
Package ‘SequenceSpikeSlab’
January 23, 2022

Type Package

Title Exact Bayesian Model Selection Methods for the Sparse Normal
Sequence Model

Version 1.0.0

Author Steven de Rooij [aut],
Tim van Erven [cre, aut],
Botond Szabo [aut]

Maintainer Tim van Erven <tim@timvanerven.nl>

Description Contains fast functions to calculate the exact Bayes posterior
for the Sparse Normal Sequence Model, implementing the algorithms
described in Van Erven and Szabo (2021,
<doi:10.1214/20-BA1227>). For general hierarchical
priors, sample sizes up to 10,000 are feasible within half an hour
on a standard laptop. For beta-binomial spike-and-slab priors, a
faster algorithm is provided, which can handle sample sizes of
100,000 in half an hour. In the implementation, special care has
been taken to assure numerical stability of the methods even for
such large sample sizes.

License GPL (>= 2)

Imports Rcpp (>= 0.12.18), RcppProgress (>= 0.4.1), selectiveInference
(>= 1.2.5)

LinkingTo Rcpp, RcppProgress

RoxygenNote 7.1.2

Encoding UTF-8

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-01-23 15:22:44 UTC

1

https://doi.org/10.1214/20-BA1227

2 fast_spike_slab_beta

R topics documented:
fast_spike_slab_beta . 2
general_sequence_model . 4
SequenceSpikeSlab . 6
SSS_discrete_spike_slab . 7
SSS_discretize_Lambda . 7
SSS_discretize_Lambda_beta . 8
SSS_hierarchical_prior . 9
SSS_hierarchical_prior_binomial . 9
SSS_log_phi_psi_Cauchy . 10
SSS_log_phi_psi_Laplace . 11
SSS_make_beta_grid . 11
SSS_postmean_Cauchy . 12
SSS_postmean_Laplace . 12

Index 14

fast_spike_slab_beta Compute marginal posterior estimates for beta-spike-and-slab prior

Description

Computes marginal posterior probabilities (slab probabilities) that data points have non-zero mean
for the spike-and-slab prior with a Beta(beta_kappa,beta_lambda) prior on the mixing parameter.
The posterior mean is also provided.

Usage

fast_spike_slab_beta(
x,
sigma = 1,
m = 20,
slab = "Laplace",
Laplace_lambda = 0.5,
Cauchy_gamma = 1,
beta_kappa = 1,
beta_lambda,
show_progress = TRUE

)

Arguments

x Vector of n data points

sigma Standard deviation of the Gaussian noise in the data. May also be set to "auto",
in which case sigma is estimated using the estimateSigma function from the
selectiveInference package

fast_spike_slab_beta 3

m The number of discretization points used is proportional to m*sqrt(n). The larger
m, the better the approximation, but the runtime also increases linearly with m.
The default m=20 usually gives sufficient numerical precision.

slab Slab distribution. Must be either "Laplace" or "Cauchy".

Laplace_lambda Parameter of the Laplace slab

Cauchy_gamma Parameter of the Cauchy slab

beta_kappa Parameter of the beta-distribution

beta_lambda Parameter of the beta-distribution. Default value=n+1

show_progress Boolean that indicates whether to show a progress bar

Details

The run-time is O(m*n^(3/2)) on n data points, which means that doubling the size of the data leads
to an increase in computation time by approximately a factor of 2*sqrt(2)=2.8. Data sets of size
n=100,000 should be feasible within approximately 30 minutes.

Value

list (postprobs, postmean, sigma), where postprobs is a vector of marginal posterior slab probabil-
ities that x[i] has non-zero mean for i = 1, ..., n; postmean is a vector with the posterior mean for
the x[i]; and sigma is the value of sigma (this may be of interest when the sigma="auto" option is
used)

Examples

Illustrate that fast_spike_slab_beta is a faster way to compute the same results as
general_sequence_model on the beta-binomial prior

Generate data
n <- 500 # sample size
n_signal <- 25 # number of non-zero theta
A <- 5 # signal strength
theta <- c(rep(A,n_signal), rep(0,n-n_signal))
x <- theta + rnorm(n, sd=1)

Choose slab
slab <- "Cauchy"
Cauchy_gamma <- 1

cat("Running fast_spike_slab_beta (fast for very large n)...\n")
res_fss <- fast_spike_slab_beta(x, sigma=1, slab=slab, Cauchy_gamma=Cauchy_gamma)

cat("Running general_sequence_model (slower for very large n)...\n")
res_gsm <- general_sequence_model(x, sigma=1, slab=slab,

log_prior="beta-binomial", Cauchy_gamma=Cauchy_gamma)

cat("Maximum difference in marginal posterior slab probabilities:",
max(abs(res_gsm$postprobs - res_fss$postprobs)))

cat("\nMaximum difference in posterior means:",

4 general_sequence_model

max(abs(res_gsm$postmean - res_fss$postmean)), "\n")

Plot means
M=max(abs(x))+1
plot(1:n, x, pch=20, ylim=c(-M,M), col='green', xlab="", ylab="",

main="Posterior Means (Same for Both Methods)")
points(1:n, theta, pch=20, col='blue')
points(1:n, res_gsm$postmean, pch=20, col='black', cex=0.6)
points(1:n, res_fss$postmean, pch=20, col='magenta', cex=0.6)
legend("topright", legend=c("general_sequence_model", "fast_spike_slab_beta",

"data", "truth"),
col=c("black", "magenta", "green", "blue"), pch=20, cex=0.7)

general_sequence_model

Compute marginal posterior estimates

Description

This function computes marginal posterior probabilities (slab probabilities) that data points have
non-zero mean for the general hierarchical prior in the sparse normal sequence model. The posterior
mean is also provided.

Usage

general_sequence_model(
x,
sigma = 1,
slab = "Laplace",
log_prior = "beta-binomial",
Laplace_lambda = 0.5,
Cauchy_gamma = 1,
beta_kappa = 1,
beta_lambda,
show_progress = TRUE

)

Arguments

x Vector of n data points

sigma Standard deviation of the Gaussian noise in the data. May also be set to "auto",
in which case sigma is estimated using the estimateSigma function from the
selectiveInference package

slab Slab distribution. Must be either "Laplace" or "Cauchy".

log_prior Vector of length n+1 containing the logarithms of the prior probabilities pi_n(s)
that the number of spikes is equal to s for s=0,...,n. It is allowed to use an unnor-
malized prior that does not sum to 1, because adding any constant to the log-prior

general_sequence_model 5

probabilities does not change the result. Instead of a vector, log_prior may also
be set to "beta-binomial" as a short-hand for log_prior = lbeta(beta_kappa+(0:n),beta_lambda+n-
(0:n)) - lbeta(beta_kappa,beta_lambda) + lchoose(n,0:n).

Laplace_lambda Parameter of the Laplace slab

Cauchy_gamma Parameter of the Cauchy slab

beta_kappa Parameter of the beta-distribution in the beta-binomial prior

beta_lambda Parameter of the beta-distribution in the beta-binomial prior. Default value=n+1

show_progress Boolean that indicates whether to show a progress bar

Details

The run-time is O(n^2) on n data points, which means that doubling the size of the data leads to an
increase in computation time by approximately a factor of 4. Data sets of size n=25,000 should be
feasible within approximately 30 minutes.

Value

list (postprobs, postmean, sigma), where postprobs is a vector of marginal posterior slab probabil-
ities that x[i] has non-zero mean for i = 1, ..., n; postmean is a vector with the posterior mean for
the x[i]; and sigma is the value of sigma (this may be of interest when the sigma="auto" option is
used)

Examples

Experiments similar to those of Castilo, Van der Vaart, 2012

Generate data
n <- 500 # sample size
n_signal <- 25 # number of non-zero theta
A <- 5 # signal strength
theta <- c(rep(A,n_signal), rep(0,n-n_signal))
x <- theta + rnorm(n, sd=1)

Choose slab
slab <- "Laplace"
Laplace_lambda <- 0.5

Prior 1
kappa1 <- 0.4 # hyperparameter
logprior1 <- c(0,-kappa1*(1:n)*log(n*3/(1:n)))
res1 <- general_sequence_model(x, sigma=1,

slab=slab,
log_prior=logprior1,
Laplace_lambda=Laplace_lambda)

print("Prior 1: Elements with marginal posterior probability >= 0.5:")
print(which(res1$postprobs >= 0.5))

Prior 2
kappa2 <- 0.8 # hyperparameter
logprior2 <- kappa2*lchoose(2*n-0:n,n)

6 SequenceSpikeSlab

res2 <- general_sequence_model(x, sigma=1,
slab=slab,
log_prior=logprior2,
Laplace_lambda=Laplace_lambda)

print("Prior 2: Elements with marginal posterior probability >= 0.5:")
print(which(res2$postprobs >= 0.5))

Prior 3
beta_kappa <- 1 # hyperparameter
beta_lambda <- n+1 # hyperparameter
res3 <- general_sequence_model(x, sigma=1,

slab=slab,
log_prior="beta-binomial",
Laplace_lambda=Laplace_lambda)

print("Prior 3: Elements with marginal posterior probability >= 0.5:")
print(which(res3$postprobs >= 0.5))

Plot means for all priors
M=max(abs(x))+1
plot(1:n, x, pch=20, ylim=c(-M,M), col='green', xlab="", ylab="", main="Posterior Means")
points(1:n, theta, pch=20, col='blue')
points(1:n, res1$postmean, pch=20, col='black', cex=0.6)
points(1:n, res2$postmean, pch=20, col='magenta', cex=0.6)
points(1:n, res3$postmean, pch=20, col='red', cex=0.6)
legend("topright", legend=c("posterior mean 1", "posterior mean 2", "posterior mean 3",

"data", "truth"),
col=c("black", "magenta", "red", "green", "blue"), pch=20, cex=0.7)

SequenceSpikeSlab Fast Exact Bayesian Inference for the Sparse Normal Means Model

Description

The SequenceSpikeSlab package provides fast algorithms for exact Bayesian inference in the sparse
normal sequence model. It implements the methods of Van Erven and Szabo, 2018. Special care has
been taken to make the methods scale to large data sets, and to minimize numerical errors (which
arise in all software because floating point numbers are represented with finite precision).

Details

There are two main functions: general_sequence_model and fast_spike_slab_beta.

For more details see the help vignette: vignette("SequenceSpikeSlab-vignette",package="SequenceSpikeSlab")

SSS_discrete_spike_slab 7

SSS_discrete_spike_slab

Compute marginal posterior probabilities (slab probabilities) that
data points have non-zero mean for the discretized spike-and-slab
prior.

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean
for the discretized spike-and-slab prior.

Usage

SSS_discrete_spike_slab(log_phi_psi, dLambda, show_progress = TRUE)

Arguments

log_phi_psi List {logphi, logpsi} containing two vectors of the same length n that repre-
sent a preprocessed version of the data. logphi and logpsi should contain the
logs of the phi and psi densities of the data points, as produced for instance by
SSS_log_phi_psi_Laplace or SSS_log_phi_psi_Cauchy

dLambda Discretized Lambda prior, as generated by either discretize_Lambda or dis-
cretize_Lambda_beta.

show_progress Boolean that indicates whether to show a progress bar

Value

Returns a vector with marginal posterior slab probabilities that x[i] has non-zero mean for i =
1, ..., n.

SSS_discretize_Lambda Given a prior Lambda on the alpha-parameter in the spike-and-
slab model, make a discretized version of Lambda that is only
supported on a grid of approximately m * sqrt(n) discrete values
of alpha. This discretized version of Lambda is required as in-
put for SSS_discrete_spike_slab. NB Lambda needs to satisfy
a technical condition from the paper that guarantees its density
does not vary too rapidly. For Lambda=Beta(kappa,lambda) use
SSS_discretize_Lambda_beta instead.

Description

Given a prior Lambda on the alpha-parameter in the spike-and-slab model, make a discretized
version of Lambda that is only supported on a grid of approximately m * sqrt(n) discrete values of
alpha. This discretized version of Lambda is required as input for SSS_discrete_spike_slab. NB
Lambda needs to satisfy a technical condition from the paper that guarantees its density does not
vary too rapidly. For Lambda=Beta(kappa,lambda) use SSS_discretize_Lambda_beta instead.

8 SSS_discretize_Lambda_beta

Usage

SSS_discretize_Lambda(m = 20, n, log_Lambda_cdf)

Arguments

m A multiplier for the number of discretization points

n The sample size

log_Lambda_cdf A function that takes as input a value of alpha and calculates the log of the
cumulative distribution function of Lambda at alpha

Value

List (alpha_grid, log_probs), where alpha_grid is a vector with the generated grid points, and
log_probs are the logs of the prior probabilities of these grid points for the discretized Lambda
prior.

SSS_discretize_Lambda_beta

Given prior Lambda=Beta(kappa,lambda) on the alpha-parameter in
the spike-and-slab model, make a discretized version of Lambda that is
only supported on a grid of approximately m * sqrt(n) discrete values
of alpha. This discretized version of Lambda is required as input for
SSS_discrete_spike_slab.

Description

Given prior Lambda=Beta(kappa,lambda) on the alpha-parameter in the spike-and-slab model, make
a discretized version of Lambda that is only supported on a grid of approximately m * sqrt(n) dis-
crete values of alpha. This discretized version of Lambda is required as input for SSS_discrete_spike_slab.

Usage

SSS_discretize_Lambda_beta(m = 20, n, kappa, lambda)

Arguments

m A multiplier for the number of discretization points

n The sample size

kappa Parameter of the prior. Needs to be at least 0.5.

lambda Parameter of the prior. Needs to be at least 0.5.

Value

List (alpha_grid, log_probs), where alpha_grid is a vector with the generated grid points, and
log_probs are the logs of the prior probabilities of these grid points for the discretized Lambda
prior.

SSS_hierarchical_prior 9

SSS_hierarchical_prior

Compute marginal posterior probabilities (slab probabilities) that
data points have non-zero mean for the hierarchical prior.

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean
for the hierarchical prior.

Usage

SSS_hierarchical_prior(log_phi_psi, logprior, show_progress = TRUE)

Arguments

log_phi_psi List {logphi, logpsi} containing two vectors of the same length n that repre-
sent a preprocessed version of the data. logphi and logpsi should contain the
logs of the phi and psi densities of the data points, as produced for instance by
SSS_log_phi_psi_Laplace or SSS_log_phi_psi_Cauchy

logprior vector of length n+1 with components logprior[p]=log(pi_n(p)) for p = 0, ..., n

show_progress Boolean that indicates whether to show a progress bar

Value

Returns a vector with marginal posterior slab probabilities that x[i] has non-zero mean for i =
1, ..., n.

SSS_hierarchical_prior_binomial

Compute marginal posterior probabilities (slab probabilities) that
data points have non-zero mean using the general hierarchical prior
algorithm, but specialized to the Beta[kappa,lambda]-binomial prior.
This function is equivalent to calling SSS_hierarchical_prior
with logprior = lbeta(kappa+(0:n),lambda+n-(0:n)) -
lbeta(kappa,lambda) + lchoose(n,0:n), but more convenient when
using the Beta[kappa,lambda]-binomial prior and with a minor
interior optimization that avoids calculating the choose explicitly.

Description

Compute marginal posterior probabilities (slab probabilities) that data points have non-zero mean
using the general hierarchical prior algorithm, but specialized to the Beta[kappa,lambda]-binomial
prior. This function is equivalent to calling SSS_hierarchical_prior with logprior = lbeta(kappa+(0:n),lambda+n-
(0:n)) - lbeta(kappa,lambda) + lchoose(n,0:n), but more convenient when using the Beta[kappa,lambda]-
binomial prior and with a minor interior optimization that avoids calculating the choose explicitly.

10 SSS_log_phi_psi_Cauchy

Usage

SSS_hierarchical_prior_binomial(
log_phi_psi,
kappa,
lambda,
show_progress = TRUE

)

Arguments

log_phi_psi List {logphi, logpsi} containing two vectors of the same length n that repre-
sent a preprocessed version of the data. logphi and logpsi should contain the
logs of the phi and psi densities of the data points, as produced for instance by
SSS_log_phi_psi_Laplace or SSS_log_phi_psi_Cauchy

kappa First parameter of the beta-distribution
lambda Second parameter of the beta-distribution
show_progress Boolean that indicates whether to show a progress bar

Value

Returns a vector with marginal posterior slab probabilities that x[i] has non-zero mean for i =
1, ..., n.

SSS_log_phi_psi_Cauchy

Calculate log of phi and psi marginal densities for Cauchy(gamma)
slab

Description

Calculate log of densities phi and psi for data vector x, where

phi[i] = Normal(x[i], sigma2)

psi[i]) = ECauchy(θ)[Normal(x[i]− θ, sigma2)]

Usage

SSS_log_phi_psi_Cauchy(x, sigma, gamma)

Arguments

x data vector
sigma standard deviation of observations
gamma parameter of Cauchy slab density

Value

list (phi, psi), containing logs of phi and psi densities

SSS_log_phi_psi_Laplace 11

SSS_log_phi_psi_Laplace

Calculate log of phi and psi marginal densities for Laplace(lambda)
slab

Description

Calculate log of densities phi and psi for data vector x, where

phi[i] = Normal(x[i], sigma2)

psi[i]) = ELaplace(θ)[Normal(x[i]− θ, sigma2)]

Usage

SSS_log_phi_psi_Laplace(x, sigma, lambda)

Arguments

x data vector

sigma standard deviation of observations

lambda parameter of Laplace slab density

Value

list (phi, psi), containing logs of phi and psi densities

SSS_make_beta_grid Creates a vector of uniformly spaced grid points in the beta
parametrization Ensures the number of generated grid points is >=
mingridpoints (which does not have to be integer), and that their num-
ber is always odd so there is always a grid point at pi/4.

Description

Creates a vector of uniformly spaced grid points in the beta parametrization Ensures the number of
generated grid points is >= mingridpoints (which does not have to be integer), and that their number
is always odd so there is always a grid point at pi/4.

Usage

SSS_make_beta_grid(minngridpoints)

Arguments

minngridpoints Minimum number of grid points

12 SSS_postmean_Laplace

Value

Vector of betagrid points

SSS_postmean_Cauchy Compute posterior means of data points for the Cauchy(gamma) slab

Description

Compute posterior means of data points for the Cauchy(gamma) slab

Usage

SSS_postmean_Cauchy(x, logpsi, postprobs, sigma, gamma)

Arguments

x Data vector of length n

logpsi Vector of length n that represents a preprocessed version of the data. It should
contain the logs of the psi densities of the data points, as produced by SSS_log_phi_psi_Cauchy.

postprobs Vector of marginal posterior slab probabilities that x[i] has non-zero mean for
i = 1, ..., n.

sigma standard deviation of observations

gamma parameter of Cauchy slab density

Value

Vector of n posterior means

SSS_postmean_Laplace Compute posterior means of data points for the Laplace(lambda) slab

Description

Compute posterior means of data points for the Laplace(lambda) slab

Usage

SSS_postmean_Laplace(x, logpsi, postprobs, sigma, lambda)

SSS_postmean_Laplace 13

Arguments

x Data vector of length n

logpsi Vector of length n that represents a preprocessed version of the data. It should
contain the logs of the psi densities of the data points, as produced by SSS_log_phi_psi_Laplace.

postprobs Vector of marginal posterior slab probabilities that x[i] has non-zero mean for
i = 1, ..., n.

sigma standard deviation of observations

lambda parameter of Laplace slab density

Value

Vector of n posterior means

Index

fast_spike_slab_beta, 2, 6

general_sequence_model, 4, 6

SequenceSpikeSlab, 6
SSS_discrete_spike_slab, 7, 7
SSS_discretize_Lambda, 7
SSS_discretize_Lambda_beta, 7, 8
SSS_hierarchical_prior, 9, 9
SSS_hierarchical_prior_binomial, 9
SSS_log_phi_psi_Cauchy, 7, 9, 10, 10, 12
SSS_log_phi_psi_Laplace, 7, 9, 10, 11, 13
SSS_make_beta_grid, 11
SSS_postmean_Cauchy, 12
SSS_postmean_Laplace, 12

14

	fast_spike_slab_beta
	general_sequence_model
	SequenceSpikeSlab
	SSS_discrete_spike_slab
	SSS_discretize_Lambda
	SSS_discretize_Lambda_beta
	SSS_hierarchical_prior
	SSS_hierarchical_prior_binomial
	SSS_log_phi_psi_Cauchy
	SSS_log_phi_psi_Laplace
	SSS_make_beta_grid
	SSS_postmean_Cauchy
	SSS_postmean_Laplace
	Index

