Package 'SIHR'

August 10, 2022
Type Package
Title Statistical Inference in High Dimensional Regression
Version 1.0.1
Author Prabrisha Rakshit, Zhenyu Wang, Zijian Guo, Tony Cai
Maintainer Zijian Guo zijguo@stat.rutgers.edu
Description Inference procedures in the high-dimensional setting for
(1) linear functionals in generalized linear regres-
sion ('Cai et al.' (2019) arXiv:1904.12891, 'Guo et al.' (2020) arXiv:2012.07133, 'Cai et al.' (2021)),
(2) individual treatment effects in generalized linear regression,
(3) quadratic functionals in linear regression ('Guo et al.' (2019) arXiv:1909.01503).
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.0
URL https://github.com/prabrishar1/SIHR
Imports CVXR, glmnet, stats
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-10 07:30:13 UTC

R topics documented:

$$
\text { ITE . } 2
$$

LF 4
QF 6
Index 8

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

```
Usage
    ITE(
        X1,
        y1,
        X2,
        y2,
        loading.mat,
        model = "linear",
        intercept = TRUE,
        intercept.loading = FALSE,
        beta.init1 = NULL,
        beta.init2 = NULL,
        lambda = NULL,
        mu = NULL,
        init.step = NULL,
        resol = 1.5,
        maxiter = 6,
        alpha = 0.05,
        verbose = TRUE
    )
```


Arguments

X1
Design matrix for the first sample, of dimension $n_{1} \times p$
y1 Outcome vector for the first sample, of length n_{1}
X2 Design matrix for the second sample, of dimension $n_{2} \times p$
y2 Outcome vector for the second sample, of length n_{1}
loading.mat Loading matrix, nrow $=p$, each column corresponds to a loading of interest
model The high dimensional regression model, either linear or logistic or logistic alternative or probit
intercept \quad Should intercept(s) be fitted for the initial estimators (default $=$ TRUE $)$
intercept.loading
Should intercept be included for the loading $($ default $=$ FALSE $)$
beta.init1 The initial estimator of the regression vector for the 1st data $($ default $=$ NULL $)$

beta.init2	The initial estimator of the regression vector for the 2nd data (default $=$ NULL) lambda mu
lamba The tuning parameter in fitting model (default = NULL)	
init.step	The dual tuning parameter used in the construction of the projection direction (default = NULL)
The initial step size used to compute mu; if set to NULL it is computed to be the	
number of steps (maxiter) to obtain the smallest mu	

Value

$$
\begin{array}{ll}
\text { est.plugin.vec } & \begin{array}{l}
\text { The vector of plugin(biased) estimators for the linear combination of regression } \\
\text { coefficients, length of ncol(loading.mat); corresponding to different column } \\
\text { in loading.mat }
\end{array} \\
\text { est. debias.vec } & \begin{array}{l}
\text { The vector of bias-corrected estimators for the linear combination of regression } \\
\text { coefficients, length of ncol(loading.mat); corresponding to different column } \\
\text { in loading.mat }
\end{array} \\
\text { se.vec } & \begin{array}{l}
\text { The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); } \\
\text { corresponding to different column in loading.mat }
\end{array} \\
\text { ci.mat } & \begin{array}{l}
\text { The matrix of two.sided confidence interval for the linear combination, of di- } \\
\text { mension ncol(loading.mat) x } 2 \text {; the row corresponding to different column } \\
\text { in loading.mat }
\end{array} \\
\text { prob.debias.vec }
\end{array} \quad \begin{aligned}
& \text { The vector of bias-corrected estimators after probability transformation, length } \\
& \text { of ncol(loading. mat); corresponding to different column in loading.mat. The } \\
& \text { value would be NULL for non-logistic model. }
\end{aligned}
$$

Examples

```
X1 = matrix(rnorm(100*10), nrow=100, ncol=10)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*10), nrow=90, ncol=10)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep (0,8))
loading2 = c(-0.5, -1, rep (0,8))
loading.mat = cbind(loading1, loading2)
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
```

```
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
## summary statistics
summary(Est)
``` mensional generalized linear regression

\section*{Description}

Inference for linear combination of the regression vector in high dimensional generalized linear regression

\section*{Usage}

LF (
\(X\),
\(y\),
loading.mat,
model = c("linear", "logistic", "logistic_alternative", "probit"), intercept = TRUE,
intercept.loading = FALSE, beta.init = NULL,
lambda = NULL,
mu = NULL,
init.step = NULL,
resol = 1.5,
maxiter = 6,
alpha \(=0.05\),
verbose = TRUE
)

\section*{Arguments}
\(\mathrm{X} \quad\) Design matrix, of dimension \(n \mathrm{x} p\)
y Outcome vector, of length \(n\)
loading.mat Loading matrix, nrow \(=p\), each column corresponds to a loading of interest
model The high dimensional regression model, either linear or logistic or logistic_alternative or probit
intercept \(\quad\) Should intercept be fitted for the initial estimator \((\) default \(=\) TRUE \()\)
intercept.loading
Should intercept be included for the loading \((\) default \(=\) FALSE \()\)
beta.init The initial estimator of the regression vector \((\) default \(=\) NULL)
\(\left.\left.\begin{array}{ll}\text { lambda } & \begin{array}{l}\text { The tuning parameter in fitting model (default = NULL) } \\
\text { mu }\end{array} \\
\text { The dual tuning parameter used in the construction of the projection direction } \\
\text { (default = NULL) }\end{array}\right] \begin{array}{l}\text { The initial step size used to compute mu; if set to NULL it is computed to be the } \\
\text { number of steps (maxiter) to obtain the smallest mu }\end{array}\right]\)\begin{tabular}{l}
The factor by which mu is increased/decreased to obtain the smallest mu such \\
that the dual optimization problem for constructing the projection direction con- \\
verges (default = 1.5)
\end{tabular}

\section*{Value}
\begin{tabular}{ll}
est.plugin.vec & \begin{tabular}{l}
The vector of plugin(biased) estimators for the linear combination of regression \\
coefficients, length of ncol (loading. mat); each corresponding to a loading of \\
interest
\end{tabular} \\
est. debias.vec & \begin{tabular}{l}
The vector of bias-corrected estimators for the linear combination of regression \\
coefficients, length of ncol (loading. mat); each corresponding to a loading of \\
interest
\end{tabular} \\
se.vec & \begin{tabular}{l}
The vector of standard errors of the bias-corrected estimators, length of ncol (loading.mat); \\
each corresponding to a loading of interest
\end{tabular} \\
ci.mat & \begin{tabular}{l}
The matrix of two.sided confidence interval for the linear combination, of di- \\
mension ncol(loading.mat) x 2 ; each row corresponding to a loading of in- \\
terest
\end{tabular} \\
proj.mat & \begin{tabular}{l}
The matrix of projection directions; each column corresponding to a loading of \\
interest
\end{tabular}
\end{tabular}

\section*{Examples}
```

X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 8))
loading2 = c(-0.5, -1, rep(0, 8))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")

## compute confidence intervals

ci(Est, alpha=0.05, alternative="two.sided")

## summary statistics

summary(Est)

```

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

\section*{Description}

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions
```

Usage
QF(
X,
y,
G,
A = NULL,
model = c("linear", "logistic", "logistic_alternative", "probit"),
intercept = TRUE,
tau.vec = c(0, 0.5, 1),
beta.init = NULL,
lambda = NULL,
mu = NULL,
init.step = NULL,
resol = 1.5,
maxiter = 6,
alpha = 0.05,
verbose = TRUE
)

```

\section*{Arguments}

X
\(y \quad\) Outcome vector, of length \(n\)
G
A
model The high dimensional regression model, either linear or logistic or logistic_alternative or probit
intercept \(\quad\) Should intercept be fitted for the initial estimator \((\) default \(=T R U E)\)
tau.vec The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency \((\) default \(=c(0,0.5,1))\)
beta.init \(\quad\) The initial estimator of the regression vector \((\) default \(=\) NULL \()\)
lambda
Design matrix, of dimension \(n \times p\)

The set of indices, G in the quadratic form
The matrix A in the quadratic form, of dimension \(|G| \times|G|\). If NULL A would be set as the \(|G| \times|G|\) submatrix of the population covariance matrix corresponding to the index set \(\mathrm{G}(\) default \(=\mathrm{NULL})\)

The tuning parameter in fitting model \((\) default \(=\) NULL \()\)
\begin{tabular}{ll}
mu & \begin{tabular}{l}
The dual tuning parameter used in the construction of the projection direction \\
(default = NULL)
\end{tabular} \\
init.step & \begin{tabular}{l}
The initial step size used to compute mu; if set to NULL it is computed to be the \\
number of steps (<maxiter) to obtain the smallest mu such that the dual opti- \\
mization problem for constructing the projection direction converges (default = \\
NULL)
\end{tabular} \\
resol & \begin{tabular}{l}
Resolution or the factor by which mu is increased/decreased to obtain the small- \\
est mu such that the dual optimization problem for constructing the projection \\
direction converges (default = 1.5)
\end{tabular} \\
maxiter & \begin{tabular}{l}
aximum number of steps along which mu is increased/decreased to obtain the \\
smallest mu such that the dual optimization problem for constructing the projec- \\
tion direction converges (default = 6)
\end{tabular} \\
alpha & \begin{tabular}{l}
Level of significance to construct two-sided confidence interval (default = 0.05)
\end{tabular} \\
verbose & \begin{tabular}{l}
Should intermediate message \((\mathrm{s})\) be printed (default \(=T R U E)\)
\end{tabular}
\end{tabular}

\section*{Value}
est.plugin The plugin(biased) estimator for the quadratic form of the regression vector restricted to G
est.debias The bias-corrected estimator of the quadratic form of the regression vector
se.vec The vector of standard errors of the bias-corrected estimator, length of tau.vec; corrsponding to different values of tau.vec
ci.mat The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec
proj The projection direction

\section*{Examples}
```

X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")

## compute confidence intervals

ci(Est, alpha=0.05, alternative="two.sided")

## summary statistics

summary(Est)

```

\section*{Index}

ITE, 2
LF, 4
QF, 6```

