for object cobra

Usage

startCobra(cobra)

Arguments

cobra initialized COBRA object, i.e. the return value from cobralnit



startCobra

Value

cobra, an object of class COBRA

See Also

cobralnit, cobraPhasel, cobraPhaselIl

Examples

## solve GO1 problem

## defining the constraint problem: Go1
fn<-function(x){
obj<- sum(5xx[1:4])-(5*sum(x[1:4]*x[1:4]1))-(sum(x[5:13]))
gl<- (2*x[1]+2xx[2]+x[10]+x[11] - 10)
g2<- (2*x[1]1+2xx[3]+x[10]1+x[12] - 10)
g3<- (2*x[2]+2xx[3]+x[11]+x[12] - 10)

g4<- -8xx[1]1+x[10]
gh5<- -8*xx[2]+x[11]
g6<- -8*xx[3]+x[12]

g7<- -2*x[4]-x[5]+x[10]
g8<- -2*xx[6]1-x[7]1+x[11]
g9<- -2*x[8]-x[9]+x[12]

res<-c(obj, gl ,g2 , g3

, 84,85, gb
’ g7 ’ gg ’ gg)
return(res)
3
fName="G01"
d=13

lower=rep(0,d)
upper=c(rep(1,9),rep(100,3),1)
set.seed(1)
xStart<-runif(d,min=lower,max=upper)

## Initializing cobra
cobra <- cobralnit(xStart=xStart, fn=fn, fName=fName, lower=lower, upper=upper,
feval=55, seqgFeval=400, initDesPoints=3xd, DOSAC=1, cobraSeed=1)

cobra <- startCobra(cobra)

## The true solution is at solu = c(rep(1,9),rep(3,3),1)
## where the optimum is f(solu) = optim = -15

## The solutions from SACOBRA is close to this:
print(getXbest(cobra))

print(getFbest(cobra))

## Plot the resulting error (best-so-far feasible optimizer result - true optimum)
## on a logarithmic scale:

41



42 trainCubicRBF

optim = -15
plot(cobra$df$Best-optim,log="y", type="1",ylab="error",xlab="iteration",main=fName)

trainCubicRBF Fit cubic RBF interpolation to training data X for d>1.

Description

The model at a point z = (21, ..., z4) is fitted using n sample points z1, ..., T,

5(2) = M x O(|[z —a]) + . + A ¥ (|2 —zn|]) + ot er ¥ 21+ HCaxza

where ®(r) = r3 denotes the cubic radial basis function. The coefficients Ay, ..., A, co, €1, ..., Ca
are determined by this training procedure.

This is for the default case squares==FALSE. In case squares==TRUE there are d additional pure
square terms and the model is

5sq(2) = 8(2) + car1 * 28 + oo + Cara * 23

In case ptail==FALSE the polynomial tail (all coefficients c;) is omitted completely.

Usage
trainCubicRBF(
Xp,
U,
ptail = TRUE,
squares = FALSE,
rho = 0,
DEBUG2 = FALSE,
width = NA
)
Arguments
Xp n points z; of dimension d are arranged in (n x d) matrix xp
u vector of length n, containing samples f(x;) of the scalar function f to be fitted
_or-
(n x m) matrix, where each column 1,...,m contains one vector of samples f; (z;)
for the m’th model, j=1,...,m
ptail [TRUE] flag, see description
squares [FALSE] flag, see description
rho [0.0] experimental: O: interpolating, >0, approximating (spline-like) Gaussian
RBFs
DEBUG2 [FALSE] if TRUE, save M and rhs on return value

width [NA] non relevant for the parameter-free cubic RBF



trainGaussRBF 43

Details

The linear equation system is solved via SVD inversion. Near-zero elements in the diagonal matrix
D are set to zero in D~ !. This is numerically stable for rank-deficient systems.

Value
rbf.model, an object of class RBFinter, which is basically a list with elements:

coef (n+d+1 x m) matrix holding in column m the coefficients for the m’th model:
Aly ooy A, €0, C1y -ovy Cq. In case squares==TRUE it is an (n+2d+1 X m) matrix
holding additionally the coefficients cg 1, ..., C4tqd-

Xp matrix xp

d size of the polynomial tail. If 1ength(d)==0 it means no polynomial tail will be
used for the model. In case of ptail==T && squares==F d will be dimension+1
and in case of ptail==T && squares==T d will be 2*dimension+1

npts number n of points x;

ptail TRUE or FALSE (see description)

squares TRUE or FALSE (see description)

type "CUBIC"

width NA, irrelevant for the parameter-free cubic RBF
Author(s)

Wolfgang Konen (<wolfgang.konen@th-koeln. de>), Samineh Bagheri (<samineh.bagheri@th-koeln.de>)

See Also
trainGaussRBF, trainMQRBF predict.RBFinter, interpRBF

trainGaussRBF Fit Gaussian RBF model to training data for d>1.

Description

The model for a point z = (z1, ..., 24) is fitted using n sample points 1, ..., T,
s)=M*x@(lz—x1|)+ ..+ A xP(||z —an|]) +cot+ 1 x 21+ ...+ ca* 24

where ®(r) = exp(—r?/(2 x 0%)) denotes the Gaussian radial basis function with width . The
coefficients Ay, ..., Ay, co, €1, ..., cq are determined by this training procedure.

This is for the default case squares==FALSE. In case squares==TRUE there are d additional pure
square terms and the model is

8sq(2) = 8(2) + Cap1 * 21 + oo + Cara * 25
In case ptail==FALSE the polynomial tail (all coefficients c;) is omitted completely.

The linear equation system is solved via SVD inversion. Near-zero elements in the diagonal matrix
D are set to zero in D!, This makes rank-deficient systems numerically stable.



44

Usage

trainGaussRBF (

xp,
U,

ptail = TRUE,

trainGaussRBF

squares = FALSE,

width,

RULE = "One",
widthFactor

rho = 0,

DEBUG2 = F

Arguments

Xp
U

ptail
squares
width

RULE

widthFactor

rho

DEBUG2

Value

T,

n points z; of dimension d are arranged in (n x d) matrix xp

vector of length n, containing samples u(z;) of the scalar function u to be fitted
- OI‘ -

(n x m) matrix, where each column 1,...,m contains one vector of samples u; (x;)
for the m’th model, j=1,...,m

[TRUE] flag, see description
[FALSE] flag, see ’Description’

[-1] either a positive real value which is the constant width o for all Gaussians
in all iterations, or -1. If -1, the appropriate width o is calculated anew in each
iteration with one of the rules RULE, based on the distribution of data points xp.

["One"] one out of ["One" | "Two" | "Three"], different rules for automatic esti-
mation of width . Only relevant if width = -1,

[1.0] additional constant factor applied to each width o

[0.0] experimental: 0.0: interpolating, >0.0, approximating (spline-like) Gaus-
sian RBFs

[FALSE] if TRUE, save M and rhs on return value

rbf.model, an object of class RBFinter, which is basically a list with elements:

coef

Xp

npts
ptail

(n+d+1 x m) matrix holding in column m the coefficients for the m’th model:
Aly ooy A, €O, C1y -ovy Cq. In case squares==TRUE it is an (n+2d+1 X m) matrix
holding additionally the coefficients cg 1, ..., Cqtqd-

matrix xp

size of the polynomial tail. If length(d)==0 it means no polynomial tail will be
used for the model. In case of ptail==T && squares==F d will be dimension+1
and in case of ptail==T && squares==T d will be 2*dimension+1

number n of points x;
TRUE or FALSE (see description)



trainMQRBF 45

squares TRUE or FALSE (see description)
width the calculated width o
type "GAUSS"

Author(s)

Wolfgang Konen, Samineh Bagheri

See Also

trainCubicRBF, predict.RBFinter, interpRBF

trainMQRBF Fit multiquadric RBF model to training data for d>1.

Description

The model for a point z = (21, ..., 24) is fitted using n sample points 1, ..., T,

s)=M*x@(lz—x1|) + ..+ A x@(||z —xn|]) +cot+ 1 x 21+ ...+ cq* 24

where ®(r) = /(1 + (r/0)?) denotes the multiquadrics radial basis function with width o. The
coefficients A1, ..., An, Co, €1, ..., ¢q are determined by this training procedure.
This is for the default case squares==FALSE. In case squares==TRUE there are d additional pure

square terms and the model is

5sq(2) = 8(2) + Car1 * 27 + oo + Cara * 25

In case ptail==FALSE the polynomial tail (all coefficients c;) is omitted completely.

Usage

trainMQRBF (
Xp,
u,
ptail = TRUE,
squares = FALSE,
width,
RULE = "One",
widthFactor = 1,
rho = 0,
DEBUG2 = F



46

Arguments

Xp
U

ptail
squares
width

RULE

widthFactor

rho

DEBUG2

Details

trainMQRBF

n points z; of dimension d are arranged in (n x d) matrix xp

vector of length n, containing samples u(z;) of the scalar function u to be fitted
- or-

(n x m) matrix, where each column 1,...,m contains one vector of samples u; (x;)
for the m’th model, j=1,...,m

[TRUE] flag, see description
[FALSE] flag, see *Description’

[-1] either a positive real value which is the constant width ¢ for all Gaussians
in all iterations, or -1. If -1, the appropriate width o is calculated anew in each
iteration with one of the rules RULE, based on the distribution of data points xp.

["One"] one out of ["One" | "Two" | "Three"], different rules for automatic esti-
mation of width o. Only relevant if width = -1,

[1.0] additional constant factor applied to each width o

[0.0] experimental: 0.0: interpolating, >0.0, approximating (spline-like) Gaus-
sian RBFs

[FALSE] if TRUE, save M and rhs on return value

The linear equation system is solved via SVD inversion. Near-zero elements in the diagonal matrix
D are set to zero in D!, This makes rank-deficient systems numerically stable.

Value

rbf.model, an object of class RBFinter, which is basically a list with elements:

coef

Xp

npts
ptail
squares

width
type

Author(s)

(n+d+1 x m) matrix holding in column m the coefficients for the m’th model:
Aly ooy Ay €O, C1y -ovy Cq. In case squares==TRUE it is an (n+2d+1 X m) matrix
holding additionally the coefficients cg4 1, ..., Cq+d-

matrix xp

size of the polynomial tail. If 1ength(d)==0 it means no polynomial tail will be
used for the model. In case of ptail==T && squares==F d will be dimension+1
and in case of ptail==T && squares==T d will be 2*dimension+1

number n of points x;

TRUE or FALSE (see description)
TRUE or FALSE (see description)
the calculated width o

"MQ"

Wolfgang Konen, Samineh Bagheri



trustRegion 47

See Also

trainCubicRBF, predict.RBFinter, interpRBF

trustRegion Performs trust region refinement

Description

If cobra$TrustRegion==TRUE (see cobralnit), then the trustRegion functionality is applied
every iteration in order to refine the best solution so far. This function builds a local model around
the best solution and runs a local search in the trust region to refine the best solution and find a
better solution in the neighborhood.

Usage

trustRegion(cobra, center = cobra$xbest)

Arguments
cobra an object of class cobra, which is basically a list (see cobraInit)
center [cobra$xbest] the center of the trust region

Value

the modified cobra with new/updated elements

TRDONE logical, is TRUE if there are more than d+1 points in the trusted region and thus
surrogates can be trained. Otherwise FALSE.

trustregX if TRDONE==TRUE the refined solution from the trust-region call, otherwise NA

If TRDONE==TRUE the relevant lists and counters (A,Fres,df,...) of cobra will be updated in
cobraPhasell as well.

Author(s)

Samineh Bagheri (<samineh.bagheri@th-koeln.de>)



Index

*Topic RBF
SACOBRA-package, 2
+Topic black-box
SACOBRA-package, 2
xTopic constraints
SACOBRA-package, 2
*Topic datasets
COP, 13
DRCL, 23
DRCS, 23
intern.archive.env, 28
+Topic optimization
SACOBRA-package, 2
xTopic package
SACOBRA-package, 2
+Topic surrogate
SACOBRA-package, 2

cobralnit, 4,4,9-13,17,21, 26, 27, 29, 30,
40, 41,47

cobraPhasel, 6, 9,9, 12,41

cobraPhasell, 4, 6-10, 10, 21, 24, 25, 31, 33,
34,37,39,41,47

cobyla, 6, 8

COP, 4, 13

debugVisualizeRBF, 16
defaultCA, 7, 15
defaultDebugRBF, 16
defaultEquMu, 7, 16, 40
defaultMs, 7, 18
defaultRI, 6, 19, 38, 40
defaultSAC, 6, 20, 40
defaultTR, 7, 22, 40
dist, 23

distLine, 22

DRCL, 23

DRCS, 23

evalReal, 24

48

forwardRescale, 26, 29, 39

getFbest, 26, 27
getXbest, 27, 27

intern.archive.env, 28
interpRBF, 28, 36, 43, 45,47
inverseRescale, 26, 29, 39

modifyMu, 17
multiCOBRA, 4, 29, 32-34
multiRunPlot, 30, 31, 32, 33, 34
multiRunPlot_2, 33, 33

nmkb, 6, 8

plog, 9,11, 21, 35, 35, 36
plogReverse, 35, 35
predict.RBFinter, 28, 36, 43, 45,47

RandomStart, 2/
repairChootinan, 19, 20, 37, 39
repairInfeasRI2, 6, 19, 20, 37, 38
rescaleWrapper, 39

SACOBRA (SACOBRA-package), 2
SACOBRA-package, 2

setOpts, 15-20, 22, 40
startCobra, 4, 9, 40

trainCubicRBF, 28, 36, 42, 45, 47
trainGaussRBF, 7, 28, 36, 43, 43
trainMQRBF, 28, 43, 45
trustRegion, 7, 22, 47

updateCobraEqu, /7



	SACOBRA-package
	cobraInit
	cobraPhaseI
	cobraPhaseII
	COP
	defaultCA
	defaultDebugRBF
	defaultEquMu
	defaultMS
	defaultRI
	defaultSAC
	defaultTR
	distLine
	DRCL
	DRCS
	evalReal
	forwardRescale
	getFbest
	getXbest
	intern.archive.env
	interpRBF
	inverseRescale
	multiCOBRA
	multiRunPlot
	multiRunPlot_2
	plog
	plogReverse
	predict.RBFinter
	repairChootinan
	repairInfeasRI2
	rescaleWrapper
	setOpts
	startCobra
	trainCubicRBF
	trainGaussRBF
	trainMQRBF
	trustRegion
	Index

