Package 'SemNetCleaner'

September 16, 2021
Title An Automated Cleaning Tool for Semantic and Linguistic Data
Version 1.3.4
Date 2021-09-14
Maintainer Alexander P. Christensen alexpaulchristensen@gmail.com
Description Implements several functions that automates the cleaning and spellchecking of text data. Also converges, finalizes, removes plurals and continuous strings, and puts text data in binary format for semantic network analysis. Uses the 'SemNetDictionaries' package to make the cleaning process more accurate, efficient, and reproducible.
License GPL (>= 3.0)
URL https://github.com/AlexChristensen/SemNetCleaner
BugReports https://github.com/AlexChristensen/SemNetCleaner/issues
NeedsCompilation no
Encoding UTF-8
LazyData true
Depends R ($>=$ 3.6.0), SemNetDictionaries ($>=0.1 .8$)
Imports stringdist, searcher, tcltk, foreign, readxl, R.matlab, stringi, rstudioapi, easycsv, shiny, editData, miniUI

Suggests knitr, htmlTable, markdown, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.2
Author Alexander P. Christensen [aut, cre] (https://orcid.org/0000-0002-9798-7037)

Repository CRAN

Date/Publication 2021-09-16 14:00:02 UTC

R topics documented:

SemNetCleaner-package 2
bad.response 3
best.guess 4
bin2resp 5
convert2snafu 6
correct.changes 7
letter.freq 8
open.animals 8
open.clean 9
open.preprocess 10
pluralize 10
qwerty.dist 11
read.data 12
resp2bin 14
singularize 15
textcleaner 16
Index 19

SemNetCleaner-package SemNetCleaner-package

Description

Implements several functions that automates the cleaning and spell-checking of text data. Also converges, finalizes, removes plurals and continuous strings, and puts text data in binary format for semantic network analysis. Uses the SemNetDictionaries package to make the cleaning process more accurate, efficient, and reproducible.

Author(s)

Alexander Christensen <alexpaulchristensen@ gmail.com>

See Also

Useful links:

- https://github.com/AlexChristensen/SemNetCleaner
- Report bugs at https://github.com/AlexChristensen/SemNetCleaner/issues

Description

A wrapper function to determine whether responses are good or bad. Bad responses are replaced with missing (NA). Good responses are returned.

Usage

bad.response(word, ...)

Arguments

word	Character. A word to be tested for whether it is bad
\ldots	Vector. Additional responses to be considered bad

Value

If response is bad, then returns NA. If response is valid, then returns the response

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
# Bad response
bad.response(word = " ")
# Good response
bad.response(word = "hello")
# Make a good response bad
bad.response(word = "hello","hello")
# Add additional bad responses
bad.response(word = "hello", c("hello","world"))
```


Description

A wrapper function for the best guess of a spelling mistake based on the letters, the ordering of those letters, and the potential for letters to be interchanged. The Damerau-Levenshtein distance is used to guide inferences into what word the participant was trying to spell from a dictionary (see SemNetDictionaries)

Usage

best.guess(word, full.dictionary, dictionary = NULL, tolerance = 1)

Arguments

word \quad Character. A word to get best guess spelling options from dictionary
full.dictionary
Character vector. The dictionary to search for best guesses in. See SemNetDictionaries
dictionary Character. A dictionary from SemNetDictionaries for monikers (enhances guessing)
tolerance Numeric. The distance tolerance set for automatic spell-correction purposes. This function uses the function stringdist to compute the Damerau-Levenshtein distance, which is used to determine potential best guesses
Unique words (i.e., $n=1$) that are within the (distance) tolerance are automatically output as best guess responses. This default is based on Damerau's (1964) proclamation that more than 80% of all human misspellings can be expressed by a single error (e.g., insertion, deletion, substitution, and transposition). If there is more than one word that is within or below the distance tolerance, then these will be provided as potential options.
The recommended and default distance tolerance is tolerance $=1$, which only spell corrects a word if there is only one word with a DL distance of 1 .

Value

The best guess(es) of the word

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

References

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors. Communications of the ACM, 7, 171-176.

Examples

\# Misspelled "bombay"
best.guess("bomba", full.dictionary = SemNetDictionaries::animals.dictionary)
bin2resp Binary Responses to Character Responses

Description

Converts the binary response matrix into characters for each participant

Usage

bin2resp(rmat, to.data.frame = FALSE)

Arguments

rmat	Binary matrix. A binarized response matrix of verbal fluency or linguistic data
to. data. frame	Boolean. Should output be a data frame where participants are columns? De- faults to FALSE. Set to TRUE to convert output to data frame

Value

A list containing objects for each participant and their responses

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
# Toy example
raw <- open.animals[c(1:10),-c(1:3)]
if(interactive())
{
    # Clean and prepocess data
    clean <- textcleaner(open.animals[,-c(1:2)], partBY = "row", dictionary = "animals")
    # Change binary response matrix to word response matrix
    charmat <- bin2resp(clean$responses$binary)
}
```


Description

Estimates a pathfinder network using the MST-Pathfinder Network method from Quirin et al. (2008; see also Schvaneveldt, 1990)

Usage

convert2snafu(..., category)

Arguments

\ldots.	Matrix or data frame. A clean response matrices
category	Character. Category of verbal fluency data

Details

The format of the file has 7 columns:

- idDefaults to the row names of the inputted data
- listnumThe list number for the fluency category. Defaults to 0 . Future implementations will allow more lists
- categoryThe verbal fluency category that is input into the category argument
- itemThe verbal fluency responses for every participant
- RTResponse time. Currently not implemented. Defaults to 0
- RTstartStart of response time. Currently not implemented. Defaults to 0
- groupNames of groups. Defaults to the names of the objects input into the function (. . .)

Value

A .csv file formatted for SNAFU

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

References

\# For SNAFU, see: Zemla, J. C., Cao, K., Mueller, K. D., \& Austerweil, J. L. (2020). SNAFU: The Semantic Network and Fluency Utility. Behavior Research Methods, 1-19. https://doi.org/10.3758/s13428-019-01343-w

Examples

\# Convert data to SNAFU
if(interactive())
\{convert2snafu(open.clean, category = "animals")\}

```
correct.changes Correct Changes from textcleaner
```


Description

A function that corrects changes that were made automatically by textcleaner

Usage

correct.changes(textcleaner.obj)

Arguments

textcleaner.obj
Object from textcleaner

Value

This function returns the corrected lists from textcleaners:
binary
A matrix of responses where each row represents a participant and each column
represents a unique response. A response that a participant has provided is a '1,
and a response that a participant has not provided is a ' 0 '

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

\# Toy example
raw <- open.animals[c(1:10),-c(1:3)]
if(interactive())
\{
\#Full test
clean <- textcleaner(open.animals[,-c(1,2)], partBY = "row", dictionary = "animals")
\}
letter.freq Letter Frequencies Based on 40,000 Words

Description

A vector corresponding the frequency of letters across 40,000 words. Retrieved from: http://pi.math.cornell.edu/~mec/20032004/cryptography/subs/frequencies.html

Usage

data(letter.freq)

Format

letter.freq (26-element numeric vector)

Examples

```
data("letter.freq")
```

open.animals Openness and Verbal Fluency

Description

Raw Animals verbal fluency data $(n=516)$ from Christensen et al. (2018).

Usage

data(open.animals)

Format

open.animals (matrix 516×38)

Details

First column is a grouping variable ("Group") with 1 corresponding to low openness to experience and 2 to high openness to experience
Second column is the latent variable of openness to experience with Intellect items removed (see Christensen et al., 2018 for more details).
Third column is the ID variable for each participant.
Columns 4-38 are raw fluency data.

References

Christensen, A. P., Kenett, Y. N., Cotter, K. N., Beaty, R. E., \& Silvia, P. J. (2018). Remotely close associations: Openness to experience and semantic memory structure. European Journal of Personality, 32, 480-492.

Examples

```
data("open.animals")
```

open.clean Cleaned Response Matrices (Openness and Verbal Fluency)

Description

Cleaned response matrices for the Animals verbal fluency data $(n=516)$ from Christensen et al. (2018).

Usage

data(open.clean)

Format

open.clean (matrix, 516×35)

References

Christensen, A. P., Kenett, Y. N., Cotter, K. N., Beaty, R. E., \& Silvia, P. J. (2018). Remotely close associations: Openness to experience and semantic memory structure. European Journal of Personality, 32, 480-492.

Examples

```
data("open.clean")
```

open.preprocess Preprocessed textcleaner Object (Openness and Verbal Fluency)

Description

Preprocessed textcleaner object for the Animals verbal fluency data $(n=516)$ from Christensen and Kenett (2020).

Usage

data(open.preprocess)

Format

open.preprocess (list, length $=4$)

References

Christensen, A. P., \& Kenett, Y. N. (2020). Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. PsyArxiv.

Examples

data("open.preprocess")
pluralize Converts Words to their Plural Form

Description

A function to change words to their plural form. The rules for converting words to their plural forms are based on the grammar rules found here: https://www.grammarly.com/blog/plural-nouns/. This function handles most special cases and some irregular cases (see examples) but caution is necessary. If no plural form is identified, then the original word is returned.

Usage

pluralize(word)

Arguments

word
A word

Value

Returns the word in singular form, unless a plural form could not be found (then the original word is returned)

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
# Handles any prototypical cases
"dogs"
pluralize("dog")
"foxes"
pluralize("fox")
"wolves"
pluralize("wolf")
"octopi"
pluralize("octopus")
"taxa"
pluralize("taxon")
# And most special cases:
"wives"
pluralize("wife")
"roofs"
pluralize("roof")
"photos"
pluralize("photo")
# And some irregular cases:
"children"
pluralize("child")
"teeth"
pluralize("tooth")
"mice"
pluralize("mouse")
```

 qwerty.dist

Description

Computes QWERTY Distance for words that have the same number of characters. Distance is computed based on the number of keys a character is away from another character on a QWERTY keyboard

Usage

qwerty.dist(wordA, wordB)

Arguments

wordA	Character vector. Word to be compared
wordB	Character vector. Word to be compared

Value

Numeric value for distance between wordA and wordB

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
#Identical values for Damerau-Levenshtein
stringdist::stringdist("big", "pig", method="dl")
stringdist::stringdist("big", "bug", method="dl")
#Different distances for QWERTY
qwerty.dist("big", "pig")
qwerty.dist("big", "bug") # Probably meant to type "bug"
```

```
read.data
```

Read in Common Data File Extensions

Description

A single function to read in common data file extensions. Note that this function is specialized for reading in text data in the format necessary for functions in SemNetCleaner
File extensions supported:

- .Rdata
- .rds
- .csv
- .xlsx
- .xls
- .sav
- .txt
- .mat
- .dat

Usage

read.data(file = file.choose(), header = TRUE, sep = ",", ...)

Arguments

file Character. A path to the file to load. Defaults to interactive file selection using file.choose
header Boolean. A logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: header is set to TRUE if and only if the first row contains one fewer field than the number of columns
sep Character. The field separator character. Values on each line of the file are separated by this character. If sep $=$ " (the default for read. table) the separator is a 'white space', that is one or more spaces, tabs, newlines or carriage returns
... Additional arguments. Allows for additional arguments to be passed onto the respective read functions. See documentation in the list below:

- .Rdata load
- .rds readRDS
- .csv read.table
- .xlsx read_excel
- .xls read_excel
- .sav read.spss
- .txt read.table
- .mat readMat
- .dat read.table

Value

A data frame containing a representation of the data in the file. If file extension is ".Rdata", then data will be read to the global environment

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

References

\# R Core Team
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
\# readxl
Hadley Wickham and Jennifer Bryan (2019). readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl
\# R.matlab
Henrik Bengtsson (2018). R.matlab: Read and Write MAT Files and Call MATLAB from Within R. R package version 3.6.2. https://CRAN.R-project.org/package=R.matlab

Examples

```
# Use this example for your data
if(interactive())
{read.data()}
# Example for CRAN tests
## Create test data
test1 <- c(1:5, "6,7", "8,9,10")
## Path to temporary file
tf <- tempfile()
## Create test file
writeLines(test1, tf)
## Read in data
read.data(tf)
# See documentation of respective R functions for specific examples
```

 resp2bin Responses to binary matrix

Description

Converts the response matrix to binary response matrix

Usage

resp2bin(resp)

Arguments

resp \quad Response matrix. A response matrix of verbal fluency or linguistic data

Value

A list containing objects for each participant and their responses

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
# Toy example
raw <- open.animals[c(1:10),-c(1:3)]
if(interactive())
{
    # Clean and prepocess data
    clean <- textcleaner(open.animals[,-c(1:2)], partBY = "row", dictionary = "animals")
    # Change response matrix to binary response matrix
    binmat <- resp2bin(clean$responses$corrected)
}
```

```
singularize
```

Converts Words to their Singular Form

Description

A function to change words to their singular form. The rules for converting words to their singular forms are based on the inverse of the grammar rules found here: https://www.grammarly.com/blog/pluralnouns/. This function handles most special cases and some irregular cases (see examples) but caution is necessary. If no singular form is identified, then the original word is returned.

Usage

singularize(word, dictionary = TRUE)

Arguments

word Character. A word
dictionary Boolean. Should dictionary be used to verify word exists? Default to TRUE

Value

Returns the word in singular form, unless a singular form could not be found (then the original word is returned)

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

Examples

```
# Handles any prototypical cases
# "dog"
singularize("dogs")
# "fox"
singularize("foxes")
# "wolf"
singularize("wolves")
# "octopus"
singularize("octopi")
# "taxon"
singularize("taxa")
# And most special cases:
# "wife"
singularize("wives")
# "fez"
singularize("fezzes")
# "roof"
singularize("roofs")
# "photo"
singularize("photos")
# And some irregular cases:
# "child"
singularize("children")
# "tooth"
singularize("teeth")
# "mouse"
singularize("mice")
```


Description

An automated cleaning function for spell-checking, de-pluralizing, removing duplicates, and binarizing text data

Usage

```
textcleaner(
    data = NULL,
    miss = 99,
    partBY = c("row", "col"),
    dictionary = NULL,
    spelling = c("UK", "US"),
    add.path = NULL,
    keepStrings = FALSE,
    allowPunctuations = c("-", "all"),
    allowNumbers = FALSE,
    lowercase = TRUE,
    continue = NULL
)
```

Arguments

data	Matrix or data frame. A dataset of text data. Participant IDs will be automatically identified if they are included. If no IDs are provided, then their order in the corresponding row (or column is used). A message will notify the user how IDs were assigned
miss	Numeric or character. Value for missing data. Defaults to 99
partBY	Character. Are participants by row or column? Set to "row" for by row. Set to "col" for by column
dictionary	Character vector. Can be a vector of a corpus or any text for comparison. Dictionary to be used for more efficient text cleaning. Defaults to NULL, which will use general.dictionary Use dictionaries() or find.dictionaries() for more options (See SemNetDictionaries for more details)
spelling	Character vector. English spelling to be used. - "UK" For British spelling (e.g., colour, grey, programme, theatre) - "US" For American spelling (e.g., color, gray, program, theater)
add.path	Character. Path to additional dictionaries to be found. DOES NOT search recursively (through all folders in path) to avoid time intensive search. Set to "choose" to open an interactive directory explorer
keepStrings	Boolean. Should strings be retained or separated? Defaults to FALSE. Set to TRUE to retain strings as strings
allowPunctuations	
	Character vector. Allows punctuation characters to be included in responses. Defaults to "-". Set to "all" to keep all punctuation characters
allowNumbers	Boolean. Defaults to FALSE. Set to TRUE to keep numbers in text
lowercase	Boolean. Should words be converted to lowercase? Defaults to TRUE. Set to FALSE to keep words as they are
continue	List. A result previously unfinished that still needs to be completed. Allows you to continue to manually spell-check their data after you've closed or errored out. Defaults to NULL

Value

This function returns a list containing the following objects:

binary	A matrix of responses where each row represents a participant and each column represents a unique response. A response that a participant has provided is a ' 1
and a response that a participant has not provided is a ' 0 '	

- clean A response matrix that has been spell-checked and de-pluralized with duplicates removed. This can be used as a final dataset for analyses (e.g., fluency of responses)
- original The original response matrix that has had white spaces before and after words response. Also converts all upper-case letters to lower case
spellcheck A list containing three objects:
- full All responses regardless of spell-checking changes
- auto Only the incorrect responses that were changed during spell-check
removed A list containing two objects:
- rows Identifies removed participants by their row (or column) location in the original data file
- ids Identifies removed participants by their ID (see argument data)
partChanges A list where each participant is a list index with each response that was been changed. Participants are identified by their ID (see argument data). This can be used to replicate the cleaning process and to keep track of changes more generally. Participants with NA did not have any changes from their original data and participants with missing data are removed (see removed\$ids)

Author(s)

Alexander Christensen alexpaulchristensen@gmail.com

References

Hornik, K., \& Murdoch, D. (2010). Watch Your Spelling!. The R Journal, 3, 22-28.

Examples

```
# Toy example
raw <- open.animals[c(1:10),-c(1:3)]
if(interactive())
{
    #Full test
    clean <- textcleaner(open.animals[,-c(1,2)], partBY = "row", dictionary = "animals")
}
```


Index

```
* datasets
    letter.freq, 8
    open.animals, }
    open.clean, }
    open.preprocess,10
bad.response, 3
best.guess,4
bin2resp,5
convert2snafu,6
correct.changes, 7, 7
file.choose, 13
general.dictionary, 17
letter.freq, 8
load, 13
open.animals, 8
open.clean, }
open.preprocess,10
pluralize, 10
qwerty.dist,11
read.data,12
read.spss, 13
read.table, 13
read_excel,13
readMat, 13
readRDS, 13
resp2bin,14
SemNetCleaner (SemNetCleaner-package), 2
SemNetCleaner-package, 2
SemNetDictionaries, 2, 4, 17
singularize, 15
stringdist,4
textcleaner, 7, 10,16
```

