
SetRank User Manual

Cedric Simillion

May 11, 2016

Contents

1 Introduction 3

2 Installation 4
2.1 System requirements . 4
2.2 Installation steps . 4

3 Preparing a set collection 5
3.1 Annotation tables . 5

3.1.1 Using the GeneSets package 5
3.1.2 Building your own annotation table 7

3.2 Creating a reference set . 7
3.2.1 Understanding sample source bias 7
3.2.2 Constructing reference sets for different types of data 8

3.3 Creating the set collection object . 12

4 Running SetRank 13
4.1 Ranked vs. unranked analysis . 13
4.2 Running your analysis . 14

4.2.1 Single input file . 14
4.2.2 Multiple input files . 15
4.2.3 Using multi-threading . 16

4.3 Exporting and visualising your results 17
4.3.1 Exporting your results . 17
4.3.2 Importing the output tables in a spreadsheet 19
4.3.3 Importing the gene set network in Cytoscape 20

4.4 Creating gene set-specific gene interaction networks 20
4.4.1 Building interactomes . 21
4.4.2 Integrating the interactome with SetRank results and expres-

sion data . 22
4.4.3 Importing the gene interaction networks into Cytoscape . . . 23

1

CONTENTS CONTENTS

5 Interpreting SetRank results 23
5.1 Understanding the pathway and membership tables 23

5.1.1 The pathway table . 23
5.1.2 The membership table . 25
5.1.3 The pathways overview table 26

5.2 Understanding the gene set network 26
5.3 Visualising the interactions within a gene set 26

A Gene Set databases in the GeneSets package 26

B Different types of sequence identifiers and how to convert between them 26

2

1 INTRODUCTION

1 Introduction

SetRank is an advanced Gene Set Enrichment Analysis (GSEA) package. GSEA meth-
ods detect groups of genes that occur significantly more than expected by chance in a
given list of genes. These groups of genes are very often genes that function together
in the same biological process or pathway. Hence, many people refer to GSEA as
pathway analysis. The latter name can however be misleading as there are many other
computational methods to study biological pathways, such as network analysis. More-
over, GSEA is not only limited to detecting pathways but can be used to find any type
of common characteristic between a group of genes, such as functional domains or
localization in a tissue or cell.
The purpose of GSEA is to find general trends in the huge lists of genes or proteins that
are generated by many modern functional genomics techniques. Performing a GSEA
has become the typical first step in analysing these datasets. The goal of this approach
is to help identify which genes are involved in the processes or mechanisms relevant to
the biological question at hand. These genes can then be examined further on in greater
detail while the rest can, for the time being, be ignored.
Many of the presently available GSEA methods however suffer from several shortcom-
ings. The output of many algorithms is highly dependent on arbritary parameters such
as the p-value cutoff applied when defining a list of significant genes. Moreover, results
often contain many false positive entries, as a result of the overlap between many path-
ways and of bias introduced by the sample source. SetRank was developed specifically
to address all these issues.
The exact details of the algorithm are described elsewhere. We need however to intro-
duce a few concepts that are important to understand how SetRank works. The first
one is a gene set, which is simply an unordered group of genes. As the name suggests,
a gene set is the basic data structure underlying SetRank as well as any other GSEA
method. Thus, when we want to detect pathways using SetRank, we first need to repre-
sent each of them as a gene set. We could be tempted to refer to gene sets as pathways
but, as we have mentioned above, the latter name is too restrictive as we can also group
genes based on other characteristics such as molecular function or cellular location. We
shall therefore use the term gene set rather than pathway in the rest of this document.
A second concept is a gene set collection which refers to the ensemble of all gene sets
used in a single analysis. Each gene set in a gene set collection will be tested for its
significance when SetRank is run.
A gene set database is an external datasource that provides gene set descriptions. Ex-
amples are pathway databases such as Wikipathways, Reactome or KEGG or more
general gene annotation databases such as the Gene Ontology annotation provided by
Uniprot. As we shall see below, you can also define your own gene set database, if
necessary. One of the strengths of SetRank is that the gene sets in a set collection can
come from multiple gene set databases. Including multiple databases in one collection
allows you to search these databases simultaneously and integrate all results together.
The opposite approach, querying each gene set database separately, would produce
different result sets rendering the interpretation afterwards a lot harder.
This manual describes the R/Bioconductor version of SetRank package, meaning that
at least a basic understanding of the R programming language is required to use it. In
this manual, we will explain all the steps required to install and use SetRank in detail to
keep the amount of needed expertise to a minimum. If you are not familiar at all with

3

2 INSTALLATION

R or simply too impatient, you can also try the web-interface of SetRank available at
http://setrank.vital-it.ch.

2 Installation

2.1 System requirements

In order to use SetRank, you need:

• A system running Linux, Mac OS X or any other Unix-based operating system.
While SetRank will run on Microsoft Windows, you will not be able to run it
multi-threaded which will severely impact computation times. See section 4.2.3
on page 16 for more details.

• R version 3.0 or above.

• A decent amount of RAM. It is hard to specify a lower limit since the amount
of memory needed by SetRank depends on both your dataset and the number of
CPU cores you want to use. As a rule of thumb, you need about 4GB to run
SetRank on a single core and about 2GB for each additional core you want to
use.

2.2 Installation steps

SetRank is distributed as a CRAN package. The easiest way to install it is to fetch the
package directly from Bioconductor by opening an R session and typing the following
commands:

source("http://bioconductor.org/biocLite.R")

biocLite("SetRank")

Alternatively, you can download and install the package file yourself. Open a Terminal
window on your system and type

curl http://bioconductor.org/SetRank_0.6.0.tar.gz

to download the package.. Use this commands to install:

R CMD INSTALL SetRank_0.6.0.tar.gz

To make sure the installation was successful, type the following command in R:

library(SetRank)

If you get an error that says “Error in library(SetRank) : there is no package

called ‘SetRank’” then this means that the installation was not successful. If you
don’t get any messages, then the installation was successful and you can start using
SetRank.

4

http://setrank.vital-it.ch

3 PREPARING A SET COLLECTION

3 Preparing a set collection

Before you can run the SetRank on a dataset, you first need to build a set collection
object. The SetRank package defines a function called buildSetCollection which
takes care of this task. There are two important pieces of information you need to have
ready though before you can build a gene set collection. First, you need one or more
gene annotation tables which are used to define the gene sets. Next, you need to specify
a reference set specific to your dataset. We will discuss the specifics of both elements
in detail below.

3.1 Annotation tables

An annotation table is simply a data frame object that maps gene identifiers to one or
more gene set identifiers and provides some additional information, such as a name and
a description, about each gene set. Gene sets are created by taking all genes that map
to the same gene set identifier and attaching the additional information to them.
There are several ways of obtaining annotation tables. You can either use some func-
tions built in the SetRank package or use the GeneSets package to build a large collec-
tion of organism-specific annotation tables. Apart from these two options, you can also
provide your own annotation table.

3.1.1 Using the GeneSets package

As mentioned before, there are many other publicly available resources that can be
used as gene set databases. Unfortunately, the information in some of these databases
may not be redistributed freely. To solve this problem, a stand-alone package, called
GeneSets, was created. This package is a collection of scripts that download gene set
information from various online resources and create sets of organism-specific annota-
tion tables, conveniently made available as ready-to-use R-packages.

3.1.1.1 System requirements The GeneSets package requires:

• A system running Linux, Mac OS X or any other Unix-based operating system.

• Perl version 5.12 or above, with the Date::Format CPAN package1 installed.

• Python version 2.7 or above

• GNU make version 3.81 or above2

• R version 3.0 or above, with the GO.db Bioconductor package installed3

• The wget utility

1available from http://search.cpan.org/~gbarr/TimeDate/lib/Date/Format.pm
2For Perl, Python and GNU make, earlier versions will probably work as well, but these were not tested.
3Installed automatically as a dependency of the SetRank package

5

http://search.cpan.org/~gbarr/TimeDate/lib/Date/Format.pm

3.1 Annotation tables 3 PREPARING A SET COLLECTION

3.1.1.2 Installation The GeneSets package is available as a git repository at https:
//github.com/C3c6e6/GeneSets. If you are using the git version control manager, you
can simply clone the repository to your own system using

git clone https://github.com/C3c6e6/GeneSets.git

Alternatively, you can download a .zip or .tar.gz archive from https://github.

com/C3c6e6/GeneSets/releases/latest. All you have to do is to download the archive
into an empty directory and extract its contents.

3.1.1.3 Building the annotation packages. The only thing you have to do is tell
the package for which organisms you which to build annotation tables. In the root of
the repository or archive, there is a file called organisms. Open this file with your
favorite text editor and add the names of the organism(s) you want to build annotation
tables for and remove any names you’re not interested in. Make sure there is only
one name per line and that the lines do not contain any leading or trailing white space
characters. Also, make sure that the names you are using correspond exactly to the
official names used by the NCBI taxonomy database, as this is the reference used by
the GeneSets package. Using the correct name is especially important when working
with bacterial strains and substrains. For instance, if you want to create annotation
tables for Escherichia coli K12, substrain MG1655, you should write exactly:

Escherichia coli str. K-12 substr. MG1655

When in doubt, you can look up the name of your species on the NCBI website at http:
//www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi and sim-
ply copy-and-paste the name into your editor.
Once you’ve edited the organisms file, you are ready to build the packages. All you
have to do is open your UNIX-shell, go to the directory where you’ve installed the
package and type:

make

Issuing this command will start the build process, which might take a while to com-
plete, mainly depending on your network connection speed.
Once the process is finished you should see, for each organism listed in the organisms

file, a file appear named GeneSets.Genus.species_YY.MM.DD.tar.gz, with Genus.species

the name of the organism and YY.MM.DD the date the file, e.g. GeneSets.Homo.sapiens_13.10.18.tar.gz.
Each of these files is an R package – the date string functions as version number – that
is ready to install.
To install several packages at once, you can use the following bash command:

for f in *_YY.MM.DD.tar.gz; do R CMD INSTALL $f; done

Of course, you have to replace YY.MM.DD with the actual date string.

3.1.1.4 Updating the annotation packages To keep your collection of annotation
table packages up-to-date, all you have to do is to regularly run the make command. The
GeneSets package will automatically detect if the gene set annotation data for a given
organism has changed compared to the last time you ran make and create an updated
version if necessary. Don’t forget to install the updated packages afterwards.

6

https://github.com/C3c6e6/GeneSets
https://github.com/C3c6e6/GeneSets
https://github.com/C3c6e6/GeneSets/releases/latest
https://github.com/C3c6e6/GeneSets/releases/latest
http://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi
http://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi

3.2 Creating a reference set 3 PREPARING A SET COLLECTION

3.1.1.5 Loading the annotation packages in R To start using the annotation tables
created with GeneSets, simply load the desired package into R, e.g.:

library(GeneSets.Homo.sapiens)

Note that you don’t have to specify the date/version string when loading a library. To
see which annotation tables are provided, you can use the command:

ls("package:GeneSets.Homo.sapiens")

which will show the names of the available annotation tables, like this:

[1] "BIOCYC" "ENCODE"

[3] "GOBP" "GOCC"

[5] "GOMF" "ITFP"

[7] "KEGG" "Pathway_Interaction_Database"

[9] "PhosphoSitePlus" "REACTOME"

[11] "WikiPathways" "allDBs"

The actual table names may vary between different organisms, but the “allDBs” table
will always be present as this contains the combination of all annotation tables.

3.1.2 Building your own annotation table

A third way of supplying gene set databases to SetRank is to define your own. This
could be a set of pathways that your lab specializes in or another gene set database not
provided by GeneSets. All you have to do is to create a data frame object in R that
maps gene identifiers to one or more gene set descriptions. The object should contain
the following columns:

geneID The identifier of the gene. This can be any type of identifier but bear in mind
that that the annotation tables provided by SetRank and the GeneSets packages
use Entrez Gene identifiers. Thus, if you want to combine your own annotation
with the these predefined annotation tables, you need to use Entrez identifiers as
well.

termID A unique identifier of the gene set. Make sure that it is unique to all gene set
databases you plan to use.

termName A name for your gene set, usually a very short description, e.g. “glycoly-
sis”.

description A longer description of the gene set.

dbName The name of the gene set database the annotation is retrieved from. If you
are compiling your own set of pathways, you can give it any name you like, of
course.

3.2 Creating a reference set

3.2.1 Understanding sample source bias

Now that we have prepared our gene set database(s), it is time for the next step, prepar-
ing a reference gene set. Although this step is, strictly speaking, not necessary, it is

7

3.2 Creating a reference set 3 PREPARING A SET COLLECTION

very important to avoid an artefact in your results that we call sample source bias.
This type of bias can best be explained with an example. Suppose we want to perform
GSEA on a transcriptomics dataset that compares peripheral blood mononuclear cells
(PBMCs)4 from diseased patients to those of healthy donors. The obvious aim of this
analysis would be to know which biological processes are affected by the disease under
investigation. Consequently, we want the GSEA method that we are using to only list
processes relevant to the disease. Many GSEA algorithms however, will look for gene
sets that are over-represented in the list of differentially expressed genes compared to
the entire genome. The problem with this approach is that the list of gene sets returned
will unavoidably contain gene sets that are unrelevant for the disease but simply char-
acterise PBMCs compared to other cell or tissue types. The reason for this artefact is
that the set of genes that are differentially expressed between the conditions tested will
contain a number of genes that are only expressed in PBMCs and maybe a few related
cell types but not in unrelated tissues such as lung or brain.
To avoid sample source bias in our example, we need to look for over-representation
of gene sets in comparison to a sample-specific reference set of genes. Put in simpler
words, we should not ask the question “What is special about this set of genes?” but
we should ask “What is special about this set of PBMC genes”.

3.2.2 Constructing reference sets for different types of data

In an ideal world, we would know for each developmental stage, tissue or cell type the
entire list of genes that could be expressed and use this as a reference set. As this kind
of knowledge will not be available for the forseeable future, we need a more pragmatic
way to define reference sets. A convenient approach is to create a reference set by
simply taking the union of all genes or proteins observed in all samples of your dataset.
Below we will provide some detailed examples for specific data types.

3.2.2.1 RNA-seq data As RNA-seq technologies detect absolute transcript levels,
we can create a reference set by taking the union of all transcripts that are detected at
least once in our entire dataset. Most tools that calculate differential expression from
RNA-seq data, such as edgeR or DESeq, return an output table in TAB-delimited format
that looks like this:

geneID counts_1 counts_2 log2FoldChange pval padj

ENSMUSG00000026208 78697 307 -7.444850797 0 0

ENSMUSG00000029321 8762 17 -8.5325216767 0.00E+00 2.73E-305

ENSMUSG00000034126 38479 712 -5.9106519753 8.26E-235 5.28E-231

ENSMUSG00000085862 4043 16 -7.9664275401 7.44E-229 3.57E-225

ENSMUSG00000061392 3169 6 -8.7073895562 9.62E-224 3.69E-220

ENSMUSG00000039323 21061 375 -5.8138818971 4.73E-217 1.51E-213

ENSMUSG00000058638 23305 457 -5.6433154574 9.56E-210 2.62E-206

ENSMUSG00000041328 2802 8 -8.503592771 5.47E-208 1.31E-204

ENSMUSG00000032207 7493 36 -6.3558689651 1.42E-206 3.02E-203

Suppose you have in a subdirectory called “RNAseq_results” of our working directory
a set of files with the extension .txt that contain the results for the different com-

4PBMCs are any type of blood cell with having a round nucleus – as opposed to a lobed nucleus –
and include lymphocytes monocytes and macrophages. PBMCs are widely used in research and clinical
applications.

8

3.2 Creating a reference set 3 PREPARING A SET COLLECTION

parisons, all formatted as the example above. You can then read these in using the
following bit of R code:

topTableFiles = Sys.glob("RNAseq_results/*.txt")

topTables = lapply(topTableFiles, read.table, sep="\t", header=TRUE,

comment.char="", quote="", stringsAsFactors=FALSE)

names(topTables) <- sub("\\.txt", "", basename(topTableFiles))

These commands will create a list object containing as many data frames as tables
read. Each of these data frames is has the same name as its original file, but with
leading directory name and trailing extension stripped from it.
Now we need to obtain for each of these data frames the list of all gene identifiers for
which at least one transcript was identified. We could do this by searching each of the
columns with sequence-count values for non-zero values but most RNA-seq analysis
tools allow us to take a short cut. If you look in any of the dataframes for a gene with
zero sequence counts in all samples, you will notice that p-value and adjusted p-value
are assigned the NA5 value. Thus, we can simply filter out any rows with NA values in
adjusted p-value column, like so:

topTables = lapply(topTables, function(t) t[!is.na(t$padj),])

You might have to replace padj with the name given to the adjusted p-value column by
your RNAseq tool of choice. Now we can take the union of all genes with at least one
transcript detected:

allGenes = unique(unlist(lapply(topTables, function(t) t$geneID),

use.names=FALSE))

The only problem left is that the gene identifiers used in the example file are Ensembl
gene IDs whereas gene set collections used by SetRank typically use NCBI Entrez
Gene identifiers. So, before we can do something useful with them, we have to con-
vert the identifiers in the allGenes vector to the latter type6. For this task, you can
use createIDConverter, a convenience function provided by the SetRank package.
This function takes as input the name of an organismDBI package and the types of
identifiers to convert between. Rather than directly converting between identifiers,
createIDConverter returns a new function which do the actual conversion. In the
case of our sample input file show above, you need to convert the mouse Ensembl gene
identifiers into Entrez gene identifiers. This example shows how it works:

library(SetRank)

ensembl2EntrezID = createIDConverter("Mus.musculus", "ENSEMBL",

"ENTREZID")

referenceSet = ensembl2EntrezID(allGenes)

We have put the library command that loads the SetRank module within this snippet
but it is considered good practice to put all these statements at the top of your script.
Also, you will need to replace “Mus.musculus” and “ENSEMBL” with respectively the
correct name of the organismDBI module and type of identifier used in your input file.
See appendix B on page 26 for more information on this topic.

5NA is R’s way of indicating missing or incalculable values.
6Of course, if you are using a gene set collection that uses a different type of identifier, you will have to

convert to the latter instead

9

3.2 Creating a reference set 3 PREPARING A SET COLLECTION

3.2.2.2 Shotgun proteomics data With shotgun proteomics data we mean any non-
targeted proteomics mass spectrometry technology that tries to identify as many pro-
teins as possible in a given sample. Just as with RNA-seq data, we can construct a
reference set by taking the union of all proteins detected in all samples of a dataset.
To get the set of detected proteins, you will need the output from either search engines
such as MASCOT or X!Tandem or from quantitive proteomics tools such as MaxQuant
in TAB-delimited format. Most of these tools allow you to export their results in one or
more TAB-delimited files or as a spreadsheet. In the latter case, you will need to open
the file first in your spreadsheet program and export the data in TAB-delimited text for-
mat. If your proteomics tool of choice does not provide any option to export the results
in tabular format, you use the open-source tool PeptideShaker. This tool allows you to
import the results from different search engines and, amongst other things, export them
in TAB-delimited format.
Suppose we now have a directory called “proteomics_data” which contains a number
files with the extension .txt, each of them listing the proteins identified in a specific
sample. We will assume for now these files are all exported with PeptideShaker, mean-
ing they look like this:

Accession Other Protein(s) Complete Protein Group

P11021 P11021

Q15149 Q15149

P49327 P49327

P62736 P63267, P68032, P68133 P62736, P63267, P68032, P68133

P29401 P29401

P63104 P63104

P68363 Q71U36, Q9BQE3 P68363, Q71U36, Q9BQE3

P27797 P27797

P68363 P68366 P68363, P68366

Only the first three columns of the PeptideShaker output are shown here as these are the
only ones relevant to us now. Typically, proteomics results files list UniProt identifiers
and PeptideShaker is no exception to this rule. If your software happens to also export
gene identifiers you can use these directly of course, but try to avoid the using gene
symbols. See appendix on page 26 for more information on the different types of
sequence identifiers. For now, we will assume we can only rely on the provided UniProt
identifiers.
As you can see, some lines contain multiple protein identifiers. These are cases where
no single protein could be unambiguously identified meaning that our sample contains
at least one of the listed proteins. To take these ambiguous cases into account, we
must parse the comma-separated lists of identifiers in the column labeled “Complete
Protein Group”. The following bit of R code takes care of this task:

searchResultFiles = Sys.glob("proteomics_data/*.txt")

searchResults = lapply(searchResultFiles, read.table, sep="\t",

header=TRUE, quote="", fill=TRUE, stringsAsFactors=FALSE)

names(searchResults) <- sub("\\.txt", "",

basename(searchResultFiles))

allProteins = unique(unlist(lapply(searchResults, function(t)

strsplit(t$Complete.Protein.Group, ",\\s+")),

use.names=FALSE))

10

3.2 Creating a reference set 3 PREPARING A SET COLLECTION

Just a with our RNA-seq example, we first create a named list of tables corresponding
to our different input files. We then use the built-in R function strsplit to split the
contents of the column “Complete Protein Group” into separate Uniprot identifiers.
After calling the unique function, we obtain the variable allProteins which contains
the UniProt identifiers of all proteins found in all samples in our dataset. The only thing
left to do is to convert these to Entrez Gene identifiers. For this step, we can again use
createIDConverter to create function that will do this conversion for us. Applying
the latter to allProteins then gives us our reference set for our proteomics dataset.

library(SetRank)

uniprot2EntrezID = createIDConverter("Homo.sapiens", "UNIPROT",

"ENTREZID")

referenceSet = uniprot2EntrezID(allProteins)

3.2.2.3 Microarray data Contrary to RNA-seq and mass spectrometry proteomics
technologies, where the presence of a transcript or peptide is determined in absolute
terms, RNA microarrays only allow to determine relative changes in expression inten-
sity between different sample groups. As a result, constructing a reference set is a bit
more tricky for microarray datasets. We suggest to define the reference set for this type
of data as the set of genes which vary significantly across any of the conditions in the
experiment. The rationale for this approach is that if a gene varies significantly across
different conditions, it should be expressed in at least one of these. The drawback is
that genes which are expressed at a constant level across all conditions, will not be
included in the reference set.
Conveniently, the limma package, which is widely used to analyse microarray data in
R, provides exactly the function we need. The topTableF function performs a type of
one-way ANOVA for each gene in the dataset. We will assume that you have already
fitted a linear model on your data using the lmFit function from the limma package.
For details on how to use the latter function, we refer to the documentation of the limma
package.
Assuming we have a variable fittedData which contains the output of the lmFit func-
tion, calling the topTableF function is straightforward:

fTable = topTableF(fittedData, number=Inf, p.value=0.05)

The number argument specifies the maximum number of genes we want to have re-
turned. It is important to set this to infinity (Inf), as we want the list of returned genes
only to be limited by the p-value. The p.value argument specifies cutoff to be applied
on the adjusted p-values. As we are constructing a reference set, we want to avoid false
negatives rather than false positives, so we can apply a permissive cutoff such as 0.05
or even 0.1. Here is what the relevant columns in the returned fTable data frame look
like:

PROBEID ENTREZID SYMBOL GENENAME

81641_at 81641 Anpep alanyl (membrane) aminopeptidase

56611_at 56611 Anxa2 annexin A2

25661_at 25661 Fn1 fibronectin 1

445415_at 445415 S100a11 S100 calcium binding protein A11

64193_at 64193 Pttg1 pituitary tumor-transforming 1

25211_at 25211 Lyz2 lysozyme 2

11

3.3 Creating the set collection object 3 PREPARING A SET COLLECTION

We are in luck here, as the data frame already contains a column containig Entrez Gene
identifiers. All we have to do is remove any missing (NA) values from that column and
we have our reference set, like so:

referenceSet = fTable[!is.na(fTable$ENTREZID),]$ENTREZID

The actual type of sequence identifiers include in the output of topTableF depends on
how the raw microarray data was processed and can thus vary between datasets. How-
ever, most of the times, one or more types of gene identifiers are provided. As we have
seen in the previous examples, a function to convert these to Entrez identifiers is read-
ily created with the createIDConverter function. Additionnally, most BioConductor
AnnotationDBI packages also allow to convert probe set identifiers directly to Entrez
identifiers. See appendix B on page 26 for more information on this topic.

3.2.2.4 Targeted technologies With targeted technologies, we mean any technol-
ogy that determines the expression level of a limited set of proteins or transcripts.
Examples of these technologies are targeted MS/MS proteomics, NanoString nCount
or RT-qPCR.
Of course, a dataset should contain a sufficiently large number of genes or proteins
for a SetRank analysis to make sense. It is hard to define an absolute minimum but
once you have something in the order of 100 genes or proteins, you should be fine.
There is of course no harm in trying to run SetRank on smaller datasets. All you risk
is obtaining an empty result set.
Defining a reference set for this type of analysis is straightforward, simply take the
entire set of genes you are measuring. As always, make sure to convert all identifiers
to Entrez Gene identifiers (see appendix B on page 26).

3.2.2.5 Gene groups Many bioinformatics analyses return discrete groups of genes.
Clustering algorithms, for instance, detect groups of co-expressed genes or proteins in
large expression datasets or communities of closely interacting genes in large gene
networks. Other analyses predict transcription factor targets, kinase substrates or any
other of type of molecule interacting with a given gene.
With each of these analyses, the typical next step is to perform GSEA on each of the
resulting groups. In most cases, the best approach is to use the union of all returned
groups as the reference set.

3.3 Creating the set collection object

Now that we have our annotation tables and reference set ready, we can finally build
our set collection object. This step is very simple, all we have to do is to call the
buildSetCollection function provided by the SetRank module. This function is used
as follows:

buildSetCollection(..., referenceSet = NULL, maxSetSize = 500)

The ... argument contains one or more annotation tables, as described in section 3.1
on page 5. When you are using a GeneSets package, you can either use the allDBs table
or any combination of the individual tables representing single gene set databases.

12

4 RUNNING SETRANK

The referenceSet argument is the reference gene set, as described in section 3.2 on
page 7. When omitted, the union of all genes present in all supplied annotation tables
will be used as reference set. Using this default option is almost certainly a bad idea
and should be avoided.
The maxSetSize argument specifies the maximum number of elements in a gene set.
Any gene sets present in the collection with more elements than this number will be
ignored during the analysis. This limitation is to both speed up the analysis and to
avoid large The default value of 500 is recomended, but feel free to experiment with
this value.
Because buildSetCollection pre-calculates all intersections between any two gene
sets in the collection, as well as some critical values, it takes quite a while to run. For-
tunately, its execution time can be sped up by using multiple CPU-cores. The number
of cores to use can be set before running buildSetCollection using the command:

options(mc.cores=4)

It is not recommended to use more than 16 cores.
Once we have our collection, we can save it so that we can use it in our later analysis.
The code snippet shows a sample run of buildSetCollection, with the reference set
construction omitted.

library(SetRank)

library(GeneSets.Homo.sapiens)

...

(build your reference set, store it in variable "reference")

...

options(mc.cores=4) #Change this if you want to use more or less cores

collection = buildSetCollection(GOBP, KEGG, Reactome, Wikipathways,

referenceSet=reference, maxSetSize = 500)

save(collection, file="collection.Rda")

Here we have chosen to only use the GO Biological Process (GOBP), KEGG, Re-
actome and Wikipathways databases. Remember that if we want to use all gene set
databases present in the GeneSets.Homo.sapiens package, we can simply use the
allDBs table, like this:

collection = buildSetCollection(allDBs, referenceSet=reference,

maxSetSize = 500)

4 Running SetRank

4.1 Ranked vs. unranked analysis

Now that we have our dataset ready, we can finally perform our SetRank analysis. An
important decision to make is if we want to run SetRank in ranked or unranked mode.
The difference between these two modes lies in how the input vector of gene identifiers
(the geneIDs argument) is treated and how the primary gene set p-values are calculated.

13

4.2 Running your analysis 4 RUNNING SETRANK

In ranked mode, the gene identifiers in the input vector are assumed to be ranked by
increasing p-value. The p-value of a gene set is then calculated by checking if its genes
rank higher than what would be expected by chance. The main reason for choosing
ranked mode is that it does not require you to rely on an arbitrary p-value cutoff to
divide your input data set into a set of significant and one of non-significant genes.
Although the latter approach is widely used, it has been shown that the results of GSEA
vary greatly depending on the applied cutoff.
An additional advantage of the way gene set p-values are calculated in ranked mode,
is increased sensitivity. It is possible to obtain a significant p-value for a gene set
although none of its individual genes have a p-value that would normally be considered
significant. As a result, you can even detect significant gene sets in a dataset where
no single gene is found to be significant. Because of these reasons, SetRank should
always be run in ranked mode whenever the genes in your input dataset have p-values,
or a similar score that reflects significance, associated to them.
In unranked mode, the significance of a gene set is calculated by comparing its relative
abundance in the input vector compared to the remainder of the reference set. The
more abundant the gene set is in the input vector, the lower the obtained p-value will
be. Unranked mode should only be used when the input gene identifiers cannot be
ranked in a meaningful way. Examples of such cases include qualitative proteomics
datasets or results from clustering analyses.

4.2 Running your analysis

4.2.1 Single input file

In the simplest case, your dataset only consists of a single input file, typically the
comparison results of a set of treatment samples to a set of control samples. Assuming
that our file is called results.txt and that it is formatted in the same way as the
example in 3.2.2.1, we can read the data in like this:

inputData = read.table("results.txt", sep="\t", header=TRUE,

comment.char="", quote="", stringsAsFactors=FALSE)

Remember that the input data for SetRank is a vector of NCBI Entrez Gene identi-
fiers, ranked by increasing p-value. When your input file already contains Entrez Gene
identifiers, you have to make sure R treats them as character values and not as integer
numbers. You can force the read.table function to read in a certain column as char-
acter values using the colClasses argument. When the column containing the Entrez
identifiers is called geneID, simply add the argument

colClasses=c(geneID="character")

to the read.table call.
Just as with the construction of the reference set, when your input file uses a different
type of gene identifier, such as Ensembl gene identifiers, you need to convert these
to Entrez Gene identifiers. Again, we can use the createIDConverter convenience
function provided by the SetRank package for this task. To add a new column with the
Entrez Gene IDs to the inputData data frame, you can use

ensembl2Entrez = createIDConverter("Homo.sapiens", "ENSEMBLID",

14

4.2 Running your analysis 4 RUNNING SETRANK

"ENTREZID")

inputData$entrezID = ensembl2Entrez(inputData$geneID, na.rm=FALSE,

drop.ambiguous=TRUE)

The na.rm and drop.ambiguous arguments are added to ensure that the vector returned
is of the same length as the input vector. To finally start the SetRank analysis, you have
to call the setRankAnalysis function, which is used like this:

setRankAnalysis(geneIDs, setCollection, use.ranks, setPCutoff = 0.01,

fdrCutoff = 0.05)

The geneIDs argument is the vector of Entrez Gene IDs, sorted by increasing p-value.
The second argument is the gene set collection object that we created in section 3. The
use.ranks argument is a logical value. When set to TRUE, SetRank will be run in ranked
and when FALSE, in unranked mode. Ranked and unranked mode were discussed in
section 4.1 on page 13. The arguments setPCutoff and fdrCutoff arguments set
the statistical parameters of the SetRank algorithm. The most important of these is
setPCutoff, which is the p-value cutoff above which a gene set should be rejected.
This cutoff is used to determine both which gene sets are discarded after the primary
gene set calculation and to decide if a gene set is a false positive after the intersection of
another gene set has been substracted from it. See the SetRank paper for more details
on the algorithm. We recommend to use a value between 0.01 and 0.05. The fdrCutoff
controls the false discovery rate in the final set of results. We advise you to use a rather
liberal cutoff here, as it is always possible to perform a more stringent filtering on the
result set whereas the reverse is not possible. See section 5.1.1.3 on page 25 for some
pointers on how to filter SetRank results.
To simply use the default parameters on our example input file with the gene set col-
lection object we prepared in section 3 on page 5, we can start SetRank like this:

network = setRankAnalysis(inputData$entrezID, collection, TRUE)

The setRankAnalysis function returns a gene set network as an igraph object, which
we store in the variable network. Bear in mind that running this function might take a
couple of hours, depending on how big your input dataset is and how many gene sets
are initially found significant. In section 4.2.3 on the following page, we will discuss
how to speed up computation using multi-threading.

4.2.2 Multiple input files

There are different ways to run SetRank on multiple input files. You could, for instance,
wrap an R script that runs SetRank on a single file in a shell script that iterates over
multiple input files. While this approach would work fine, we however recommend
to process all input files that make up a single dataset within a single R run. The
most efficient way is to create a list object with all input files and then use the lapply

function to run SetRank on each of these files to obtain a list of gene set networks. The
reason for choosing this method is that it will give nicer results with the visualisation
methods discussed in section 4.3 on page 17. The code examples below show how this
task can be done.
Assuming we use the same input files as in section 3.2.2.1 on page 8, we can use the
same code again to read in multiple input files in a list object called topTables:

15

4.2 Running your analysis 4 RUNNING SETRANK

topTableFiles = Sys.glob("RNAseq_results/*.txt")

topTables = lapply(topTableFiles, read.table, sep="\t", header=TRUE,

comment.char="", quote="", stringsAsFactors=FALSE)

names(topTables) <- sub("\\.txt", "", basename(topTableFiles))

topTables = lapply(topTables, function(t) t[!is.na(t$padj),])

topTables = lapply(topTables, function(t) t[order(t$padj),])

The last line in the above snippet makes sure the input tables are sorted by increasing
p-value. Assuming the gene identifiers are in a column called “geneID”, we can extract
the input gene lists like so:

genes = lapply(topTables, function(t) t$geneID)

If our gene identifiers are not Entrez Gene identifiers, we need to convert them first by
again creating a converter function (see appendix B on page 26) and applying it to our
list of input genes.

ensembl2Entrez = createIDConverter("Homo.sapiens", "ENSEMBLID",

"ENTREZID")

genes = lapply(genes, ensembl2Entrez)

We can now call the setRankAnalysis function on each of our input gene lists to obtain
our final list of gene set networks.

networks = lapply(setRankAnalysis, genes, collection, TRUE)

4.2.3 Using multi-threading

As the SetRank method is quite CPU-intensive, running an analysis, especially on mul-
tiple input files, can take a long time. To speed up the process, SetRank has the built-in
option to run an analysis multi-threaded, i.e. using multiple CPU cores in parallel, by
virtue of the R parallel package. To specify the number of cores to use, simply set
the global mc.cores option to the desired number using the options function before
you call setRankAnalysis.

options(mc.cores=4)

There are a few caveats to consider when you want to run SetRank multi-threaded:

• Setting the mc.cores option will have no effect when running on Microsoft Win-
dows. This limitation is because SetRank creates multiple threads using a system
process called forking, which does not exist on Windows7.

• Bear in mind that SetRank is also quite memory-hungry. On big datasets, each
additional thread can take up an additional 2 GB on top of the initial 4GB or so
that SetRank uses. Thus, make sure you have enough memory on your machine
for the number of cores you want to use.

7Look, don’t expect the scientific community to take you seriously when you use Windows for bioinfor-
matics analysis. :-)

16

4.3 Exporting and visualising your results 4 RUNNING SETRANK

• Using all available cores on your machine might actually be slower than using
half of them, even if you have enough memory when your processor uses hyper-
threading. Try using half to three-quarters of available cores for optimal results.

• It is not advisable to use the mclapply function instead of lapply when you
call the setRankAnalysis function on multiple input sets, as shown in 4.2.2 on
page 15. Doing so will result in n2 rather than n threads being created, where n
is the value you assigned to mc.cores.

4.3 Exporting and visualising your results

4.3.1 Exporting your results

The setRankAnalysis function only returns an network8 object which can only be used
inside R. Fortunately, the SetRank package contains two functions, exportSingleResult
and exportMultipleResults to export your results. As their names suggests, these
functions can be used when you have a single gene set network or a list of multiple
networks respectively.

4.3.1.1 Single result The usage and arguments of exportSingleResult are dis-
cussed below.

exportSingleResult(network, selectedGenes, collection, networkName,

IDConverter = NULL, outputPath = "./")

network is the gene set network object returned by setRankAnalysis.

selectedGenes should be the same list of gene identifiers that you passed to setRankAnalysis

collection is the gene set collection that you passed to setRankAnalysis.

networkName is a string used to name the different output files generated by this func-
tion.

IDConverter is an ID converter function generated by the createIDConverter func-
tion (see appendix B on page 26). The purpose of this function is to convert
the Entrez Gene identifiers used by SetRank to more human-readable gene
symbols or names. Note that this converter function will be different from
the one you might have used before to convert your input gene identifiers
to Entrez identifiers. If you omit this argument, the output files will simply
contain Entrez Gene identifiers.

outputPath is the directory where the output files will be created. The default is to
use the current working directory. If the last element of the path doesn’t
exist, a directory will be created.

Using the results from the example in section 4.2.1 on page 14, we can export our
results using the following bit of code:

8Actually an igraph object from the package with the same name

17

4.3 Exporting and visualising your results 4 RUNNING SETRANK

library(SetRankVisualization)

IDConverter = createIDConverter("Homo.sapiens", "ENTREZID", "SYMBOL")

exportSingleResult(network, inputData$entrezID, collection,

"myResults", IDConverter, "setrank_results")

The IDConverter function we created here converts Entrez identifiers to more human-
readable gene symbols. The call to exportSingleResult will create the following files
in a subdirectory called “setrank_results” of the current working directory, with
<name> replaced by the value of networkName.

<name>_pathways.txt A tab-delimited file listing the gene sets found to be significant
by SetRank. This file can be imported into a spreadsheet program.

<name>_membership.txt A tab-delimited file listing which genes belong to each of the
pathways mentioned in myResults_pathways.txt, can also be imported
into a spreadsheet.

<name>.net.xml A file containing the gene set network returned by setRankAnalysis.
This file uses the graphML9 format to describe a network and can be im-
ported into Cytoscape (see section 4.3.3 on page 20).

setrank.xml A Cytoscape visualisation style, to be used in Cytoscape. See sec-
tion 4.3.3 on page 20 for details.

4.3.1.2 Multiple results The exportMultipleResults function is used as follows:

exportMultipleResults(networkList, selectedGenesList, collection,

IDConverter = NULL, outputPath = "./")

networkList is a list of gene set network objects

selectedGenesList should the same list of input gene identifier vectors that was
passed to setRankAnalysis. The names should correspond to those of
networkList.

collection is the same gene set collection that was passed to setRankAnalysis.

IDConverter same as for exportSingleResult.

outputPath same as for exportSingleResult.

Note that compared to exportSingleResult, there is no networkName argument. The
exportMultipleResults function uses the names from the networkList argument in-
stead.
Using the example from section 4.2.2 on page 15, we can export our results like so:

library(SetRankVisualization)

IDConverter = createIDConverter("Homo.sapiens", "ENTREZID", "SYMBOL")

exportMultipleResults(networks, genes, collection, IDConverter,

"setrank_results")

9http://graphml.graphdrawing.org/

18

http://graphml.graphdrawing.org/

4.3 Exporting and visualising your results 4 RUNNING SETRANK

For each network object in networkList, exportMultipleResults will create the
same <name>_pathways.txt, <name>_membership.txt, and <name>.net.xml files as
exportSingleResult, as well as the setrank.xml style file. Note that there is no
networkName argument, exportMultipleResults function uses the names from the
networkList argument instead. Apart from these files, an additional file called pathways.txt

is generated, which gives an overview of all pathways detected in the different input
gene lists.

4.3.2 Importing the output tables in a spreadsheet

Most spreadsheet programs have the option to import data from TAB-delimited files.

4.3.2.1 Microsoft Excel

1. Choose the “Data” ribbon and click the icon that says “From Text”.

2. A file dialog box will appear. Choose the file you wish to import, e.g. myResults_pathways.txt.

3. The “Text Import Wizard” is opened now. On the first window, make sure the
“Delimited” option is chosen. Then click “Next”.

4. In the second window, make sure TAB is the only option selected under “Delim-
iters”. Click Finish.

5. In the Import Data dialog, choose “New Worksheet” and click OK

Repeat these steps for each file you need to import.

4.3.2.2 OpenOffice/LibreOffice Calc

1. From the “Insert” menu, choose “Sheet from File...”

2. A file dialog box will appear. Choose the file you wish to import, e.g. myResults_pathways.txt.

3. A “Text Import” dialog will now appear. Under the heading “Separator options”,
make sure the “Separated By” option is chosen and that “Tab” is the only sepa-
rator option chosen. Click OK

4. A dialog “Insert Sheet” will now appear. Just click OK

Repeat these steps for each file you need to import.

4.3.2.3 Gnumeric Whereas you can use “File”→ “Open” to import TAB-delimited
files into Gnumeric10, this spreadsheet program also comes with a command line utility
called ssconvert which allows you to combine several files into a single Excel or Li-
breOffice Calc file. To create a single spreadsheet from the output of a typical SetRank
run, just run the following command (all on one line) from your terminal:

ssconvert --merge-to setrank.xls pathways.txt *_pathways.txt

*_membership.txt

10http://www.gnumeric.org/

19

http://www.gnumeric.org/

4.4 Creating gene set-specific gene interaction networks 4 RUNNING SETRANK

If you only used the exportSingleResult function to export your data, you have to
leave out pathways.txt. If you want to have an LibreOffice file instead of an Excel
file, just type setrank.ods instead of setrank.xls.

4.3.3 Importing the gene set network in Cytoscape

To visualize the gene set networks returned by SetRank, we can use Cytoscape, an
Open Source network analysis tool. Cytoscape can be downloaded for free at http:
//www.cytoscape.org.
To import a gene set network, go to “File” → “Import” → “Network” → “File” and
select the file you want to load from the file dialog, e.g. myResults.net.xml. The
network will appear in the “Network” tab of the Control Panel and a default network
view will be created.
Repeat the above procedure to import all network files you need. Next, you need to
import the SetRank style file, which is called “setrank.xml”. Go to “File”→ “Import”
→ “Style” and choose the setrank.xml file from the file dialog.
To activate the SetRank visualisation style, select the “Style” tab of the Control Panel
and select the style called “SetRank” from the drop-down list. You will see the network
appearance change. By default, Cytoscape lays out a network in a grid arrangement,
which is hard to interpret. Fortunately Cytoscape comes with different graph layout
algorithms. For large networks, the Edge-Weighted Spring Embedded algorithm gives
generally the best results. To apply this layout, go to “Layout” → “Edge-Weighted
Spring Embedded” → “jaccard”. Very often, the resulting layout will still look very
’cluttered’, with many nodes on top of each other. You can change this by scaling the
layout. Go to “Layout” → “Scale”. A layout panel will now appear. You can drag
the slider to the right to increase the distance between nodes. Make sure the “Scale
Selected Nodes Only” option is not selected.
After you have imported and layed out all your networks, you might want to save your
session so you don’t have to repeat all these steps every time you want to look at your
results. Simply go to “File”→ “Save” and choose a file name.

4.4 Creating gene set-specific gene interaction networks

Once you have identified the most important pathways affected by your experiment,
you will probably want to know what genes are playing a role in these pathways and
how these relate to one another. To help you answer these questions, the SetRank
package contains the function exportGeneNets to create detailed gene interaction net-
works for each of the pathways the were returned in a SetRank run and visualises your
original expression data on top of these networks. This function needs three pieces of
information:

• The results from one or more SetRank runs, i.e. one or more gene set network
objects returned by the setRankAnalysis function.

• For each of the above network objects, the original input table that contains per
gene the p-value and the log-fold change.

• A genome-wide interaction network or interactome, for your species of interest.
You will need to prepare this beforehand, as explained in the next section.

20

http://www.cytoscape.org
http://www.cytoscape.org

4.4 Creating gene set-specific gene interaction networks 4 RUNNING SETRANK

4.4.1 Building interactomes

4.4.1.1 Using the SetRank_interactomes package The easiest way to create an
interactome for your species of interest, is to use the SetRank_interactomes package.
This package is similar to the GeneSets package that we discussed in section 3.1.1 on
page 5 in that it downloads external data and packages it in a way so that it is ready
for use with SetRank. You can downlad the SetRank_interactomes package by either
cloning the git repository using

git clone https://github.com/C3c6e6/SetRank_interactomes.git

or by downloading the .tar.gz or .zip archive at https://github.com/C3c6e6/SetRank_
interactomes/releases/latest.
The package has the following system requirements:

• A system running Linux, Mac OS X or any other Unix-based operating system.

• Perl version 5.12 or above

• Python version 2.7 or above

• GNU make version 3.81 or above

• R version 3.0 or above

• The wget utility

If you managed to get the GeneSets package working, you should have no problem
running the SetRank_interactomes package.
Just like the GeneSets package, the only thing you need to do is to edit the included
organisms file to specify for which organisms you wish to construct an interactome.
You can check section 3.1.1 on page 5 for details on how to do this, but you’ll probably
just want to copy the organisms file you’ve created for the GeneSets package.
Again, to start building the interactomes, just type

make

at the command line. The whole build process can take a few hours, as the included
scripts will first download the entire list of interactions from the STRING database.
This data will automatically be parsed and for each organism listed in the organisms
file, an R data file will be created in a subdirectory called output. Each file has a file
name in in the format of <Genus.species>_<YY.MM.DD>.Rda where <Genus.species>

is the name of the species and <YY.MM.DD> is a datestamp/version number and contains
a single R object named string. This object can be passed on to the exportGeneNets

function. Note that you don’t need to repeat the build process for every time you wish
to use exportGeneNets. Of course, it is good practice to re-run the make command
every other months or so to have updated interactomes.

4.4.1.2 Building your own interactome If you prefer to use another interaction
database, you can use the graph_from_data_frame function from the igraph pack-
age. For this function, you need to prepare two data frames, one with node attributes
and one with edge attributes. The node attributes data frame must have the Entrez

21

https://github.com/C3c6e6/SetRank_interactomes/releases/latest
https://github.com/C3c6e6/SetRank_interactomes/releases/latest

4.4 Creating gene set-specific gene interaction networks 4 RUNNING SETRANK

Gene Identifier of the nodes as first column and another column called “symbol” which
contains the gene symbol. You may specify any number of other attributes as addi-
tional columns. The first two columns of the edge attributes data frame must be the
Entrez Gene Identifiers of the nodes connect by an edge. Additionally, you may spec-
ify any number of edge attributes. You can pass the igraph object created by the
graph_from_data_frame function to the exportGeneNets function. See the igraph

documentation for more details.

4.4.2 Integrating the interactome with SetRank results and expression data

We can now use exportGeneNets to create gene interaction files for each of the sig-
nificant gene sets returned by SetRank. We first need to load the previously created
interactome file. Here we will assume you have used the SetRank_interactomes pack-
age and that we need to load the interactome for human. We simply type

load("path/to/SetRank_interactomes/output/Homo.sapiens_15.11.22.Rda")

to load the string object.
If you only have a single gene set network, as described in section 4.2.1 on page 14,
you first need to wrap both our input data and our gene set network into list objects.
Assuming we have the same objects as at the end of section 4.2.1 on page 14, we can
do

topTables = list(setrank=inputData)

networks = list(setrank=network)

If you have multiple gene sets and you have followed the procedure described in sec-
tion 4.2.2 on page 15, we already have our topTables and networks list object ready.
We also need to tell the function what columns in our input data frame contain the En-
trez Gene Identifiers, the gene symbols, the log-fold change values and the (corrected)
p-values. This information is passed through a named vector with the names “geneID”,
“symbol”, “logFC” and “p”, like this:

fieldNames = c("geneID"="entrezID", "symbol"="SYMBOL",

"logFC"="log2FoldChange", "p"="padj")

Now, we can call the exportGeneNets function

exportGeneNets(topTables, networks, collection, string,

"gene_nets", fields = fieldNames)

This will create a directory called gene_nets, where, for each gene set present in any
of the gene set networks in networkList, a file with extension .net.xml will be created.
Additionally, a file called gene_net_styles.viz.xml is created as well, which contains
visualisation styles for use with Cytoscape (see section 4.4.3 on the next page).
The full usage of exportGeneNets is:

exportGeneNets(topTables, networks, collection, string, outDir,

geneSetIDs = NULL, fields = c(geneID = "ENTREZID",

symbol = "SYMBOL", logFC = "logFC", p = "adj.P.Val"))

22

5 INTERPRETING SETRANK RESULTS

We have already discussed most of the arguments. The geneSetIDs argument allows
you to specify for which specific gene sets you want to create network files. If this
argument is omitted, all gene set identifers from all networks will be used.

4.4.3 Importing the gene interaction networks into Cytoscape

To import a gene interaction network, go to “File”→ “Import”→ “Network”→ “File”
and select the file you want to load from the file dialog, e.g. sodium.ion.transport.GOBP.net.xml.
The network will appear in the “Network” tab of the Control Panel and a default net-
work view will be created. Just as with the gene set network, you can apply a layout to
make the network easier to interpret.
Repeat the above procedure to import all network files you want. Next, you need to
import the gene nets style file, which is called “gene_net_styles.viz.xml”. Go to
“File”→ “Import”→ “Style” and choose the gene_net_styles.viz.xml file from the
file dialog.
In the Style tab of the Control Panel, there should now some new styles, with the same
names as your topTables objects had in the previous section. If you select one of these
styles, your network will show the data from that table onto your interaction network.

5 Interpreting SetRank results

Now that we have ran SetRank and imported its results into a spreadsheet and Cy-
toscape, the real work begins: analysing and interpreting the results! In this section,
we will explain on what all the numbers in the pathways and membership tables mean
as well as how to look at gene set networks in Cytoscape. We will also discuss how to
examine significant gene sets in detail by visualising its gene interactions.

5.1 Understanding the pathway and membership tables

As mentioned in section 4.3.1 on page 17, for each gene set network returned by Se-
tRank, two tables, the pathway table (<name>_pathways.txt) and the membership ta-
ble (<name>_membership.txt), are created. Additionally, when multiple gene set net-
works were created from the same dataset, a pathway overview table (pathways.txt)
is generated as well.

5.1.1 The pathway table

5.1.1.1 Column descriptions The pathway table contains the following columns:

name The identifier of a gene set, e.g. GO or KEGG identifier

description A human-readable description of the gene set.

database The database the gene set was defined in.

23

5.1 Understanding the pathway and membership tables5 INTERPRETING SETRANK RESULTS

Figure 1: Calculation of corrected p-values.

size The number of genes from the reference set (see section 3.2 on page 7) that are
part of the gene set.

setRank The SetRank value of a gene set is the PageRank value of the gene set in
the gene set network (see section 5.2 on page 26). This value reflects the importance of
the gene set in a gene set network, given the importance of other gene sets that point at
it. The higher the SetRank value, the more important the gene set. However, without
the associated p-value, the SetRank value itself is meaningless.

pSetRank The p-value associated with the SetRank value of the gene set. This p-
value expresses the probability of observing a gene set with the same setRank value in
a random network with the same number of nodes and edges as the observed gene set
network.

correctedPValue The corrected p-value of the gene set. P-values from gene set
enrichment tests are adjusted by SetRank to account for overlap with other gene sets.
When the gene set only intersects with a single other gene set, (example II in figure
1), the corrected p-value is simply the value based on the genes unique to the former
set. When a gene set overlaps with more than one other gene set (set B in example I
on figure 1), multiple P-values are calculated based on the genes in e.g. B but not A
(denoted as B2 on figure 1), B but not C (denoted as B1 on figure 1) etc. The reported
corrected p-value is then the largest of these p-values.

adjustedPValue To account for the many statistical tests that are performed, SetRank
does a multiple test correction as follows. For each connected component, i.e. each
group of connected nodes, in the gene set network, the lowest corrected p-value is se-
lected. These p-values are then adjusted for multiple testing using the Holm procedure
and the adjusted values are assigned back to the gene sets within each component.

24

5.1 Understanding the pathway and membership tables5 INTERPRETING SETRANK RESULTS

5.1.1.2 Understanding the p-values At this point, you might be wondering why
there are three different types of p-values in the pathway table. The reason is that,
rather than ranking gene sets by a single p-value, SetRank uses a more sophisticated
way of sorting the results. The algorithm considers gene sets with a significant SetRank
value as the most important of all. When the SetRank value is not significant, the most
network components are first ranked according to significance using the adjusted p-
value. The corrected p-value is then used to rank gene sets within a single component.
Thus, in short, the gene sets in a pathway table are ranked by importance, with the most
important ones on top of the table.

5.1.1.3 Filtering results If you feel that the list of pathways is too long and you
would like to shorten it, be careful not to discard interesting results. For instance,
it is possible that a gene set has a very significant pSetRank value but a rater weak
corrected p-value. To avoid excluding such cases, you can apply a filter that retains
gene sets with a corrected and adjusted p-value below a certain threshold – e.g. 0.001
– or with a pSetRank below another threshold – e.g. 0.05.
You can either use the filtering functionality of your spreadsheet program or filter the
results using R. In Microsoft Excel, applying a filter on two or more columns is unfor-
tunately quite complicated11. Fortunately, in OpenOffice/LibreOffice, the procedure is
very straightforward. Go to Data → Filter → Standard Filter. In the resulting dialog
window, choose the pSetRank field in the first list box under “Field Name”, choose
“<=” under “Condition”, and put 0.05 under “Value”. In the next row, first choose the
“OR” operator, before choosing “adjustedPValue”, “<=”, and 0.001 in the respective
other boxes. In the third row, select the “AND” operator, and enter the values “correct-
edPValue”, “<=”, and 0.001. Click “OK” to apply the filter.
With R, you can filter the pathway table like so:

pathways = read.table("<name>_pathways.txt", sep="\t", quote="",

header=TRUE, stringsAsFactors=FALSE)

filteredPathways = pathways[pathways$pSetRank <= 0.05 |

(pathways$correctedPValue <= 0.001 &

pathways$adjustedPValue <= 0.001),]

write.table(filteredPathways, "<name>_filtered_pathways.txt",

sep="\t", col.names=TRUE, row.names=FALSE, quote=FALSE)

This will create a new file called <name>_pathways.filtered.txt, where <name> is of
course replaced with whatever prefix you have used.

5.1.2 The membership table

Once we know the that a given gene set is significant, we typically want to know what
genes are inside it. The membership table gives you exactly that information. Each
column represents a gene set and is labelled using its identifier, i.e. the value in the
column “name” of the pathway table. Likewise, each row represents a gene and is
labelled with its gene symbol12. Whenever a gene is part of a given gene set, the cell in
that row and column will contain an ‘X’, otherwise it will contain a dot (‘.’). The rows

11It seems footnote 7 on page 16 also applies to Microsoft Excel
12or whatever identifier type the Entrez ID was converted to by the IDConverter function used in sec-

tion 4.3.1 on page 17

25

5.2 Understanding the gene set network
B DIFFERENT TYPES OF SEQUENCE IDENTIFIERS AND HOW TO

CONVERT BETWEEN THEM

and columns are ordered such that gene sets with a similar gene content are next to one
another and genes that typically occur in the same gene sets are below one another.

5.1.3 The pathways overview table

When the data set you are analysing involves multiple comparisons, looking at mul-
tiple individual pathway tables quickly becomes confusing. The pathways overview
table tries to help with this problem by aggregating all results into a single table. The
pathways overview table contains a column for each individual result set. The column
labels are taken from the names of the individual pathway tables. Each row corre-
sponds to a gene set. The numbers in the columns reflect the rank of a gene set in a
particular comparison. If the number is 1, it means the gene set was ranked first, if it is
0.50, it means that gene set was ranked halfway down the list. If it is 0, it means this
gene set was not found significant for this particular comparison. The score column
contains a global score, reflecting how important a gene set is across all comparisons.
The score is calculated as the number of comparisons where the gene set was found to
be significant + the average rank value – i.e. the number between 0 and 1.

5.2 Understanding the gene set network

5.3 Visualising the interactions within a gene set

A Gene Set databases in the GeneSets package

B Different types of sequence identifiers and how to
convert between them

UniprotID Used by UniProt. Example: Q035233
TranscriptID Used by NCBI
Ensembl
Entrez GeneID E.g. 1042
Gene Symbol Approved by HUGO consortium. Warning: not stable, change over
time. Only use for displaying purposes. Also, beware of spreadsheets automatically
converting gene names like “SEPT7” into dates like “September 7th”.
Mention how to find between which types of sequences one can convert using the
columns function. Also, show how you can find out what each identifier looks like
using the keys function.
Explain annotationDBI packages, especially “columns” and “keytypes”. Explain use
of createIDConverter and functions returned by it.

26

	Introduction
	Installation
	System requirements
	Installation steps

	Preparing a set collection
	Annotation tables
	Using the GeneSets package
	Building your own annotation table

	Creating a reference set
	Understanding sample source bias
	Constructing reference sets for different types of data

	Creating the set collection object

	Running SetRank
	Ranked vs. unranked analysis
	Running your analysis
	Single input file
	Multiple input files
	Using multi-threading

	Exporting and visualising your results
	Exporting your results
	Importing the output tables in a spreadsheet
	Importing the gene set network in Cytoscape

	Creating gene set-specific gene interaction networks
	Building interactomes
	Integrating the interactome with SetRank results and expression data
	Importing the gene interaction networks into Cytoscape

	Interpreting SetRank results
	Understanding the pathway and membership tables
	The pathway table
	The membership table
	The pathways overview table

	Understanding the gene set network
	Visualising the interactions within a gene set

	Gene Set databases in the GeneSets package
	Different types of sequence identifiers and how to convert between them

