Package 'SPCAvRP'

May 4, 2019
Type Package
Title Sparse Principal Component Analysis via Random Projections (SPCAvRP)

Version 0.4
Date 2019-05-01
Author Milana Gataric, Tengyao Wang and Richard J. Samworth
Maintainer Milana Gataric m.gataric@statslab.cam.ac.uk
Description Implements the SPCAvRP algorithm, developed and analysed in "'Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Sam-
worth, R. J. (2018) arXiv:1712.05630. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.

Depends R (>= 3.0.0), parallel, MASS
License GPL-3

URL https://arxiv.org/abs/1712.05630
NeedsCompilation no
Repository CRAN
RoxygenNote 6.1.1
Date/Publication 2019-05-03 23:00:04 UTC

R topics documented:

\qquad
SPCAvRP2
SPCAvRP_deflation 4
SPCAvRP_subspace 6
Index 9

Description

Computes l-sparse leading eigenvector of the sample covariance matrix, using $\mathrm{A} \times \mathrm{B}$ random axisaligned projections of dimension d. For the multiple component estimation use SPCAvRP_subspace or SPCAvRP_deflation.

Usage

$\operatorname{SPCAvRP}$ (data, cov $=$ FALSE, $1, d=20, A=600, B=200$, center_data $=$ TRUE, parallel $=$ FALSE, cluster_type = "PSOCK", cores = 1, machine_names = NULL)

Arguments

data \quad Either the data matrix $(p \times n)$ or the sample covariance matrix $(p \times p)$.
cov TRUE if data is given as a sample covariance matrix.
$1 \quad$ Desired sparsity level in the final estimator (see Details).
d The dimension of the random projections (see Details).
A Number of projections over which to aggregate (see Details).
B Number of projections in a group from which to select (see Details).
center_data TRUE if the data matrix should be centered (see Details).
parallel TRUE if the selection step should be computed in parallel by uses package "parallel".
cluster_type If parallel == TRUE, this can be "PSOCK" or "FORK" (cf. package "parallel").
cores If parallel == TRUE and cluster_type == "FORK", number of cores to use.
machine_names If parallel == TRUE, the names of the computers on the network.

Details

This function implements the SPCAvRP algorithm for the principal component estimation (Algorithm 1 in the reference given below).

If the true sparsity level k is known, use $l=k$ and $d=k$.
If the true sparsity level k is unknown, 1 can take an array of different values and then the estimators of the corresponding sparsity levels are computed. The final choice of 1 can then be done by the user via inspecting the explained variance computed in the output value or via inspecting the output importance_scores. The default choice for d is 20 , but we suggest choosing d equal to or slightly larger than 1.

It is desirable to choose A (and $B=$ ceiling(A/3)) as big as possible subject to the computational budget. In general, we suggest using $A=300$ and $B=100$ when the dimension of data is a few hundreds, while $A=600$ and $B=200$ when the dimension is on order of 1000 .

If center_data == TRUE and data is given as a data matrix, the first step is to center it by executing scale(data, center_data, FALSE), which subtracts the column means of data from their corresponding columns.
If parallel == TRUE, the parallelised SPCAvRP algorithm is used. We recommend to use this option if p, A and B are very large.

Value

Returns a list of three elements:

$$
\begin{array}{ll}
\text { vector } & \text { A matrix of dimension } p \times \text { length }(1) \text { with columns as the estimated eigen- } \\
\text { vectors of sparsity level } l .
\end{array}
$$

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component analysis via random projections https://arxiv.org/abs/1712.05630

Examples

```
p <- 100 \# data dimension
k <- 10 \# true sparsity level
n <- 1000 \# number of observations
v1 <- c(rep(1/sqrt(k), k), rep(0,p-k)) \# true principal component
Sigma <- 2*tcrossprod(v1) + diag(p) \# population covariance
mu <- rep(0, p) \# population mean
loss = function(u,v)\{
    \# the loss function
    sqrt(abs(1-sum(v*u)^2))
\}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) \# data matrix
spcavrp <- SPCAvRP (data \(=\mathrm{X}, \mathrm{cov}=\) FALSE, \(\mathrm{l}=\mathrm{k}, \mathrm{d}=\mathrm{k}, \mathrm{A}=200, \mathrm{~B}=70\) )
spcavrp.loss <- loss(v1, spcavrp\$vector)
print(paste0("estimation loss when l=d=k=10, \(\mathrm{A}=200, \mathrm{~B}=70\) : ", spcavrp.loss))
\#\#choosing sparsity level l if k unknown:
\#spcavrp.choosel <- SPCAvRP(data \(=\mathrm{X}, \mathrm{cov}=\) FALSE, \(\mathrm{l}=\mathrm{c}(1: 30), \mathrm{d}=15, \mathrm{~A}=200\), \(\mathrm{B}=70\) )
\#plot(1:p, spcavrp.choosel\$importance_scores,xlab='variable',ylab='w',
\# main='choosing \(l\) when \(k\) unknown: \n importance scores w')
\#plot(1:30, spcavrp.choosel\$value, xlab='l',ylab='Var_l',
\# main='choosing l when k unknown: \n explained variance Var_l')
``` scheme

\section*{Description}

Computes \(m\) leading eigenvectors of the sample covariance matrix which are sparse and orthogonal, using the modified deflation scheme in conjunction with the SPCAvRP algorithm.

\section*{Usage}

SPCAvRP_deflation(data, cov = FALSE, m, l, d = 20,
\(A=600, B=200\), center_data \(=\) TRUE)

\section*{Arguments}
data \(\quad\) Either the data matrix \((p \times n)\) or the sample covariance matrix \((p \times p)\).
cov TRUE if data is given as a sample covariance matrix.
\(m \quad\) The number of principal components to estimate.
1
The array of length \(m\) with the desired sparsity of \(m\) principle components (see Details).
d The dimension of the random projections (see Details).
A Number of projections over which to aggregate (see Details).
B Number of projections in a group from which to select (see Details).
center_data TRUE if the data matrix should be centered (see Details).

\section*{Details}

This function implements the modified deflation scheme in conjunction with SPCAvRP (Algorithm 2 in the reference given below).

If the true sparsity level is known and for each component is equal to \(k\), use \(d=k\) and \(l=r e p(k, m)\). Sparsity levels of different components may take different values. If \(k\) is unknown, appropriate \(k\) could be chosen from an array of different values by inspecting the explained variance for one component at the time and by using SPCAvRP in a combination with the deflation scheme implemented in SPCAvRP_deflation.

It is desirable to choose \(A\) (and \(B=\operatorname{ceiling}(A / 3)\)) as big as possible subject to the computational budget. In general, we suggest using \(A=300\) and \(B=100\) when the dimension of data is a few hundreds, while \(A=600\) and \(B=200\) when the dimension is on order of 1000 .

If center_data == TRUE and data is given as a data matrix, the first step is to center it by executing scale(data, center_data, FALSE), which subtracts the column means of data from their corresponding columns.

\section*{Value}

Returns a list of two elements:
vector A matrix whose \(m\) columns are the estimated eigenvectors.
value An array with \(m\) estimated eigenvalues.

\section*{Author(s)}

Milana Gataric, Tengyao Wang and Richard J. Samworth

\section*{References}

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component analysis via random projections https://arxiv.org/abs/1712.05630

\section*{See Also}

SPCAvRP, SPCAvRP_subspace

\section*{Examples}
```

p <- 50 \# data dimension
k <- 8 \# true sparsity of each component
v1 <- 1/sqrt(k)*c(rep(1, k), rep(0, p-k)) \# first principal compnent (PC)
v2 <- 1/sqrt(k)*c(rep(0,4), 1, -1, 1, -1, rep(1,4), rep(0,p-12)) \# 2nd PC
v3 <- 1/sqrt(k)*c(rep(0,6), 1, -rep(1,4), rep(1,3), rep(0,p-14)) \# 3rd PC
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) \# population covariance
mu <- rep(0, p) \# population mean
n <- 2000 \# number of observations
loss = function(u,v){
sqrt(abs(1-sum(v*u)^2))
}
loss_sub = function(U,V){
U<-qr.Q(qr(U)); V<-qr.Q(qr(V))
norm(tcrossprod(U)-tcrossprod(V),"2")
}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) \# data matrix
spcavrp.def <- SPCAvRP_deflation(data = X, cov = FALSE, m = 2, l = rep(k,2),
d = k, A = 200, B = 70, center_data = FALSE)
subspace_estimation<-data.frame(
loss_sub(matrix(c(v1,v2),ncol=2),spcavrp.def$vector),
    loss(spcavrp.def$vector[,1],v1),
loss(spcavrp.def$vector[, 2],v2),
    crossprod(spcavrp.def$vector[,1],spcavrp.def\$vector[,2]))
colnames(subspace_estimation)<-c("loss_sub","loss_v1", "loss_v2", "inner_prod")
rownames(subspace_estimation)<-c("")
print(subspace_estimation)

```

\section*{Description}

Computes \(m\) leading eigenvectors of the sample covariance matrix which are sparse and orthogonal, using \(A \times B\) random axis-aligned projections of dimension \(d\).

\section*{Usage}

SPCAvRP_subspace(data, cov = FALSE, m, l, d = 20,
\(A=600, B=200\), center_data \(=\) TRUE)

\section*{Arguments}
data \(\quad\) Either the data matrix \((p \times n)\) or the sample covariance matrix \((p \times p)\).
cov TRUE if data is given as a sample covariance matrix.
\(\mathrm{m} \quad\) The dimension of the eigenspace, i.e the number of principal components to compute.

1
Desired sparsity level of the eigenspace (i.e. the number of non-zero rows in output\$vector) (see Details).
d The dimension of the random projections (see Details).
A Number of projections over which to aggregate (see Details).
B Number of projections in a group from which to select (see Details).
center_data TRUE if the data matrix should be centered (see Details).

\section*{Details}

This function implements the SPCAvRP algorithm for the eigenspace estimation (Algorithm 3 in the reference given below).

If the true sparsity level \(k\) of the eigenspace is known, use \(l=k\) and \(d=k\).
If the true sparsity level \(k\) of the eigenspace is unknown, the appropriate choice of \(l\) can be done, for example, by running the algorithm (for any 1) and inspecting the computed output importance_scores. The default choice for \(d\) is 20 , but we suggest choosing d equal to or slightly larger than 1.

It is desirable to choose \(A\) (and \(B=\) ceiling \((A / 3)\)) as big as possible subject to the computational budget. In general, we suggest using \(A=300\) and \(B=100\) when the dimension of data is a few hundreds, while \(A=600\) and \(B=200\) when the dimension is on order of 1000 .
If center_data \(==\) TRUE and data is given as a data matrix, the first step is to center it by executing scale(data, center_data, FALSE), which subtracts the column means of data from their corresponding columns.

\section*{Value}

Returns a list of two elements:
vector A matrix whose \(m\) columns are the estimated eigenvectors.
value An array with \(m\) estimated eigenvalues.
importance_scores
An array of length p with importance scores for each variable 1 to p .

\section*{Author(s)}

Milana Gataric, Tengyao Wang and Richard J. Samworth

\section*{References}

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component analysis via random projections https://arxiv.org/abs/1712.05630

\section*{See Also}

SPCAvRP, SPCAvRP_deflation

\section*{Examples}
```

p <- 50 \# data dimension
k1 <- 8 \# sparsity of each induvidual component
v1 <- 1/sqrt(k1)*c(rep(1, k1), rep(0, p-k1)) \# first principal compnent (PC)
v2 <- 1/sqrt(k1)*c(rep(0,4), 1, -1, 1, -1, rep(1,4), rep(0,p-12)) \# 2nd PC
v3 <- 1/sqrt(k1)*c(rep(0,6), 1, -rep(1,4), rep(1,3), rep(0,p-14)) \# 3rd PC
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) \# population covariance
mu <- rep(0, p) \# pupulation mean
n <- 2000 \# number of observations
loss = function(u,v){
sqrt(abs(1-sum(v*u)^2))
}
loss_sub = function(U,V){
U<-qr.Q(qr(U)); V<-qr.Q(qr(V))
norm(tcrossprod(U)-tcrossprod(V),"2")
}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) \# data matrix
spcavrp.sub <- SPCAvRP_subspace(data = X, cov = FALSE, m = 2, l = 12, d = 12,
A = 200, B = 70, center_data = FALSE)
subspace_estimation<-data.frame(
loss_sub(matrix(c(v1,v2),ncol=2), spcavrp.sub$vector),
    loss(spcavrp.sub$vector[,1],v1),
loss(spcavrp.sub$vector[,2],v2),
    crossprod(spcavrp.sub$vector[,1],spcavrp.sub\$vector[,2]))
colnames(subspace_estimation)<-c("loss_sub","loss_v1","loss_v2","inner_prod")

```
```

rownames(subspace_estimation)<-c("")
print(subspace_estimation)
plot(1:p,spcavrp.sub\$importance_scores,xlab='variable',ylab='w',
main='importance scores w \n (may use to choose l when k unknown)')

```

\section*{Index}

SPCAvRP, 2, 5, 7
SPCAvRP_deflation, 2, 4, 7
SPCAvRP_subspace, 2, 5, 6```

