Package 'SIHR'

August 10, 2022

Type Package Title Statistical Inference in High Dimensional Regression Version 1.0.1 Author Prabrisha Rakshit, Zhenyu Wang, Zijian Guo, Tony Cai Maintainer Zijian Guo <zijguo@stat.rutgers.edu> Description Inference procedures in the high-dimensional setting for (1) linear functionals in generalized linear regression ('Cai et al.' (2019) <arXiv:1904.12891>, 'Guo et al.' (2020) <arXiv:2012.07133>, 'Cai et al.' (2021)), (2) individual treatment effects in generalized linear regression, (3) quadratic functionals in linear regression ('Guo et al.' (2019) <arXiv:1909.01503>). License GPL-3 **Encoding** UTF-8 RoxygenNote 7.2.0 URL https://github.com/prabrishar1/SIHR Imports CVXR, glmnet, stats NeedsCompilation no **Repository** CRAN

Date/Publication 2022-08-10 07:30:13 UTC

R topics documented:

ΙΤΕ	 	
LF	 	4
QF	 	· · · · · · · · · · · · · · · · · · ·

8

Index

Description

Computes the bias-corrected estimator of the difference of linearcombinations of the regression vectors for the high dimensional generalized linear regressions and the corresponding standard error.

Usage

```
ITE(
 X1,
 y1,
 Χ2,
 y2,
  loading.mat,
 model = "linear",
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init1 = NULL,
 beta.init2 = NULL,
  lambda = NULL,
 mu = NULL,
  init.step = NULL,
  resol = 1.5,
 maxiter = 6,
 alpha = 0.05,
  verbose = TRUE
```

Arguments

)

X1	Design matrix for the first sample, of dimension $n_1 \ge p$	
у1	Outcome vector for the first sample, of length n_1	
X2	Design matrix for the second sample, of dimension $n_2 \ge p$	
y2	Outcome vector for the second sample, of length n_1	
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest	
model	The high dimensional regression model, either linear or logistic or logistic alternative or probit	
intercept	Should intercept(s) be fitted for the initial estimators (default = $TRUE$)	
intercept.loading		
	Should intercept be included for the loading (default = FALSE)	
beta.init1	The initial estimator of the regression vector for the 1st data (default = NULL)	

ITE

beta.init2	The initial estimator of the regression vector for the 2nd data (default = $NULL$)
lambda	lambda The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (maxiter) to obtain the smallest mu
resol	The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat	
est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); corresponding to different column in loading.mat	
se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); corresponding to different column in loading.mat	
ci.mat	The matrix of two.sided confidence interval for the linear combination, of di- mension ncol(loading.mat) x 2; the row corresponding to different column in loading.mat	
prob.debias.vec		
	The vector of bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different column in loading.mat. The value would be NULL for non-logistic model.	
prob.se.vec	The vector of standard errors of the bias-corrected estimators after probability transformation, length of ncol(loading.mat); corresponding to different col- umn in loading.mat. The value would be NULL for non-logistic model.	

Examples

```
X1 = matrix(rnorm(100*10), nrow=100, ncol=10)
y1 = -0.5 + X1[,1] * 0.5 + X1[,2] * 1 + rnorm(100)
X2 = matrix(rnorm(90*10), nrow=90, ncol=10)
y2 = -0.4 + X2[,1] * 0.48 + X2[,2] * 1.1 + rnorm(90)
loading1 = c(1, 1, rep(0,8))
loading2 = c(-0.5, -1, rep(0,8))
loading.mat = cbind(loading1, loading2)
Est = ITE(X1, y1, X2, y2, loading.mat, model="linear")
```

```
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
```

```
## summary statistics
summary(Est)
```

LF

4

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Description

Inference for linear combination of the regression vector in high dimensional generalized linear regression

Usage

```
LF(
 Χ,
 у,
  loading.mat,
 model = c("linear", "logistic", "logistic_alternative", "probit"),
  intercept = TRUE,
  intercept.loading = FALSE,
  beta.init = NULL,
  lambda = NULL,
 mu = NULL,
  init.step = NULL,
  resol = 1.5,
 maxiter = 6,
  alpha = 0.05,
  verbose = TRUE
)
```

Arguments

Х	Design matrix, of dimension $n \ge p$	
У	Outcome vector, of length n	
loading.mat	Loading matrix, nrow=p, each column corresponds to a loading of interest	
model	The high dimensional regression model, either linear or logistic or logistic_alternative or probit	
intercept	Should intercept be fitted for the initial estimator (default = TRUE)	
intercept.loading		
	Should intercept be included for the loading (default = FALSE)	
beta.init	The initial estimator of the regression vector (default = NULL)	

LF

lambda	The tuning parameter in fitting model (default = NULL)
mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (maxiter) to obtain the smallest mu
resol	The factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	Maximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin.vec	The vector of plugin(biased) estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest
est.debias.vec	The vector of bias-corrected estimators for the linear combination of regression coefficients, length of ncol(loading.mat); each corresponding to a loading of interest
se.vec	The vector of standard errors of the bias-corrected estimators, length of ncol(loading.mat); each corresponding to a loading of interest
ci.mat	The matrix of two.sided confidence interval for the linear combination, of di- mension ncol(loading.mat) x 2; each row corresponding to a loading of in- terest
proj.mat	The matrix of projection directions; each column corresponding to a loading of interest

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = -0.5 + X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
loading1 = c(1, 1, rep(0, 8))
loading2 = c(-0.5, -1, rep(0, 8))
loading.mat = cbind(loading1, loading2)
Est = LF(X, y, loading.mat, model="linear")
## compute confidence intervals
```

```
ci(Est, alpha=0.05, alternative="two.sided")
```

```
## summary statistics
summary(Est)
```

Description

Inference for quadratic forms of the regression vector in high dimensional linear and logistic regressions

Usage

```
QF(
 Χ,
 у,
 G,
 A = NULL,
 model = c("linear", "logistic", "logistic_alternative", "probit"),
  intercept = TRUE,
  tau.vec = c(0, 0.5, 1),
  beta.init = NULL,
  lambda = NULL,
 mu = NULL,
  init.step = NULL,
  resol = 1.5,
 maxiter = 6,
 alpha = 0.05,
  verbose = TRUE
```

Arguments

)

Х	Design matrix, of dimension $n \ge p$
У	Outcome vector, of length n
G	The set of indices, G in the quadratic form
A	The matrix A in the quadratic form, of dimension $ G \times G $. If NULL A would be set as the $ G \times G $ submatrix of the population covariance matrix corresponding to the index set G (default = NULL)
model	The high dimensional regression model, either linear or logistic or logistic_alternative or probit
intercept	Should intercept be fitted for the initial estimator (default = TRUE)
tau.vec	The vector of enlargement factors for asymptotic variance of the bias-corrected estimator to handle super-efficiency (default = $c(0, 0.5, 1)$)
beta.init	The initial estimator of the regression vector (default = $NULL$)
lambda	The tuning parameter in fitting model (default = NULL)

QF

mu	The dual tuning parameter used in the construction of the projection direction (default = NULL)
init.step	The initial step size used to compute mu; if set to NULL it is computed to be the number of steps (< maxiter) to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = NULL)
resol	Resolution or the factor by which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 1.5)
maxiter	aximum number of steps along which mu is increased/decreased to obtain the smallest mu such that the dual optimization problem for constructing the projection direction converges (default = 6)
alpha	Level of significance to construct two-sided confidence interval (default = 0.05)
verbose	Should intermediate message(s) be printed (default = TRUE)

Value

est.plugin	The plugin(biased) estimator for the quadratic form of the regression vector restricted to ${\tt G}$
est.debias	The bias-corrected estimator of the quadratic form of the regression vector
se.vec	The vector of standard errors of the bias-corrected estimator, length of tau.vec; corrsponding to different values of tau.vec
ci.mat	The matrix of two.sided confidence interval for the quadratic form of the regression vector; row corresponds to different values of tau.vec
proj	The projection direction

Examples

```
X = matrix(rnorm(100*10), nrow=100, ncol=10)
y = X[,1] * 0.5 + X[,2] * 1 + rnorm(100)
G = c(1,2)
A = matrix(c(1.5, 0.8, 0.8, 1.5), nrow=2, ncol=2)
Est = QF(X, y, G, A, model="linear")
## compute confidence intervals
ci(Est, alpha=0.05, alternative="two.sided")
```

```
## summary statistics
summary(Est)
```

Index

ITE, 2 LF, 4 QF, 6

8