Package 'Seurat'

May 2, 2022
Version 4.1.1
Date 2022-05-01
Title Tools for Single Cell Genomics
Description A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/j.cell.2015.05.002, Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031, and Hao, Hao, et al (2020) doi:10.1101/2020.10.12.335331 for more tails.

URL https://satijalab.org/seurat, https://github.com/satijalab/seurat
BugReports https://github.com/satijalab/seurat/issues
Depends R (>= 4.0.0), methods
Imports cluster, cowplot, fitdistrplus, future, future.apply, ggplot2 ($>=3.3 .0$), ggrepel, ggridges, graphics, grDevices, grid, httr, ica, igraph, irlba, jsonlite, KernSmooth, leiden ($>=0.3 .1$), lmtest, MASS, Matrix ($>=1.2-14$), matrixStats, miniUI, patchwork, pbapply, plotly ($>=4.9 .0$), png, RANN, RColorBrewer, Rcpp ($>=1.0 .7$), RcppAnnoy ($>=0.0 .18$), reticulate, rlang, ROCR, Rtsne, scales, scattermore ($>=0.7$), sctransform ($>=$ 0.3.3), SeuratObject ($>=4.1 .0$), shiny, spatstat.core, spatstat.geom, stats, tibble, tools, utils, uwot ($>=0.1 .9$)
LinkingTo Rcpp (>=0.11.0), RcppEigen, RcppProgress
License MIT + file LICENSE
LazyData true
Collate 'RcppExports.R' 'reexports.R' 'generics.R' 'clustering.R' 'visualization.R' 'convenience.R' 'data.R' 'differential_expression.R' 'dimensional_reduction.R' 'integration.R' 'mixscape.R' 'objects.R' 'preprocessing.R' 'tree.R' 'utilities.R' 'zzz.R'

RoxygenNote 7.1.2
Encoding UTF-8
Suggests ape, rsvd, testthat, hdf5r, S4Vectors, SummarizedExperiment,SingleCellExperiment, MAST, DESeq 2 , BiocGenerics,GenomicRanges, GenomeInfoDb, IRanges, rtracklayer, Rfast2,monocle, Biobase, VGAM, limma, metap, enrichR, mixtools,ggrastr
NeedsCompilation yes
Author Andrew Butler [ctb] (https://orcid.org/0000-0003-3608-0463),Saket Choudhary [ctb] (https://orcid.org/0000-0001-5202-7633),Charlotte Darby [ctb] (https://orcid.org/0000-0003-2195-5300),Jeff Farrell [ctb],
Christoph Hafemeister [ctb] (https://orcid.org/0000-0001-6365-8254),
Yuhan Hao [ctb] (https://orcid.org/0000-0002-1810-0822),
Paul Hoffman [aut, cre] (https://orcid.org/0000-0002-7693-8957),
Jaison Jain [ctb] (https://orcid.org/0000-0002-9478-5018),
Efthymia Papalexi [ctb] (https://orcid.org/0000-0001-5898-694X),
Patrick Roelli [ctb],
Rahul Satija [ctb] (https://orcid.org/0000-0001-9448-8833),
Karthik Shekhar [ctb],
Avi Srivastava [ctb] (https://orcid.org/0000-0001-9798-2079),
Tim Stuart [ctb] (https://orcid.org/0000-0002-3044-0897),
Kristof Torkenczy [ctb] (https://orcid.org/0000-0002-4869-7957),
Shiwei Zheng [ctb] (https://orcid.org/0000-0001-6682-6743),
Satija Lab and Collaborators [fnd]
Maintainer Paul Hoffman seurat@nygenome.org
Repository CRAN
Date/Publication 2022-05-02 05:40:02 UTC

R topics documented:

Seurat-package 6
AddAzimuthResults 8
AddAzimuthScores 8
AddModuleScore 9
AggregateExpression 11
AnchorSet-class 12
AnnotateAnchors 13
as.CellDataSet 14
as.Seurat.CellDataSet 15
as.SingleCellExperiment 16
as.sparse.H5Group 16
Assay-class 17
AugmentPlot 17
AutoPointSize 18
AverageExpression 19
BarcodeInflectionsPlot 20
BGTextColor 21
BlackAndWhite 22
BuildClusterTree 23
CalcPerturbSig 24
CalculateBarcodeInflections 25
CaseMatch 27
cc.genes 27
cc.genes.updated. 2019 28
CellCycleScoring 29
Cells.SCTModel 30
CellsByImage 31
CellScatter 31
CellSelector 33
CollapseEmbeddingOutliers 34
CollapseSpeciesExpressionMatrix 35
ColorDimSplit 36
CombinePlots 38
contrast-theory 39
CreateSCTAssayObject 39
CustomDistance 40
DEenrichRPlot 41
DietSeurat 43
DimHeatmap 44
DimPlot 45
DimReduc-class 48
DiscretePalette 48
DoHeatmap 49
DotPlot 50
ElbowPlot 52
ExpMean 53
ExpSD 53
ExpVar 54
FastRowScale 54
FeaturePlot 55
FeatureScatter 58
FilterSlideSeq 59
FindAllMarkers 60
FindClusters 63
FindConservedMarkers 65
FindIntegrationAnchors 66
FindMarkers 69
FindMultiModalNeighbors 76
FindNeighbors 77
FindSpatiallyVariableFeatures 81
FindSubCluster 82
FindTransferAnchors 83
FindVariableFeatures 87
FoldChange 89
GetAssay 92
GetImage.SlideSeq 93
GetIntegrationData 93
GetResidual 94
GetTissueCoordinates.SlideSeq 95
GetTransferPredictions 96
Graph-class 97
GroupCorrelation 97
GroupCorrelationPlot 98
HoverLocator 98
HTODemux 99
HTOHeatmap 100
HVFInfo.SCTAssay 102
IFeaturePlot 103
IntegrateData 103
IntegrateEmbeddings 106
IntegrationAnchorSet-class 108
IntegrationData-class 109
ISpatialDimPlot 109
ISpatialFeaturePlot 110
JackStraw 110
JackStrawData-class 112
JackStrawPlot 112
L2CCA 113
L2Dim 114
LabelClusters 114
LabelPoints 115
LinkedPlots 116
Load10X_Spatial 118
LoadAnnoyIndex 119
LoadSTARmap 119
LocalStruct 120
LogNormalize 121
LogVMR 122
MappingScore 122
MapQuery 124
merge.SCTAssay 126
MetaFeature 126
MinMax 127
MixingMetric 128
MixscapeHeatmap 129
MixscapeLDA 131
ModalityWeights-class 132
MULTIseqDemux 133
Neighbor-class 134
NNPlot 134
NormalizeData 135
PCASigGenes 137
PercentAbove 138
PercentageFeatureSet 138
PlotClusterTree 139
PlotPerturbScore 140
PolyDimPlot 141
PolyFeaturePlot 142
PredictAssay 143
PrepLDA 144
PrepSCTFindMarkers 145
PrepSCTIntegration 146
ProjectDim 147
ProjectUMAP 148
Radius.SlideSeq 151
Read10X 151
Read10X_h5 152
Read10X_Image 153
ReadMtx 154
ReadParseBio 155
ReadSlideSeq 155
ReadSTARsolo 156
RegroupIdents 156
RelativeCounts 157
RenameCells.SCTAssay 158
RidgePlot 158
RunCCA 160
RunICA 162
RunLDA 163
RunMarkVario 165
RunMixscape 166
RunMoransI 167
RunPCA 168
RunSLSI 170
RunSPCA 171
RunTSNE 173
RunUMAP 175
SampleUMI 180
SaveAnnoyIndex 181
ScaleData 181
ScaleFactors 183
ScoreJackStraw 184
SCTAssay-class 185
SCTransform 187
SCTResults 189
SelectIntegrationFeatures 190
SetIntegrationData 191
SetQuantile 192
Seurat-class 192
SeuratCommand-class 193
SeuratTheme 193
SlideSeq-class 195
SpatialImage-class 195
SpatialPlot 196
SplitObject 199
STARmap-class 200
subset.AnchorSet 200
SubsetByBarcodeInflections 201
TopCells 202
TopFeatures 203
TopNeighbors 204
TransferAnchorSet-class 204
TransferData 204
UpdateSCTAssays 207
UpdateSymbolList 208
VariableFeaturePlot 209
VisiumV1-class 211
VizDimLoadings 211
VlnPlot 212
Index 214

Seurat-package
Seurat: Tools for Single Cell Genomics

Description

A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/j.cell.2015.05.002, Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031, and Hao, Hao, et al (2020) doi:10.1101/2020.10.12.335331 for more details.

Package options

Seurat uses the following [options()] to configure behaviour:
Seurat.memsafe global option to call gc() after many operations. This can be helpful in cleaning up the memory status of the R session and prevent use of swap space. However, it does add to the computational overhead and setting to FALSE can speed things up if you're working in an environment where RAM availability is not a concern.

Seurat.warn. umap. uwot Show warning about the default backend for RunUMAP changing from Python UMAP via reticulate to UWOT
Seurat.checkdots For functions that have ... as a parameter, this controls the behavior when an item isn't used. Can be one of warn, stop, or silent.
Seurat.limma.wilcox.msg Show message about more efficient Wilcoxon Rank Sum test available via the limma package

Seurat.Rfast2.msg Show message about more efficient Moran's I function available via the Rfast2 package

Seurat.warn.vlnplot.split Show message about changes to default behavior of split/multi violin plots

Author(s)

Maintainer: Paul Hoffman <seurat@nygenome. org> (ORCID)
Other contributors:

- Andrew Butler <abutler@nygenome . org> (ORCID) [contributor]
- Saket Choudhary <schoudhary@nygenome. org> (ORCID) [contributor]
- Charlotte Darby <cdarby@nygenome .org> (ORCID) [contributor]
- Jeff Farrell <jfarrell@g. harvard. edu> [contributor]
- Christoph Hafemeister <chafemeister@nygenome. org> (ORCID) [contributor]
- Yuhan Hao <yhao@nygenome. org> (ORCID) [contributor]
- Jaison Jain <jjain@nygenome. org> (ORCID) [contributor]
- Efthymia Papalexi epapalexi@nygenome.org (ORCID) [contributor]
- Patrick Roelli proelli@nygenome.org [contributor]
- Rahul Satija <rsatija@nygenome. org> (ORCID) [contributor]
- Karthik Shekhar kshekhar@berkeley.edu [contributor]
- Avi Srivastava <asrivastava@nygenome. org> (ORCID) [contributor]
- Tim Stuart tstuart@nygenome.org (ORCID) [contributor]
- Kristof Torkenczy (ORCID) [contributor]
- Shiwei Zheng <szheng@nygenome. org> (ORCID) [contributor]
- Satija Lab and Collaborators [funder]

See Also

Useful links:

- https://satijalab.org/seurat
- https://github.com/satijalab/seurat
- Report bugs at https://github.com/satijalab/seurat/issues

Description

Add mapping and prediction scores, UMAP embeddings, and imputed assay (if available) from Azimuth to an existing or new Seurat object

Usage

AddAzimuthResults(object $=$ NULL, filename)

Arguments

object	A Seurat object
filename	Path to Azimuth mapping scores file

Value

object with Azimuth results added

Examples

\#\# Not run:
object <- AddAzimuthResults(object, filename = "azimuth_results.Rds")
\#\# End(Not run)

AddAzimuthScores
 Add Azimuth Scores

Description

Add mapping and prediction scores from Azimuth to a Seurat object

Usage

AddAzimuthScores(object, filename)

Arguments

object
filename
A Seurat object
Path to Azimuth mapping scores file

Value

object with the mapping scores added

Examples

```
## Not run:
object <- AddAzimuthScores(object, filename = "azimuth_pred.tsv")
## End(Not run)
```

AddModuleScore \quad| Calculate module scores for feature expression programs in single |
| :--- |
| cells |

Description

Calculate the average expression levels of each program (cluster) on single cell level, subtracted by the aggregated expression of control feature sets. All analyzed features are binned based on averaged expression, and the control features are randomly selected from each bin.

Usage

```
    AddModuleScore(
        object,
        features,
        pool = NULL,
        nbin = 24,
        ctrl = 100,
        k = FALSE,
        assay = NULL,
        name = "Cluster",
        seed = 1,
        search = FALSE,
    ..
    )
```


Arguments

object features	Seurat object A list of vectors of features for expression programs; each entry should be a vector of feature names
pool	List of features to check expression levels against, defaults to rownames ($x=$ object)
nbin	Number of bins of aggregate expression levels for all analyzed features
ctrl	Number of control features selected from the same bin per analyzed feature

k	Use feature clusters returned from DoKMeans
assay	Name of assay to use
name	Name for the expression programs; will append a number to the end for each entry in features (eg. if features has three programs, the results will be stored as name1, name2, name3, respectively)
seed	Set a random seed. If NULL, seed is not set.
search	Search for symbol synonyms for features in features that don't match features in object? Searches the HGNC's gene names database; see UpdateSymbolList
	for more details
\ldots	Extra parameters passed to UpdateSymbolList

Value

Returns a Seurat object with module scores added to object meta data; each module is stored as name\# for each module program present in features

References

Tirosh et al, Science (2016)

Examples

```
## Not run:
data("pbmc_small")
cd_features <- list(c(
    'CD79B',
    'CD79A',
    'CD19',
    'CD180',
    'CD200',
    'CD3D',
    'CD2',
    'CD3E',
    'CD7',
    'CD8A',
    'CD14',
    'CD1C',
    'CD68',
    'CD9',
    'CD247'
))
pbmc_small <- AddModuleScore(
    object = pbmc_small,
    features = cd_features,
    ctrl = 5,
    name = 'CD_Features'
)
head(x = pbmc_small[])
## End(Not run)
```


Description

Returns aggregated (summed) expression values for each identity class

Usage

```
    AggregateExpression(
        object,
        assays = NULL,
        features = NULL,
        return.seurat = FALSE,
        group.by = "ident",
        add.ident = NULL,
        slot = "data",
        verbose = TRUE,
        ...
    )
```


Arguments

object	Seurat object
assays	Which assays to use. Default is all assays
features	Features to analyze. Default is all features in the assay
return. seurat	Whether to return the data as a Seurat object. Default is FALSE group.by add.ident
Categories for grouping (e.g, ident, replicate, celltype); 'ident' by default (Deprecated) Place an additional label on each cell prior to pseudobulking (very useful if you want to observe cluster pseudobulk values, separated by replicate, for example)	
slot	Slot(s) to use; if multiple slots are given, assumed to follow the order of 'assays' (if specified) or object's assays
verbose	Print messages and show progress bar Arguments to be passed to methods such as CreateSeuratObject\#'

Details

If slot is set to 'data', this function assumes that the data has been log normalized and therefore feature values are exponentiated prior to aggregating so that sum is done in non-log space. Otherwise, if slot is set to either 'counts' or 'scale.data', no exponentiation is performed prior to aggregating If return. seurat = TRUE and slot is not 'scale.data', aggregated values are placed in the 'counts' slot of the returned object and the log of aggregated values are placed in the 'data' slot. For the ScaleData is then run on the default assay before returning the object. If return. seurat = TRUE and slot is 'scale.data', the 'counts' slot is left empty, the 'data' slot is filled with NA, and 'scale.data' is set to the aggregated values.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
data("pbmc_small")
head(AggregateExpression(object = pbmc_small))
```

AnchorSet-class The AnchorSet Class

Description

The AnchorSet class is an intermediate data storage class that stores the anchors and other related information needed for performing downstream analyses - namely data integration (IntegrateData) and data transfer (TransferData).

Slots

object.list List of objects used to create anchors
reference.cells List of cell names in the reference dataset - needed when performing data transfer.
reference. objects Position of reference object/s in object.list
query.cells List of cell names in the query dataset - needed when performing data transfer
anchors The anchor matrix. This contains the cell indices of both anchor pair cells, the anchor score, and the index of the original dataset in the object.list for celll and cell2 of the anchor.
offsets The offsets used to enable cell look up in downstream functions
anchor.features The features used when performing anchor finding.
neighbors List containing Neighbor objects for reuse later (e.g. mapping)
command Store \log of parameters that were used

Description

Add info to anchor matrix

Usage

```
AnnotateAnchors(anchors, vars, slot, ...)
## Default S3 method:
AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    object.list,
    assay = NULL,
)
## S3 method for class 'IntegrationAnchorSet'
AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    object.list = NULL,
    assay = NULL,
    ...
)
    ## S3 method for class 'TransferAnchorSet'
    AnnotateAnchors(
    anchors,
    vars = NULL,
    slot = NULL,
    reference = NULL,
    query = NULL,
    assay = NULL,
    ...
)
```


Arguments

anchors	An AnchorSet object
vars	Variables to pull for each object via FetchData

slot	Slot to pull feature data for
\ldots	Arguments passed to other methods
object.list	List of Seurat objects
assay	Specify the Assay per object if annotating with expression data
reference	Reference object used in FindTransferAnchors
query	Query object used in FindTransferAnchors

Value

Returns the anchor dataframe with additional columns for annotation metadata

$$
\text { as.CellDataSet } \quad \text { Convert objects to CellDataSet objects }
$$

Description

Convert objects to CellDataSet objects

Usage

as.CellDataSet (x, ...)
\#\# S3 method for class 'Seurat'
as.CellDataSet (x, assay $=$ NULL, reduction $=$ NULL, \ldots)

Arguments

x
... Arguments passed to other methods
assay
reduction \quad Name of DimReduc to set to main reducedDim in cds
as.Seurat.CellDataSet Convert objects to Seurat objects

Description

Convert objects to Seurat objects

Usage

```
    ## S3 method for class 'CellDataSet'
    as.Seurat(x, slot = "counts", assay = "RNA", verbose = TRUE, ...)
    ## S3 method for class 'SingleCellExperiment'
    as.Seurat(
        x,
        counts = "counts",
        data = "logcounts",
        assay = NULL,
        project = "SingleCellExperiment",
    )
```


Arguments

x	An object to convert to class Seurat
slot	Slot to store expression data as
assay	Name of assays to convert; set to NULL for all assays to be converted
verbose	Show progress updates
\ldots	Arguments passed to other methods
counts	name of the SingleCellExperiment assay to store as counts; set to NULL if only normalized data are present
data	name of the SingleCellExperiment assay to slot as data. Set to NULL if only counts are present
project	Project name for new Seurat object

Value

A Seurat object generated from x

See Also

SeuratObject::as.Seurat
as.SingleCellExperiment
Convert objects to SingleCellExperiment objects

Description

Convert objects to SingleCellExperiment objects

Usage

```
as.SingleCellExperiment(x, ...)
## S3 method for class 'Seurat'
as.SingleCellExperiment(x, assay = NULL, ...)
```


Arguments

x
... Arguments passed to other methods
assay
Assays to convert

Description

Cast to Sparse

```
Usage
    ## S3 method for class 'H5Group'
    as.sparse(x, ...)
    ## S3 method for class 'Matrix'
    as.data.frame(
        x,
        row.names = NULL,
        optional = FALSE,
        ...,
        stringsAsFactors = getOption(x = "stringsAsFactors", default = FALSE)
    )
```


Arguments

x	An object
\ldots	Arguments passed to other methods
row. names	NULL or a character vector giving the row names for the data; missing values are not allowed
optional	logical. If TRUE, setting row names and converting column names (to syntac- tic names: see make.names) is optional. Note that all of R's base package as.data.frame() methods use optional only for column names treatment, ba- sically with the meaning of data.frame ($*$, check. names = !optional). See also the make. names argument of the matrix method.
stringsAsFactors	
	logical: should the character vector be converted to a factor?

Value

as.data.frame. Matrix: A data frame representation of the S4 Matrix

See Also
SeuratObject::as.sparse

```
Assay-class The Assay Class
```


Description

The Assay object is the basic unit of Seurat; for more details, please see the documentation in Seurat0bject

See Also

```
SeuratObject::Assay-class
```

AugmentPlot Augments ggplot2-based plot with a PNG image.

Description

Creates "vector-friendly" plots. Does this by saving a copy of the plot as a PNG file, then adding the PNG image with annotation_raster to a blank plot of the same dimensions as plot. Please note: original legends and axes will be lost during augmentation.

Usage

AugmentPlot(plot, width $=10$, height $=10$, dpi $=100$)

Arguments

plot	A ggplot object
width, height	Width and height of PNG version of plot
dpi	Plot resolution

Value

A ggplot object

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
AugmentPlot(plot = plot)
## End(Not run)
```

```
AutoPointSize
```

Automagically calculate a point size for ggplot2-based scatter plots

Description

It happens to look good

Usage

AutoPointSize(data, raster = NULL)

Arguments

data	A data frame being passed to ggplot2
raster	If TRUE, point size is set to 1

Value

The "optimal" point size for visualizing these data

Examples

```
df <- data.frame(x = rnorm(n = 10000), y = runif(n = 10000))
AutoPointSize(data = df)
```


Description

Returns averaged expression values for each identity class

Usage

```
    AverageExpression(
        object,
        assays = NULL,
        features = NULL,
        return.seurat = FALSE,
        group.by = "ident",
        add.ident = NULL,
        slot = "data",
        verbose = TRUE,
        ...
    )
```


Arguments

object	Seurat object
assays	Which assays to use. Default is all assays
features	Features to analyze. Default is all features in the assay return. seurat group.by add.ident
Whether to return the data as a Seurat object. Default is FALSE Categories for grouping (e.g, ident, replicate, celltype); 'ident' by default (Deprecated) Place an additional label on each cell prior to pseudobulking (very useful if you want to observe cluster pseudobulk values, separated by replicate, for example)	
slot	Slot(s) to use; if multiple slots are given, assumed to follow the order of 'assays' (if specified) or object's assays
verbose	Print messages and show progress bar Arguments to be passed to methods such as CreateSeuratObject

Details

If slot is set to 'data', this function assumes that the data has been log normalized and therefore feature values are exponentiated prior to averaging so that averaging is done in non-log space. Otherwise, if slot is set to either 'counts' or 'scale.data', no exponentiation is performed prior to averaging If return. seurat $=$ TRUE and slot is not 'scale.data', averaged values are placed in the 'counts' slot of the returned object and the log of averaged values are placed in the 'data' slot. ScaleData is then run on the default assay before returning the object. If return. seurat = TRUE and slot is 'scale.data', the 'counts' slot is left empty, the 'data' slot is filled with NA, and 'scale.data' is set to the aggregated values.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
data("pbmc_small")
head(AverageExpression(object = pbmc_small))
```

BarcodeInflectionsPlot
Plot the Barcode Distribution and Calculated Inflection Points

Description

This function plots the calculated inflection points derived from the barcode-rank distribution.

Usage

BarcodeInflectionsPlot(object)

Arguments

object Seurat object

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns a 'ggplot2' object showing the by-group inflection points and provided (or default) rank threshold values in grey.

Author(s)

Robert A. Amezquita, robert.amezquita@fredhutch.org

See Also

CalculateBarcodeInflections SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
BarcodeInflectionsPlot(pbmc_small)
```

```
BGTextColor Determine text color based on background color
```


Description

Determine text color based on background color

Usage

```
BGTextColor(
    background,
    threshold = 186,
    w3c = FALSE,
    dark = "black",
    light = "white"
)
```


Arguments

background	A vector of background colors; supports R color names and hexadecimal codes
threshold	Intensity threshold for light/dark cutoff; intensities greater than theshold yield dark, others yield light
w3c	Use W3C formula for calculating background text color; ignores threshold
dark	Color for dark text
light	Color for light text

Value

A named vector of either dark or light, depending on background; names of vector are background

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

```
BGTextColor(background = c('black', 'white', '#E76BF3'))
```


Description

Creates a custom color palette based on low, middle, and high color values

Usage

```
BlackAndWhite(mid = NULL, k = 50)
BlueAndRed(k = 50)
CustomPalette(low = "white", high = "red", mid = NULL, k = 50)
PurpleAndYellow(k = 50)
```


Arguments

mid	middle color. Optional.
k	number of steps (colors levels) to include between low and high values
low	low color
high	high color

Value

A color palette for plotting

Examples

```
df <- data.frame(x = rnorm(n = 100, mean = 20, sd=2), y = rbinom(n = 100, size = 100, prob=0.2))
plot(df, col = BlackAndWhite())
df <- data.frame(x = rnorm(n=100, mean = 20, sd=2), y=rbinom(n=100, size = 100, prob=0.2))
plot(df, col = BlueAndRed())
myPalette <- CustomPalette()
myPalette
```



```
plot(df, col = PurpleAndYellow())
```


Description

Constructs a phylogenetic tree relating the 'average' cell from each identity class. Tree is estimated based on a distance matrix constructed in either gene expression space or PCA space.

Usage

```
BuildClusterTree(
        object,
        assay = NULL,
        features = NULL,
        dims = NULL,
        reduction = "pca",
        graph = NULL,
        slot = "data",
        reorder = FALSE,
        reorder.numeric = FALSE,
        verbose = TRUE
    )
```


Arguments

object assay features	Seurat object Assay to use for the analysis. Genes to use for the analysis. Default is the set of variable genes (VariableFeatures (object $=$ object))
If set, tree is calculated in dimension reduction space; overrides features	
reduction	Name of dimension reduction to use. Only used if dims is not NULL.
graph	If graph is passed, build tree based on graph connectivity between clusters; over- rides dims and features
slot	Slot(s) to use; if multiple slots are given, assumed to follow the order of 'assays' (if specified) or object's assays
reorder	Re-order identity classes (factor ordering), according to position on the tree. This groups similar classes together which can be helpful, for example, when drawing violin plots.
reorder. numeric	
Re-order identity classes according to position on the tree, assigning a numeric	

Details

Note that the tree is calculated for an 'average' cell, so gene expression or PC scores are averaged across all cells in an identity class before the tree is constructed.

Value

A Seurat object where the cluster tree can be accessed with Tool

Examples

```
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    Tool(object = pbmc_small, slot = 'BuildClusterTree')
}
```

```
CalcPerturbSig Calculate a perturbation Signature
```


Description

Function to calculate perturbation signature for pooled CRISPR screen datasets. For each target cell (expressing one target gRNA), we identified 20 cells from the control pool (non-targeting cells) with the most similar mRNA expression profiles. The perturbation signature is calculated by subtracting the averaged mRNA expression profile of the non-targeting neighbors from the mRNA expression profile of the target cell.

Usage

```
CalcPerturbSig(
    object,
    assay = NULL,
    features = NULL,
    slot = "data",
    gd.class = "guide_ID",
    nt.cell.class = "NT",
    split.by = NULL,
    num.neighbors = NULL,
    reduction = "pca",
    ndims = 15,
    new.assay.name = "PRTB",
    verbose = TRUE
)
```


Arguments

object	An object of class Seurat.
assay	Name of Assay PRTB signature is being calculated on.
features	Features to compute PRTB signature for. Defaults to the variable features set in the assay specified.
slot	Data slot to use for PRTB signature calculation.
gd.class	Metadata column containing target gene classification.
nt.cell.class	Non-targeting gRNA cell classification identity.
split.by	Provide metadata column if multiple biological replicates exist to calculate PRTB signature for every replicate separately.
num.neighbors	Number of nearest neighbors to consider.
reduction	Reduction method used to calculate nearest neighbors.
ndims	Number of dimensions to use from dimensionality reduction method.
new.assay.name	Name for the new assay.
verbose	Display progress + messages

Value

Returns a Seurat object with a new assay added containing the perturbation signature for all cells in the data slot.

Description

This function calculates an adaptive inflection point ("knee") of the barcode distribution for each sample group. This is useful for determining a threshold for removing low-quality samples.

Usage

```
CalculateBarcodeInflections(
        object,
        barcode.column = "nCount_RNA",
        group.column = "orig.ident",
        threshold.low = NULL,
        threshold.high = NULL
    )
```


Arguments

object Seurat object
barcode.column Column to use as proxy for barcodes ("nCount_RNA" by default)
group.column Column to group by ("orig.ident" by default)
threshold.low Ignore barcodes of rank below this threshold in inflection calculation
threshold.high Ignore barcodes of rank above thisf threshold in inflection calculation

Details

The function operates by calculating the slope of the barcode number vs. rank distribution, and then finding the point at which the distribution changes most steeply (the "knee"). Of note, this calculation often must be restricted as to the range at which it performs, so 'threshold‘ parameters are provided to restrict the range of the calculation based on the rank of the barcodes. [BarcodeInflectionsPlot()] is provided as a convenience function to visualize and test different thresholds and thus provide more sensical end results.

See [BarcodeInflectionsPlot()] to visualize the calculated inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns Seurat object with a new list in the 'tools‘ slot, ‘CalculateBarcodeInflections' with values:

* 'barcode_distribution' - contains the full barcode distribution across the entire dataset * 'inflection_points' - the calculated inflection points within the thresholds * 'threshold_values' - the provided (or default) threshold values to search within for inflections * 'cells_pass' - the cells that pass the inflection point calculation

Author(s)

Robert A. Amezquita, robert.amezquita@fredhutch.org

See Also

BarcodeInflectionsPlot SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
```

CaseMatch Match the case of character vectors

Description

Match the case of character vectors

Usage

CaseMatch(search, match)

Arguments

search
match A vector of characters whose case should be matched

Value

Values from search present in match with the case of match

Examples

data("pbmc_small")
cd_genes <- c('Cd79b', 'Cd19', 'Cd200')
CaseMatch(search = cd_genes, match = rownames(x = pbmc_small))
cc.genes Cell cycle genes

Description

A list of genes used in cell-cycle regression

Usage

cc.genes

Format

A list of two vectors
s.genes Genes associated with S-phase
g2m.genes Genes associated with G2M-phase

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

Description

A list of genes used in cell-cycle regression, updated with 2019 symbols

Usage

cc.genes.updated. 2019

Format

A list of two vectors
s.genes Genes associated with S-phase
g2m.genes Genes associated with G2M-phase

Updated symbols

The following symbols were updated from cc.genes

```
s.genes - MCM2: MCM7
```

- MLFIIP: CENPU
- RPA2: POLR1B
- BRIP1: MRPL36
g2m.genes • FAM64A: PIMREG
- HN1: JPT1

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

See Also

cc.genes

Examples

```
## Not run:
cc.genes.updated.2019 <- cc.genes
cc.genes.updated.2019$s.genes <- UpdateSymbolList(symbols = cc.genes.updated. 2019$s.genes)
cc.genes.updated.2019$g2m.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019$g2m.genes)
## End(Not run)
```


Description

Score cell cycle phases

Usage

> CellCycleScoring(
object,
s.features,
g2m.features,
ctrl = NULL,
set.ident $=$ FALSE,
)

Arguments

object	A Seurat object
s.features	A vector of features associated with S phase
g2m.features	A vector of features associated with G2M phase
ctrl	Number of control features selected from the same bin per analyzed feature supplied to AddModuleScore. Defaults to value equivalent to minimum number of features present in 's.features' and 'g2m.features'.
set.ident	If true, sets identity to phase assignments Stashes old identities in 'old.ident',
\ldots	Arguments to be passed to AddModuleScore

Value

A Seurat object with the following columns added to object meta data: S.Score, G2M.Score, and Phase

See Also

```
AddModuleScore
```


Examples

```
## Not run:
data("pbmc_small")
# pbmc_small doesn't have any cell-cycle genes
# To run CellCycleScoring, please use a dataset with cell-cycle genes
# An example is available at http://satijalab.org/seurat/cell_cycle_vignette.html
pbmc_small <- CellCycleScoring(
    object = pbmc_small,
```

```
    g2m.features = cc.genes$g2m.genes,
    s.features = cc.genes$s.genes
)
head(x = pbmc_small@meta.data)
    ## End(Not run)
```

 Cells.SCTModel
 Get Cell Names

Description

Get Cell Names

Usage

```
## S3 method for class 'SCTModel'
Cells(x, ...)
## S3 method for class 'SlideSeq'
Cells(x, ...)
    ## S3 method for class 'STARmap'
    Cells(x, ...)
    ## S3 method for class 'VisiumV1'
    Cells(x, ...)
```


Arguments

x
An object
...
Arguments passed to other methods

See Also

SeuratObject::Cells

Description

Get a vector of cell names associated with an image (or set of images)

Usage

CellsByImage(object, images $=$ NULL, unlist $=$ FALSE)

Arguments

object Seurat object
images Vector of image names
unlist Return as a single vector of cell names as opposed to a list, named by image name.

Value

A vector of cell names

Examples

\#\# Not run:
CellsByImage(object $=$ object, images = "slice1")
\#\# End(Not run)
CellScatter Cell-cell scatter plot

Description

Creates a plot of scatter plot of features across two single cells. Pearson correlation between the two cells is displayed above the plot.

Usage

```
CellScatter(
    object,
    cell1,
    cell2,
    features = NULL,
    highlight = NULL,
    cols = NULL,
    pt.size = 1,
    smooth = FALSE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
```


Arguments

object	Seurat object
cell1	Cell 1 name
cell2	Cell 2 name
features	Features to plot (default, all features)
highlight	Features to highlight
cols	Colors to use for identity class plotting.
pt.size	Size of the points on the plot
smooth	Smooth the graph (similar to smoothScatter)
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

A ggplot object

Examples

```
data("pbmc_small")
CellScatter(object = pbmc_small, cell1 = 'ATAGGAGAAACAGA', cell2 = 'CATCAGGATGCACA')
```

| CellSelector \quad Cell Selector |
| :--- | :--- |

Description

Select points on a scatterplot and get information about them

Usage

```
CellSelector (plot, object = NULL, ident = "SelectedCells", ...)
```

 FeatureLocator(plot, ...)

Arguments

plot	A ggplot2 plot
object	An optional Seurat object; if passes, will return an object with the identities of selected cells set to ident
ident	An optional new identity class to assign the selected cells
\ldots	Ignored

Value

If object is NULL, the names of the points selected; otherwise, a Seurat object with the selected cells identity classes set to ident

See Also

DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
# Follow instructions in the terminal to select points
cells.located <- CellSelector(plot = plot)
cells.located
# Automatically set the identity class of selected cells and return a new Seurat object
pbmc_small <- CellSelector(plot = plot, object = pbmc_small, ident = 'SelectedCells')
## End(Not run)
```

CollapseEmbeddingOutliers
Move outliers towards center on dimension reduction plot

Description

Move outliers towards center on dimension reduction plot

Usage

```
CollapseEmbeddingOutliers(
        object,
        reduction = "umap",
        dims = 1:2,
        group.by = "ident",
        outlier.sd = 2,
        reduction.key = "UMAP_"
)
```


Arguments

object	Seurat object
reduction	Name of DimReduc to adjust
dims	Dimensions to visualize
group.by	Group (color) cells in different ways (for example, orig.ident)
outlier.sd	Controls the outlier distance
reduction.key	Key for DimReduc that is returned

Value

Returns a DimReduc object with the modified embeddings

Examples

```
## Not run:
data("pbmc_small")
pbmc_small <- FindClusters(pbmc_small, resolution = 1.1)
pbmc_small <- RunUMAP(pbmc_small, dims = 1:5)
DimPlot(pbmc_small, reduction = "umap")
pbmc_small[["umap_new"]] <- CollapseEmbeddingOutliers(pbmc_small,
        reduction = "umap", reduction.key = 'umap_', outlier.sd = 0.5)
    DimPlot(pbmc_small, reduction = "umap_new")
    ## End(Not run)
```

CollapseSpeciesExpressionMatrix
Slim down a multi-species expression matrix, when only one species is primarily of interenst.

Description

Valuable for CITE-seq analyses, where we typically spike in rare populations of 'negative control' cells from a different species.

Usage

```
    CollapseSpeciesExpressionMatrix(
        object,
        prefix = "HUMAN_",
        controls = "MOUSE_",
        ncontrols = 100
    )
```


Arguments

object A UMI count matrix. Should contain rownames that start with the ensuing arguments prefix. 1 or prefix. 2
prefix The prefix denoting rownames for the species of interest. Default is "HUMAN_". These rownames will have this prefix removed in the returned matrix.
controls The prefix denoting rownames for the species of 'negative control' cells. Default is "MOUSE_".
ncontrols How many of the most highly expressed (average) negative control features (by default, 100 mouse genes), should be kept? All other rownames starting with prefix. 2 are discarded.

Value

A UMI count matrix. Rownames that started with prefix have this prefix discarded. For rownames starting with controls, only the ncontrols most highly expressed features are kept, and the prefix is kept. All other rows are retained.

Examples

```
## Not run:
cbmc.rna.collapsed <- CollapseSpeciesExpressionMatrix(cbmc.rna)
## End(Not run)
```


Description

Returns a DimPlot colored based on whether the cells fall in clusters to the left or to the right of a node split in the cluster tree.

Usage

ColorDimSplit(
object,
node,
left.color = "red",
right.color = "blue",
other.color = "grey50",
)

Arguments

object	Seurat object
node	Node in cluster tree on which to base the split
left.color	Color for the left side of the split
right.color	Color for the right side of the split
other.color	Color for all other cells
\ldots	Arguments passed on to DimPlot

dims Dimensions to plot, must be a two-length numeric vector specifying xand y-dimensions
cells Vector of cells to plot (default is all cells)
cols Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
pt.size Adjust point size for plotting
reduction Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
group. by Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split. by Name of a metadata column to split plot by; see FetchData for more details
shape.by If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster $=$ FALSE.
order Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
shuffle Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed Sets the seed if randomly shuffling the order of points.
label Whether to label the clusters
label.size Sets size of labels
label.color Sets the color of the label text
label. box Whether to put a box around the label text (geom_text vs geom_label)
repel Repel labels
cells.highlight A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight and other cells black (white if dark.theme $=$ TRUE); will also resize to the size(s) passed to sizes.highlight
cols.highlight A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight
sizes.highlight Size of highlighted cells; will repeat to the length groups in cells.highlight
na. value Color value for NA points when using custom scale
ncol Number of columns for display when combining plots
combine Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
raster Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $\mathrm{c}(512,512)$.

Value

Returns a DimPlot

See Also

```
DimPlot
```


Examples

```
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small <- BuildClusterTree(object = pbmc_small, verbose = FALSE)
    PlotClusterTree(pbmc_small)
    ColorDimSplit(pbmc_small, node = 5)
}
```


CombinePlots Combine ggplot2-based plots into a single plot

Description

Combine ggplot2-based plots into a single plot

Usage

CombinePlots(plots, ncol $=$ NULL, legend $=$ NULL, ...)

Arguments

plots	A list of gg objects
ncol	Number of columns
legend	Combine legends into a single legend choose from 'right' or 'bottom'; pass 'none' to remove legends, or NULL to leave legends as they are
\ldots	Extra parameters passed to plot_grid

Value

A combined plot

Examples

```
data("pbmc_small")
pbmc_small[['group']] <- sample(
    x = c('g1', 'g2'),
    size = ncol(x = pbmc_small),
    replace = TRUE
)
plot1 <- FeaturePlot(
    object = pbmc_small,
    features = 'MS4A1',
    split.by = 'group'
)
plot2 <- FeaturePlot(
    object = pbmc_small,
    features = 'FCN1',
    split.by = 'group'
)
CombinePlots(
    plots = list(plot1, plot2),
    legend = 'none',
    nrow = length(x = unique(x = pbmc_small[['group', drop = TRUE]]))
)
```

```
contrast-theory Get the intensity and/or luminance of a color
```


Description

Get the intensity and/or luminance of a color

Usage

Intensity(color)
Luminance(color)

Arguments

color
A vector of colors

Value

A vector of intensities/luminances for each color

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

```
Intensity(color = c('black', 'white', '#E76BF3'))
Luminance(color = c('black', 'white', '#E76BF3'))
```


Description

Create a SCT object from a feature (e.g. gene) expression matrix and a list of SCTModels. The expected format of the input matrix is features x cells.

Usage

```
CreateSCTAssayObject(
    counts,
    data,
    scale.data = NULL,
    umi.assay = "RNA",
    min.cells = 0,
    min.features = 0,
    SCTModel.list = NULL
)
```


Arguments

counts	Unnormalized data such as raw counts or TPMs
data	Prenormalized data; if provided, do not pass counts
scale.data	a residual matrix
umi.assay	The UMI assay name. Default is RNA
min.cells	Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff.
min.features	Include cells where at least this many features are detected.
SCTModel.list	list of SCTModels

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.

Description

Run a custom distance function on an input data matrix

Usage

CustomDistance(my.mat, my.function, ...)

Arguments

my.mat	A matrix to calculate distance on
my. function	A function to calculate distance
	Extra parameters to my function

Value

A distance matrix

Author(s)

Jean Fan

Examples

```
data("pbmc_small")
# Define custom distance matrix
manhattan.distance <- function(x, y) return(sum(abs(x-y)))
input.data <- GetAssayData(pbmc_small, assay.type = "RNA", slot = "scale.data")
cell.manhattan.dist <- CustomDistance(input.data, manhattan.distance)
```

DEenrichRPlot DE and EnrichR pathway visualization barplot

Description

DE and EnrichR pathway visualization barplot

Usage

```
DEenrichRPlot(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    balanced = TRUE,
    logfc.threshold = 0.25,
    assay = NULL,
    max.genes,
    test.use = "wilcox",
    p.val.cutoff = 0.05,
    cols = NULL,
    enrich.database = NULL,
    num.pathway = 10,
    return.gene.list = FALSE,
)
```


Arguments

object	Name of object class Seurat.
ident. 1	Cell class identity 1.
ident. 2	Cell class identity 2.
balanced	Option to display pathway enrichments for both negative and positive DE genes.If false, only positive DE gene will be displayed.
logfc.threshold	

Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.
assay Assay to use in differential expression testing
max.genes Maximum number of genes to use as input to enrichR.
test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- " t " : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support pre-
filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L

p.val.cutoff Cutoff to select DE genes.
 cols A list of colors to use for barplots.

enrich.database
Database to use from enrichR.
num. pathway Number of pathways to display in barplot.
return.gene.list
Return list of DE genes
... Arguments passed to other methods and to specific DE methods

Value

Returns one (only enriched) or two (both enriched and depleted) barplots with the top enriched/depleted GO terms from EnrichR.

```
DietSeurat Slim down a Seurat object
```


Description

Keep only certain aspects of the Seurat object. Can be useful in functions that utilize merge as it reduces the amount of data in the merge.

Usage

DietSeurat (object, counts = TRUE, data = TRUE, scale.data = FALSE, features = NULL, assays = NULL, dimreducs = NULL, graphs = NULL, misc = TRUE
)

Arguments

object	Seurat object
counts	Preserve the count matrices for the assays specified
data	Preserve the data slot for the assays specified

scale. data	Preserve the scale.data slot for the assays specified
features	Only keep a subset of features, defaults to all features
assays	Only keep a subset of assays specified here
dimreducs	Only keep a subset of DimReducs specified here (if NULL, remove all DimRe- ducs)
graphs	Only keep a subset of Graphs specified here (if NULL, remove all Graphs) misc
Preserve the misc slot; default is TRUE	

DimHeatmap Dimensional reduction heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset.

Usage

```
    DimHeatmap(
        object,
        dims = 1,
        nfeatures \(=30\),
        cells = NULL,
        reduction = "pca",
        disp.min \(=-2.5\),
        disp.max \(=\) NULL,
        balanced = TRUE,
        projected = FALSE,
        ncol = NULL,
        fast = TRUE,
        raster = TRUE,
        slot = "scale.data",
        assays = NULL,
        combine = TRUE
    )
```

 PCHeatmap(object, ...)

Arguments

object	Seurat object
dims	Dimensions to plot
nfeatures	Number of genes to plot
cells	A list of cells to plot. If numeric, just plots the top cells.

reduction	Which dimensional reduction to use
disp.min	Minimum display value (all values below are clipped)
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise
balanced	Plot an equal number of genes with both + and - scores.
projected	Use the full projected dimensional reduction
ncol	Number of columns to plot
fast	If true, use image to generate plots; faster than using ggplot2, but not customizable
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
slot	Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
assays	A vector of assays to pull data from
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
	Extra parameters passed to DimHeatmap

Value

No return value by default. If using fast $=$ FALSE, will return a patchworked ggplot object if combine $=$ TRUE, otherwise returns a list of ggplot objects

See Also

image geom_raster

Examples

```
    data("pbmc_small")
```

DimHeatmap(object = pbmc_small)
DimPlot Dimensional reduction plot

Description

Graphs the output of a dimensional reduction technique on a 2 D scatter plot where each point is a cell and it's positioned based on the cell embeddings determined by the reduction technique. By default, cells are colored by their identity class (can be changed with the group.by parameter).

Usage

```
DimPlot(
    object,
    dims = c(1, 2),
    cells = NULL,
    cols = NULL,
    pt.size = NULL,
    reduction = NULL,
    group.by = NULL,
    split.by = NULL,
    shape.by = NULL,
    order = NULL,
    shuffle = FALSE,
    seed = 1,
    label = FALSE,
    label.size = 4,
    label.color = "black",
    label.box = FALSE,
    repel = FALSE,
    cells.highlight = NULL,
    cols.highlight = "#DE2D26",
    sizes.highlight = 1,
    na.value = "grey50",
    ncol = NULL,
    combine = TRUE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
PCAPlot(object, ...)
TSNEPlot(object, ...)
UMAPPlot(object, ...)
```


Arguments

object Seurat object
dims Dimensions to plot, must be a two-length numeric vector specifying x - and y dimensions
cells Vector of cells to plot (default is all cells)
cols Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
pt.size Adjust point size for plotting

reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	Name of a metadata column to split plot by; see FetchData for more details
shape.by	If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.
order	Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
shuffle	Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed	Sets the seed if randomly shuffling the order of points.
label	Whether to label the clusters
label.size	Sets size of labels
label.color	
Sets the color of the label text	

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note

For the old do. hover and do. identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

FeaturePlot HoverLocator CellSelector FetchData

Examples

```
data("pbmc_small")
DimPlot(object = pbmc_small)
DimPlot(object = pbmc_small, split.by = 'ident')
```

DimReduc-class The DimReduc Class

Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; for more details, please see the documentation in SeuratObject

See Also

```
SeuratObject::DimReduc-class
```

```
DiscretePalette Discrete colour palettes from the pals package
```


Description

These are included here because pals depends on a number of compiled packages, and this can lead to increases in run time for Travis, and generally should be avoided when possible.

Usage

DiscretePalette(n, palette = NULL)

Arguments

$\mathrm{n} \quad$ Number of colours to be generated.
palette Options are "alphabet", "alphabet2", "glasbey", "polychrome", and "stepped". Can be omitted and the function will use the one based on the requested n.

Details

These palettes are a much better default for data with many classes than the default ggplot2 palette. Many thanks to Kevin Wright for writing the pals package.
Taken from the pals package (Licence: GPL-3). https://cran.r-project.org/package=pals Credit: Kevin Wright

Value

A vector of colors
DoHeatmap Feature expression heatmap

Description

Draws a heatmap of single cell feature expression.

Usage

```
    DoHeatmap(
        object,
        features = NULL,
        cells = NULL,
        group.by = "ident",
        group.bar = TRUE,
        group.colors = NULL,
        disp.min = -2.5,
        disp.max = NULL,
        slot = "scale.data",
        assay = NULL,
        label = TRUE,
        size = 5.5,
        hjust = 0,
        angle = 45,
        raster = TRUE,
        draw.lines = TRUE,
        lines.width = NULL,
        group.bar.height = 0.02,
        combine = TRUE
    )
```


Arguments

object	Seurat object
features	A vector of features to plot, defaults to VariableFeatures (object = object)
cells	A vector of cells to plot

group.by	A vector of variables to group cells by; pass 'ident' to group by cell identity classes
group.bar	Add a color bar showing group status for cells
group.colors	Colors to use for the color bar
disp.min	Minimum display value (all values below are clipped)
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise
slot	Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
assay	Assay to pull from
label	Label the cell identies above the color bar
size	Size of text above color bar
hjust	Horizontal justification of text above color bar
angle	Angle of text above color bar
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
draw.lines	Include white lines to separate the groups
lines.width	Integer number to adjust the width of the separating white lines. Corresponds to the number of "cells" between each group.
group.bar.height	
	Scale the height of the color bar
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
```

DoHeatmap (object = pbmc_small)
DotPlot Dot plot visualization

Description

Intuitive way of visualizing how feature expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level across all cells within a class (blue is high).

Usage

```
DotPlot(
    object,
    assay = NULL,
    features,
    cols = c("lightgrey", "blue"),
    col.min = -2.5,
    col.max = 2.5,
    dot.min = 0,
    dot.scale = 6,
    idents = NULL,
    group.by = NULL,
    split.by = NULL,
    cluster.idents = FALSE,
    scale = TRUE,
    scale.by = "radius",
    scale.min = NA,
    scale.max = NA
)
```


Arguments

object			
assay			
features	Seurat object Name of assay to use, defaults to the active assay Input vector of features, or named list of feature vectors if feature-grouped pan- els are desired (replicates the functionality of the old SplitDotPlotGG) Colors to plot: the name of a palette from RColorBrewer: :brewer. pal. info, a pair of colors defining a gradient, or 3+ colors defining multiple gradients (if split.by is set) Minimum scaled average expression threshold (everything smaller will be set to this)		
cols	Maximum scaled average expression threshold (everything larger will be set to this)		
col.max	The fraction of cells at which to draw the smallest dot (default is 0). All cell groups with less than this expressing the given gene will have no dot drawn.		
dot.min	Scale the size of the points, similar to cex		
dot.scale	Identity classes to include in plot (default is all)		
idents	Factor to group the cells by group.by split.by		
Factor to split the groups by (replicates the functionality of the old SplitDot- PlotGG); see FetchData for more details			
cluster.idents			Whether to order identities by hierarchical clusters based on given features, de-
:---			
fault is FALSE			

Value

A ggplot object

See Also

RColorBrewer::brewer.pal.info

Examples

```
data("pbmc_small")
cd_genes <- c("CD247", "CD3E", "CD9")
DotPlot(object = pbmc_small, features = cd_genes)
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
DotPlot(object = pbmc_small, features = cd_genes, split.by = 'groups')
```


Description

Plots the standard deviations (or approximate singular values if running PCAFast) of the principle components for easy identification of an elbow in the graph. This elbow often corresponds well with the significant dims and is much faster to run than Jackstraw

Usage

ElbowPlot(object, ndims = 20, reduction = "pca")

Arguments

object	Seurat object
ndims	Number of dimensions to plot standard deviation for
reduction	Reduction technique to plot standard deviation for

Value

A ggplot object

Examples

```
data("pbmc_small")
ElbowPlot(object = pbmc_small)
```

ExpMean \quad Calculate the mean of logged values

Description

Calculate mean of logged values in non-log space (return answer in log-space)

Usage

ExpMean (x, ...)

Arguments

x
A vector of values
$\ldots \quad$ Other arguments (not used)

Value

Returns the mean in log-space

Examples

ExpMean $(x=c(1,2,3))$

ExpSD Calculate the standard deviation of logged values

Description

Calculate SD of logged values in non-log space (return answer in log-space)

Usage

$\operatorname{ExpSD}(x)$

Arguments

x
A vector of values

Value

Returns the standard deviation in log-space

Examples

$\operatorname{ExpSD}(x=c(1,2,3))$

Description

Calculate variance of logged values in non-log space (return answer in log-space)

Usage

ExpVar (x)

Arguments

x
A vector of values

Value

Returns the variance in log-space

Examples

$\operatorname{Exp} \operatorname{Var}(x=c(1,2,3))$
FastRowScale Scale and/or center matrix rowwise

Description

Performs row scaling and/or centering. Equivalent to using $t(\operatorname{scale}(t(m a t)))$ in R except in the case of NA values.

Usage

FastRowScale(mat, center = TRUE, scale = TRUE, scale_max = 10)

Arguments

mat A matrix
center a logical value indicating whether to center the rows
scale a logical value indicating whether to scale the rows
scale_max clip all values greater than scale_max to scale_max. Don't clip if Inf.

Value

Returns the center/scaled matrix
FeaturePlot Visualize 'features' on a dimensional reduction plot

Description

Colors single cells on a dimensional reduction plot according to a 'feature' (i.e. gene expression, PC scores, number of genes detected, etc.)

Usage

```
FeaturePlot(
        object,
        features,
        dims = c(1, 2),
        cells = NULL,
        cols = if (blend) { c("lightgrey", "#ff0000", "#00ff00") } else {
        c("lightgrey", "blue") },
    pt.size = NULL,
    order = FALSE,
    min.cutoff = NA,
    max.cutoff = NA,
    reduction = NULL,
    split.by = NULL,
    keep.scale = "feature",
    shape.by = NULL,
    slot = "data",
    blend = FALSE,
    blend.threshold = 0.5,
    label = FALSE,
    label.size = 4,
    label.color = "black",
    repel = FALSE,
    ncol = NULL,
    coord.fixed = FALSE,
    by.col = TRUE,
    sort.cell = NULL,
    interactive = FALSE,
    combine = TRUE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
```


Arguments

object Seurat object
features Vector of features to plot. Features can come from:

	- An Assay feature (e.g. a gene name - "MS4A1") - A column name from meta.data (e.g. mitochondrial percentage - "percent.mito") - A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
dims	Dimensions to plot, must be a two-length numeric vector specifying x - and y dimensions
cells	Vector of cells to plot (default is all cells)
cols	The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors: 1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression 2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives 3+ colors: First color used for double-negatives, colors 2 and 3 used for perfeature expression, all others ignored
pt.size	Adjust point size for plotting
order	Boolean determining whether to plot cells in order of expression. Can be useful if cells expressing given feature are getting buried.
min.cutoff, max.cutoff	
	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q \# \#$ ' where ' $\# \#$ ' is the quantile (eg, ' ql ', ' q 10 ')
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
split.by	A factor in object metadata to split the feature plot by, pass 'ident' to split by cell identity'; similar to the old FeatureHeatmap
keep.scale	How to handle the color scale across multiple plots. Options are: - "feature" (default; by row/feature scaling): The plots for each individual feature are scaled to the maximum expression of the feature across the conditions provided to 'split.by'. - "all" (universal scaling): The plots for all features and conditions are scaled to the maximum expression value for the feature with the highest overall expression. - NULL (no scaling): Each individual plot is scaled to the maximum expression value of the feature in the condition provided to 'split.by'. Be aware setting NULL will result in color scales that are not comparable between plots.
shape.by	If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster $=$ FALSE.
slot	Which slot to pull expression data from?

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note

For the old do. hover and do. identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

DimPlot HoverLocator CellSelector

Examples

```
data("pbmc_small")
FeaturePlot(object = pbmc_small, features = 'PC_1')
```


Description

Creates a scatter plot of two features (typically feature expression), across a set of single cells. Cells are colored by their identity class. Pearson correlation between the two features is displayed above the plot.

Usage

FeatureScatter (object,
feature1,
feature2,
cells = NULL,
shuffle = FALSE,
seed $=1$,
group.by = NULL,
cols = NULL,
pt.size = 1,
shape.by = NULL,
span = NULL,
smooth = FALSE,
combine = TRUE,
slot = "data",
plot.cor = TRUE,
raster = NULL,
raster.dpi $=c(512,512)$,
jitter = FALSE
)

Arguments

object	Seurat object
feature1	First feature to plot. Typically feature expression but can also be metrics, PC scores, etc. - anything that can be retreived with FetchData
feature2	Second feature to plot. cells
Chuffle	Cells to include on the scatter plot. Whether to randomly shuffle the order of points. This can be useful for crowded
seed	Sets the seed if randomly shuffling the order of points. group.by
Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class	
cols	Colors to use for identity class plotting.

pt.size	Size of the points on the plot
shape.by	Ignored for now
span	Spline span in loess function call, if NULL, no spline added smooth
Smooth the graph (similar to smoothScatter)	
combine	Combine plots into a single patchworked
plot.cor	Slot to pull data from, should be one of 'counts', 'data', or 'scale.data'
raster	Display correlation in plot title
raster.dpi	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is	
c(512, 512).	

Value

A ggplot object

Examples

```
data("pbmc_small")
FeatureScatter(object = pbmc_small, feature1 = 'CD9', feature2 = 'CD3E')
```

FilterSlideSeq Filter stray beads from Slide-seq puck

Description

This function is useful for removing stray beads that fall outside the main Slide-seq puck area. Essentially, it's a circular filter where you set a center and radius defining a circle of beads to keep. If the center is not set, it will be estimated from the bead coordinates (removing the 1st and 99th quantile to avoid skewing the center by the stray beads). By default, this function will display a SpatialDimPlot showing which cells were removed for easy adjustment of the center and/or radius.

Usage

```
FilterSlideSeq(
    object,
    image = "image",
    center = NULL,
    radius = NULL,
    do.plot = TRUE
)
```


Arguments

object	Seurat object with slide-seq data
image	Name of the image where the coordinates are stored
center	Vector specifying the x and y coordinates for the center of the inclusion circle
radius	Radius of the circle of inclusion
do.plot	Display a SpatialDimPlot with the cells being removed labeled.

Value

Returns a Seurat object with only the subset of cells that pass the circular filter

Examples

```
## Not run:
# This example uses the ssHippo dataset which you can download
# using the SeuratData package.
library(SeuratData)
data('ssHippo')
# perform filtering of beads
ssHippo.filtered <- FilterSlideSeq(ssHippo, radius = 2300)
    # This radius looks to small so increase and repeat until satisfied
    ## End(Not run)
```

FindAllMarkers Gene expression markers for all identity classes

Description

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

Usage

```
FindAllMarkers(
    object,
    assay = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    slot = "data",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    node = NULL,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
```

```
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
    return.thresh = 0.01,
    densify = FALSE,
)
```


Arguments

object	An object
assay	Assay to use in differential expression testing
features	Genes to test. Default is to use all genes
logfc.threshold	

Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.
test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group
membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq 2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/I

slot	Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DE- Seq2", slot will be set to "counts"
min.pct	only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.1
min.diff.pct	only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
node	A node to find markers for and all its children; requires BuildClusterTree to have been run previously; replaces FindAllMarkersNode
verbose	Print a progress bar once expression testing begins
only.pos	Only return positive markers (FALSE by default)
max.cells.per. ident	
Down sample each identity class to a max number. Default is no downsampling.	

min.cells.feature
Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.group
Minimum number of cells in one of the groups
pseudocount.use
Pseudocount to add to averaged expression values when calculating logFC. 1 by default.
mean. fxn Function to use for fold change or average difference calculation. If NULL, the appropriate function will be chose according to the slot used
fc.name Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base The base with respect to which logarithms are computed.

```
return.thresh Only return markers that have a p-value < return.thresh, or a power > return.thresh (if the test is ROC)
densify Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
... Arguments passed to other methods and to specific DE methods
```


Value

Matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score, etc.)

Examples

```
data("pbmc_small")
# Find markers for all clusters
all.markers <- FindAllMarkers(object = pbmc_small)
head(x = all.markers)
## Not run:
# Pass a value to node as a replacement for FindAllMarkersNode
pbmc_small <- BuildClusterTree(object = pbmc_small)
all.markers <- FindAllMarkers(object = pbmc_small, node = 4)
head(x = all.markers)
## End(Not run)
```


Description

Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. Thanks to Nigel Delaney (evolvedmicrobe@ github) for the rewrite of the Java modularity optimizer code in Rcpp!

Usage

```
FindClusters(object, ...)
## Default S3 method:
FindClusters(
    object,
    modularity.fxn = 1,
    initial.membership = NULL,
    node.sizes = NULL,
    resolution = 0.8,
```

```
    method = "matrix",
    algorithm = 1,
    n.start = 10,
    n.iter = 10,
    random.seed = 0,
    group.singletons = TRUE,
    temp.file.location = NULL,
    edge.file.name = NULL,
    verbose = TRUE,
)
## S3 method for class 'Seurat'
FindClusters(
    object,
    graph.name = NULL,
    modularity.fxn = 1,
    initial.membership = NULL,
    node.sizes = NULL,
    resolution = 0.8,
    method = "matrix",
    algorithm = 1,
    n.start = 10,
    n.iter = 10,
    random.seed = 0,
    group.singletons = TRUE,
    temp.file.location = NULL,
    edge.file.name = NULL,
    verbose = TRUE,
)
```


Arguments

object	An object
\ldots	Arguments passed to other methods
modularity.fxn	
initial.membership, node.sizes	
Parameters to pass to the Python leidenalg function.	
resolution	Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. Method for running leiden (defaults to matrix which is fast for small datasets).
method	Enable method = "igraph" to avoid casting large data to a dense matrix. Algorithm for modularity optimization $(1=$ original Louvain algorithm; $2=$
algorithm	Louvain algorithm with multilevel refinement; $3=$ SLM algorithm; $4=$ Leiden algorithm). Leiden requires the leidenalg python.
n.start	Number of random starts.

```
n.iter Maximal number of iterations per random start.
random.seed Seed of the random number generator.
group.singletons
    Group singletons into nearest cluster. If FALSE, assign all singletons to a "sin-
    gleton" group
temp.file.location
    Directory where intermediate files will be written. Specify the ABSOLUTE
    path.
edge.file.name Edge file to use as input for modularity optimizer jar.
verbose Print output
graph.name Name of graph to use for the clustering algorithm
```


Details

To run Leiden algorithm, you must first install the leidenalg python package (e.g. via pip install leidenalg), see Traag et al (2018).

Value

Returns a Seurat object where the idents have been updated with new cluster info; latest clustering results will be stored in object metadata under 'seurat_clusters'. Note that 'seurat_clusters' will be overwritten everytime FindClusters is run

FindConservedMarkers Finds markers that are conserved between the groups

Description

Finds markers that are conserved between the groups

Usage

```
FindConservedMarkers(
    object,
    ident.1,
    ident.2 = NULL,
    grouping.var,
    assay = "RNA",
    slot = "data",
    min.cells.group = 3,
    meta.method = metap::minimump,
    verbose = TRUE,
)
```


Arguments

object	An object
ident. 1	Identity class to define markers for
ident. 2	A second identity class for comparison. If NULL (default) - use all other cells for comparison.
grouping.var	grouping variable
assay	of assay to fetch data for (default is RNA)
slot	Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
min.cells.group	
	Minimum number of cells in one of the groups
meta.method	method for combining p-values. Should be a function from the metap package (NOTE: pass the function, not a string)
verbose	Print a progress bar once expression testing begins
	parameters to pass to FindMarkers

Value

data.frame containing a ranked list of putative conserved markers, and associated statistics (p-values within each group and a combined p-value (such as Fishers combined p-value or others from the metap package), percentage of cells expressing the marker, average differences). Name of group is appended to each associated output column (e.g. CTRL_p_val). If only one group is tested in the grouping.var, max and combined p-values are not returned.

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
# Create a simulated grouping variable
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
FindConservedMarkers(pbmc_small, ident.1 = 0, ident.2 = 1, grouping.var = "groups")
## End(Not run)
```

FindIntegrationAnchors
Find integration anchors

Description

Find a set of anchors between a list of Seurat objects. These anchors can later be used to integrate the objects using the IntegrateData function.

Usage

```
FindIntegrationAnchors(
    object.list = NULL,
    assay = NULL,
    reference = NULL,
    anchor.features = 2000,
    scale = TRUE,
    normalization.method = c("LogNormalize", "SCT"),
    sct.clip.range \(=\) NULL,
    reduction = c("cca", "rpca", "rlsi"),
    12. norm = TRUE,
    dims = 1:30,
    k.anchor \(=5\),
    k.filter \(=200\),
    k.score \(=30\),
    max. features \(=200\),
    nn.method = "annoy",
    n.trees \(=50\),
    eps = 0,
    verbose = TRUE
)
```


Arguments

object.list A list of Seurat objects between which to find anchors for downstream integration.
assay A vector of assay names specifying which assay to use when constructing anchors. If NULL, the current default assay for each object is used.
reference A vector specifying the object/s to be used as a reference during integration. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object. list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.
anchor.features
Can be either:

- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process
scale Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list
normalization.method
Name of normalization method used: LogNormalize or SCT
sct.clip. range Numeric of length two specifying the min and max values the Pearson residual will be clipped to
reduction Dimensional reduction to perform when finding anchors. Can be one of:
- cca: Canonical correlation analysis
- rpca: Reciprocal PCA
- rlsi: Reciprocal LSI

l2. norm	Perform L2 normalization on the CCA cell embeddings after dimensional re- duction
dims	Which dimensions to use from the CCA to specify the neighbor search space
k.anchor	How many neighbors (k) to use when picking anchors
k.filter	How many neighbors (k) to use when filtering anchors
k.score	How many neighbors (k) to use when scoring anchors
max.features	The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
nn.method	Method for nearest neighbor finding. Options include: rann, annoy n.trees
More trees gives higher precision when using annoy approximate nearest neigh- bor search	
eps	Error bound on the neighbor finding algorithm (from RANN/Annoy)
verbose	Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019: doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147
First, determine anchor.features if not explicitly specified using SelectIntegrationFeatures. Then for all pairwise combinations of reference and query datasets:

- Perform dimensional reduction on the dataset pair as specified via the reduction parameter. If 12. norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors - pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn't found within the first k.filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to IntegrateData.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
    pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
    pancreas.list[[i]] <- FindVariableFeatures(
        pancreas.list[[i]], selection.method = "vst",
        nfeatures = 2000, verbose = FALSE
    )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)
# integrate data
integrated <- IntegrateData(anchorset = anchors)
## End(Not run)
```

FindMarkers Gene expression markers of identity classes

Description

Finds markers (differentially expressed genes) for identity classes

Usage

```
FindMarkers(object, ...)
## Default S3 method:
FindMarkers(
    object,
    slot = "data",
    counts = numeric(),
```

```
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    fc.results = NULL,
    densify = FALSE,
)
## S3 method for class 'Assay'
FindMarkers(
    object,
    slot = "data",
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
    densify = FALSE,
)
## S3 method for class 'SCTAssay'
FindMarkers(
```

```
    object,
    slot = "data",
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
    densify = FALSE,
    recorrect_umi = TRUE,
)
## S3 method for class 'DimReduc'
FindMarkers(
    object,
    cells.1 = NULL,
    cells.2 = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    mean.fxn = rowMeans,
    fc.name = NULL,
    densify = FALSE,
)
```

```
## S3 method for class 'Seurat'
FindMarkers(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    group.by = NULL,
    subset.ident = NULL,
    assay = NULL,
    slot = "data",
    reduction = NULL,
    features = NULL,
    logfc.threshold = 0.25,
    test.use = "wilcox",
    min.pct = 0.1,
    min.diff.pct = -Inf,
    verbose = TRUE,
    only.pos = FALSE,
    max.cells.per.ident = Inf,
    random.seed = 1,
    latent.vars = NULL,
    min.cells.feature = 3,
    min.cells.group = 3,
    pseudocount.use = 1,
    mean.fxn = NULL,
    fc.name = NULL,
    base = 2,
    densify = FALSE,
)
```


Arguments

object	An object
	Arguments passed to other methods and to specific DE methods
slot	Slot to pull data from; note that if test. use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
counts	Count matrix if using scale.data for DE tests. This is used for computing pet. 1 and pct. 2 and for filtering features based on fraction expressing
cells. 1	Vector of cell names belonging to group 1
cells. 2	Vector of cell names belonging to group 2
features	Genes to test. Default is to use all genes
logfc.threshold	
	Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.
test.use	Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L

min.pct	only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.1		
min.diff.pct	only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default		
verbose	Print a progress bar once expression testing begins		
only.pos	Only return positive markers (FALSE by default)		
max.cells.per.ident		\quad	Down sample each identity class to a max number. Default is no downsampling.
:---			
not activated by default (set to Inf)			

latent.vars	Variables to test, used only when test. use is one of 'LR', 'negbinom', 'poisson', or 'MAST'
min.cells.feature	
	Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.group	
	Minimum number of cells in one of the groups
pseudocount.use	
	Pseudocount to add to averaged expression values when calculating $\log \mathrm{FC} .1$ by default.
fc.results	data.frame from FoldChange
densify	Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
mean.fxn	Function to use for fold change or average difference calculation. If NULL, the appropriate function will be chose according to the slot used
fc. name	Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base	The base with respect to which logarithms are computed.
recorrect_umi	Recalculate corrected UMI counts using minimum of the median UMIs when performing DE using multiple SCT objects; default is TRUE
ident. 1	Identity class to define markers for; pass an object of class phylo or 'clustertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
ident. 2	A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident. 1 , must pass a node to find markers for
group.by	Regroup cells into a different identity class prior to performing differential expression (see example)
subset.ident	Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example)
assay	Assay to use in differential expression testing
reduction	Reduction to use in differential expression testing - will test for DE on cell embeddings

Details

p-value adjustment is performed using bonferroni correction based on the total number of genes in the dataset. Other correction methods are not recommended, as Seurat pre-filters genes using the arguments above, reducing the number of tests performed. Lastly, as Aaron Lun has pointed out, p-values should be interpreted cautiously, as the genes used for clustering are the same genes tested for differential expression.

Value

data.frame with a ranked list of putative markers as rows, and associated statistics as columns (pvalues, ROC score, etc., depending on the test used (test.use)). The following columns are always present:

- avg_logFC: log fold-chage of the average expression between the two groups. Positive values indicate that the gene is more highly expressed in the first group
- pct.1: The percentage of cells where the gene is detected in the first group
- pct.2: The percentage of cells where the gene is detected in the second group
- p_val_adj: Adjusted p-value, based on bonferroni correction using all genes in the dataset

References

McDavid A, Finak G, Chattopadyay PK, et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 2013;29(4):461-467. doi:10.1093/bioinformatics/bts7
Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology volume 32, pages 381-386 (2014)

Andrew McDavid, Greg Finak and Masanao Yajima (2017). MAST: Model-based Analysis of Single Cell Transcriptomics. R package version 1.2.1. https://github.com/RGLab/MAST/
Love MI, Huber W and Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." Genome Biology. https://bioconductor.org/packages/release/bioc/html/DESeq2.html

See Also

FoldChange

Examples

```
data("pbmc_small")
# Find markers for cluster 2
markers <- FindMarkers(object = pbmc_small, ident.1 = 2)
head(x = markers)
# Take all cells in cluster 2, and find markers that separate cells in the 'g1' group (metadata
# variable 'group')
markers <- FindMarkers(pbmc_small, ident.1 = "g1", group.by = 'groups', subset.ident = "2")
head(x = markers)
# Pass 'clustertree' or an object of class phylo to ident. }1\mathrm{ and
# a node to ident. 2 as a replacement for FindMarkersNode
if (requireNamespace("ape", quietly = TRUE)) {
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    markers <- FindMarkers(object = pbmc_small, ident.1 = 'clustertree', ident.2 = 5)
    head(x = markers)
}
```

FindMultiModalNeighbors

Description

This function will construct a weighted nearest neighbor (WNN) graph. For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. Takes as input two dimensional reductions, one computed for each modality. Other parameters are listed for debugging, but can be left as default values.

```
Usage
    FindMultiModalNeighbors(
        object,
        reduction.list,
        dims.list,
        k.nn = 20,
        12.norm = TRUE,
        knn.graph.name = "wknn",
        snn.graph.name = "wsnn",
        weighted.nn.name = "weighted.nn",
        modality.weight.name = NULL,
        knn.range = 200,
        prune.SNN = 1/15,
        sd.scale = 1,
        cross.contant.list = NULL,
        smooth = FALSE,
        return.intermediate = FALSE,
        modality.weight = NULL,
        verbose = TRUE
    )
```


Arguments

object A Seurat object
reduction.list A list of two dimensional reductions, one for each of the modalities to be integrated
dims.list A list containing the dimensions for each reduction to use
k.nn the number of multimodal neighbors to compute. 20 by default
12. norm Perform L2 normalization on the cell embeddings after dimensional reduction. TRUE by default.
knn.graph. name Multimodal knn graph name
snn.graph. name Multimodal snn graph name

```
weighted.nn.name
    Multimodal neighbor object name
modality.weight.name
                            Variable name to store modality weight in object meta data
knn.range The number of approximate neighbors to compute
prune.SNN Cutoff not to discard edge in SNN graph
sd.scale The scaling factor for kernel width. 1 by default
cross.contant.list
    Constant used to avoid divide-by-zero errors. 1e-4 by default
smooth Smoothing modality score across each individual modality neighbors. FALSE
    by default
return.intermediate
    Store intermediate results in misc
modality.weight
    A ModalityWeights object generated by FindModalityWeights
verbose Print progress bars and output
```


Value

Seurat object containing a nearest-neighbor object, KNN graph, and SNN graph - each based on a weighted combination of modalities.

Description

Computes the k. param nearest neighbors for a given dataset. Can also optionally (via compute. SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k. param nearest neighbors.

Usage

```
FindNeighbors(object, ...)
```

\#\# Default S3 method:
FindNeighbors(
object,
query = NULL,
distance.matrix = FALSE,
k.param = 20,
return.neighbor = FALSE,
compute.SNN = !return.neighbor,
prune. SNN = 1/15,
nn.method = "annoy",

```
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    force.recalc = FALSE,
    12.norm = FALSE,
    cache.index = FALSE,
    index = NULL,
)
## S3 method for class 'Assay'
FindNeighbors(
    object,
    features = NULL,
    k.param = 20,
    return.neighbor = FALSE,
    compute.SNN = !return.neighbor,
    prune.SNN = 1/15,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    force.recalc = FALSE,
    12.norm = FALSE,
    cache.index = FALSE,
)
## S3 method for class 'dist'
FindNeighbors(
    object,
    k.param = 20,
    return.neighbor = FALSE,
    compute.SNN = !return.neighbor,
    prune.SNN = 1/15,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    force.recalc = FALSE,
    12.norm = FALSE,
    cache.index = FALSE,
)
```

```
## S3 method for class 'Seurat'
FindNeighbors(
    object,
    reduction = "pca",
    dims = 1:10,
    assay = NULL,
    features = NULL,
    k.param = 20,
    return.neighbor = FALSE,
    compute.SNN = !return.neighbor,
    prune.SNN = 1/15,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "euclidean",
    nn.eps = 0,
    verbose = TRUE,
    force.recalc = FALSE,
    do.plot = FALSE,
    graph.name = NULL,
    12.norm = FALSE,
    cache.index = FALSE,
)
```


Arguments

object	An object
	Arguments passed to other methods
query	Matrix of data to query against object. If missing, defaults to object.
distance.matrix	
	Boolean value of whether the provided matrix is a distance matrix; note, for objects of class dist, this parameter will be set automatically
k. param	Defines k for the k-nearest neighbor algorithm
return.neighbor	
	Return result as Neighbor object. Not used with distance matrix input.
compute. SNN	also compute the shared nearest neighbor graph
prune. SNN	Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the stringency of pruning (0 - no pruning, 1 - prune everything).
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
annoy.metric	Distance metric for annoy. Options include: euclidean, cosine, manhattan, and hamming

nn.eps	Error bound when performing nearest neighbor seach using RANN; default of 0.0 implies exact nearest neighbor search
verbose	Whether or not to print output to the console
force.recalc	Force recalculation of (S)NN. l2.norm
cache.index Take L2Norm of the data Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE)	
index	Precomputed index. Useful if querying new data against existing index to avoid recomputing.
features	Features to use as input for building the (S)NN; used only when dims is NULL
reduction	Reduction to use as input for building the (S)NN
dims	Dimensions of reduction to use as input
assay	Assay to use in construction of (S)NN; used only when dims is NULL
do.plot	Plot SNN graph on tSNE coordinates
graph.name	Optional naming parameter for stored (S)NN graph (or Neighbor object, if re- turn.neighbor = TRUE). Default is assay.name_(s)nn. To store both the neighbor graph and the shared nearest neighbor (SNN) graph, you must supply a vector
containing two names to the graph. name parameter. The first element in the	

Value

This function can either return a Neighbor object with the KNN information or a list of Graph objects with the KNN and SNN depending on the settings of return. neighbor and compute. SNN. When running on a Seurat object, this returns the Seurat object with the Graphs or Neighbor objects stored in their respective slots. Names of the Graph or Neighbor object can be found with Graphs or Neighbors.

Examples

```
data("pbmc_small")
pbmc_small
# Compute an SNN on the gene expression level
pbmc_small <- FindNeighbors(pbmc_small, features = VariableFeatures(object = pbmc_small))
# More commonly, we build the SNN on a dimensionally reduced form of the data
# such as the first 10 principle components.
pbmc_small <- FindNeighbors(pbmc_small, reduction = "pca", dims = 1:10)
```

FindSpatiallyVariableFeatures
Find spatially variable features

Description

Identify features whose variability in expression can be explained to some degree by spatial location.

Usage

```
FindSpatiallyVariableFeatures(object, ...)
## Default S3 method:
FindSpatiallyVariableFeatures(
    object,
    spatial.location,
    selection.method = c("markvariogram", "moransi"),
    r.metric = 5,
    x.cuts = NULL,
    y.cuts = NULL,
    verbose = TRUE,
)
```

\#\# S3 method for class 'Assay'
FindSpatiallyVariableFeatures(
object,
slot = "scale.data",
spatial.location,
selection.method = c("markvariogram", "moransi"),
features = NULL,
r.metric = 5,
x.cuts = NULL,
y.cuts = NULL,
nfeatures = nfeatures,
verbose = TRUE,
...
)
\#\# S3 method for class 'Seurat'
FindSpatiallyVariableFeatures(
object,
assay = NULL,
slot = "scale.data",
features = NULL,
image = NULL,
selection.method = c("markvariogram", "moransi"),

```
    r.metric = 5,
    x.cuts = NULL,
    y.cuts = NULL,
    nfeatures = 2000,
    verbose = TRUE,
)
```


Arguments

object	A Seurat object, assay, or expression matrix		
\ldots	Arguments passed to other methods		
spatial.location		\quad	Coordinates for each cell/spot/bead
:---			
selection.method	\quad	Method for selecting spatially variable features.	
:---			

 FindSubCluster
 Find subclusters under one cluster

Description

Find subclusters under one cluster

Usage

```
FindSubCluster(
    object,
    cluster,
    graph. name,
    subcluster.name = "sub.cluster",
    resolution = 0.5,
    algorithm = 1
)
```


Arguments

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { object } \\
\text { cluster } \\
\text { graph. name } \\
\text { subcluster.name }\end{array} & \begin{array}{l}\text { An object } \\
\text { the cluster to be sub-clustered }\end{array}
$$

Name of graph to use for the clustering algorithm\end{array}\right]\)| the name of sub cluster added in the meta.data |
| :--- |

Value

return a object with sub cluster labels in the sub-cluster.name variable

Description

Find a set of anchors between a reference and query object. These anchors can later be used to transfer data from the reference to query object using the TransferData object.

Usage

FindTransferAnchors(reference, query,
normalization.method = "LogNormalize",
recompute.residuals = TRUE,
reference.assay = NULL,
reference.neighbors = NULL,
query.assay = NULL,

```
    reduction = "pcaproject",
    reference.reduction = NULL,
    project.query = FALSE,
    features = NULL,
    scale = TRUE,
    npcs = 30,
    12.norm = TRUE,
    dims = 1:30,
    k.anchor = 5,
    k.filter = 200,
    k.score = 30,
    max.features = 200,
    nn.method = "annoy",
    n.trees = 50,
    eps = 0,
    approx.pca = TRUE,
    mapping.score.k = NULL,
    verbose = TRUE
)
```


Arguments

$$
\text { reference } \quad \text { Seurat object to use as the reference }
$$

query Seurat object to use as the query
normalization.method
Name of normalization method used: LogNormalize or SCT.
recompute.residuals
If using SCT as a normalization method, compute query Pearson residuals using the reference SCT model parameters.
reference.assay
Name of the Assay to use from reference
reference.neighbors
Name of the Neighbor to use from the reference. Optionally enables reuse of precomputed neighbors.
query assay Name of the Assay to use from query
reduction Dimensional reduction to perform when finding anchors. Options are:

- pcaproject: Project the PCA from the reference onto the query. We recommend using PCA when reference and query datasets are from scRNA-seq
- 1siproject: Project the LSI from the reference onto the query. We recommend using LSI when reference and query datasets are from scATAC-seq. This requires that LSI has been computed for the reference dataset, and the same features (eg, peaks or genome bins) are present in both the reference and query. See RunTFIDF and RunSVD
- rpca: Project the PCA from the reference onto the query, and the PCA from the query onto the reference (reciprocal PCA projection).
- cca: Run a CCA on the reference and query

	Name of dimensional reduction to use from the reference if running the pcaproject workflow. Optionally enables reuse of precomputed reference dimensional reduction. If NULL (default), use a PCA computed on the reference object.
project.query	Project the PCA from the query dataset onto the reference. Use only in rare cases where the query dataset has a much larger cell number, but the reference dataset has a unique assay for transfer. In this case, the default features will be set to the variable features of the query object that are alos present in the reference.
features	Features to use for dimensional reduction. If not specified, set as variable features of the reference object which are also present in the query.
scale	Scale query data.
npcs	Number of PCs to compute on reference if reference.reduction is not provided.
12.norm	Perform L2 normalization on the cell embeddings after dimensional reduction
dims	Which dimensions to use from the reduction to specify the neighbor search space
k.anchor	How many neighbors (k) to use when finding anchors
k.filter	How many neighbors (k) to use when filtering anchors. Set to NA to turn off filtering.
k.score	How many neighbors (k) to use when scoring anchors
max.features	The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
eps	Error bound on the neighbor finding algorithm (from RANN or RcppAnnoy)
approx.pca	Use truncated singular value decomposition to approximate PCA
mapping.score.k	
	Compute and store nearest k query neighbors in the AnchorSet object that is returned. You can optionally set this if you plan on computing the mapping score and want to enable reuse of some downstream neighbor calculations to make the mapping score function more efficient.
verbose	Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147

- Perform dimensional reduction. Exactly what is done here depends on the values set for the reduction and project.query parameters. If reduction = "pcaproject", a PCA is performed on either the reference (if project.query = FALSE) or the query (if project.query $=$ TRUE), using the features specified. The data from the other dataset is then projected onto this learned PCA structure. If reduction = "cca", then CCA is performed on the reference
and query for this dimensional reduction step. If reduction = "lsiproject", the stored LSI dimension reduction in the reference object is used to project the query dataset onto the reference. If 12 . norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors between the reference and query - pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn't found within the first k. filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k. score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between $0-1$.

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery. The dimension reduction used for finding anchors is stored in the AnchorSet object and can be used for computing anchor weights in downstream functions. Note that only the requested dimensions are stored in the dimension reduction object in the AnchorSet. This means that if dims=2:20 is used, for example, the dimension of the stored reduction is $1: 19$.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031;

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")
# for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]
# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)
pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)
# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)
```

```
    # transfer labels
    predictions <- TransferData(
        anchorset = anchors,
        refdata = pbmc.reference$seurat_annotations
)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)
## End(Not run)
```

FindVariableFeatures Find variable features

Description

Identifies features that are outliers on a 'mean variability plot'.

Usage

FindVariableFeatures(object, ...)
\#\# Default S3 method:
FindVariableFeatures(object, selection.method = "vst", loess.span $=0.3$, clip.max = "auto", mean. function $=$ FastExpMean, dispersion.function = FastLogVMR, num. bin $=20$, binning.method = "equal_width", verbose = TRUE,
)
\#\# S3 method for class 'Assay'
FindVariableFeatures(
object,
selection.method = "vst",
loess.span = 0.3,
clip.max = "auto", mean.function $=$ FastExpMean, dispersion.function = FastLogVMR, num. bin = 20, binning.method = "equal_width", nfeatures $=2000$, mean. cutoff $=c(0.1,8)$,

```
    dispersion.cutoff = c(1, Inf),
    verbose = TRUE,
)
## S3 method for class 'SCTAssay'
FindVariableFeatures(object, nfeatures = 2000, ...)
## S3 method for class 'Seurat'
FindVariableFeatures(
    object,
    assay = NULL,
    selection.method = "vst",
    loess.span = 0.3,
    clip.max = "auto",
    mean.function = FastExpMean,
    dispersion.function = FastLogVMR,
    num.bin = 20,
    binning.method = "equal_width",
    nfeatures = 2000,
    mean.cutoff = c(0.1, 8),
    dispersion.cutoff = c(1, Inf),
    verbose = TRUE,
)
```


Arguments

object	An object
\ldots	Arguments passed to other methods

selection.method

How to choose top variable features. Choose one of :

- vst: First, fits a line to the relationship of \log (variance) and \log (mean) using local polynomial regression (loess). Then standardizes the feature values using the observed mean and expected variance (given by the fitted line). Feature variance is then calculated on the standardized values after clipping to a maximum (see clip.max parameter).
- mean.var.plot (mvp): First, uses a function to calculate average expression (mean.function) and dispersion (dispersion.function) for each feature. Next, divides features into num.bin (deafult 20) bins based on their average expression, and calculates z-scores for dispersion within each bin. The purpose of this is to identify variable features while controlling for the strong relationship between variability and average expression.
- dispersion (disp): selects the genes with the highest dispersion values
loess.span (vst method) Loess span parameter used when fitting the variance-mean relationship

clip.max
(vst method) After standardization values larger than clip.max will be set to
clip.max; default is 'auto' which sets this value to the square root of the number
of cells

mean. function | Function to compute x-axis value (average expression). Default is to take the |
| :--- |
| mean of the detected (i.e. non-zero) values |

dispersion. function
Function to compute y-axis value (dispersion). Default is to take the standard

deviation of all values \quad| Total number of bins to use in the scaled analysis (default is 20) |
| :--- |

Details

For the mean.var.plot method: Exact parameter settings may vary empirically from dataset to dataset, and based on visual inspection of the plot. Setting the y.cutoff parameter to 2 identifies features that are more than two standard deviations away from the average dispersion within a bin. The default X -axis function is the mean expression level, and for Y -axis it is the \log (Variance/mean). All mean/variance calculations are not performed in log-space, but the results are reported in logspace - see relevant functions for exact details.
FoldChange Fold Change

Description

Calculate \log fold change and percentage of cells expressing each feature for different identity classes.

Usage

```
FoldChange(object, ...)
## Default S3 method:
FoldChange(object, cells.1, cells.2, mean.fxn, fc.name, features = NULL, ...)
## S3 method for class 'Assay'
FoldChange(
    object,
    cells.1,
    cells.2,
    features = NULL,
    slot = "data",
    pseudocount.use = 1,
    fc.name = NULL,
    mean.fxn = NULL,
    base = 2,
)
## S3 method for class 'DimReduc'
FoldChange(
    object,
    cells.1,
    cells.2,
    features = NULL,
    slot = NULL,
    pseudocount.use = NULL,
    fc.name = NULL,
    mean.fxn = NULL,
)
## S3 method for class 'Seurat'
FoldChange(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    group.by = NULL,
    subset.ident = NULL,
    assay = NULL,
    slot = "data",
    reduction = NULL,
    features = NULL,
    pseudocount.use = 1,
    mean.fxn = NULL,
    base = 2,
    fc.name = NULL,
```


Arguments

object	A Seurat object		
\ldots	Arguments passed to other methods		
cells. 1	Vector of cell names belonging to group 1		
cells.2	Vector of cell names belonging to group 2		
mean.fxn	Function to use for fold change or average difference calculation		
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame		
features	Features to calculate fold change for. If NULL, use all features		
slot	Slot to pull data from		
pseudocount. use		\quad	Pseudocount to add to averaged expression values when calculating logFC. 1 by
:---			
default.			

Details

If the slot is scale.data or a reduction is specified, average difference is returned instead of log fold change and the column is named "avg_diff". Otherwise, $\log 2$ fold change is returned with column named "avg_log2_FC".

Value

Returns a data.frame

See Also

FindMarkers

Examples

```
data("pbmc_small")
FoldChange(pbmc_small, ident.1 = 1)
```

GetAssay Get an Assay object from a given Seurat object.

Description

Get an Assay object from a given Seurat object.

Usage

GetAssay (object, ...)
\#\# S3 method for class 'Seurat'
GetAssay (object, assay = NULL, ...)

Arguments

object	An object
\ldots	Arguments passed to other methods
assay	Assay to get

Value
Returns an Assay object

Examples

```
data("pbmc_small")
GetAssay(object = pbmc_small, assay = "RNA")
```

GetImage.SlideSeq Get Image Data

Description

Get Image Data

Usage

```
## S3 method for class 'SlideSeq'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
    ## S3 method for class 'STARmap'
    GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
    ## S3 method for class 'VisiumV1'
    GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
```


Arguments

object mode	An object "raw" to return the image; should accept one of "grob", "raster", "plotly", or
\ldots	Arguments passed to other methods

See Also

SeuratObject::GetImage

GetIntegrationData Get integration data

Description

Get integration data

Usage

GetIntegrationData(object, integration.name, slot)

Arguments

object Seurat object
integration.name
Name of integration object
slot Which slot in integration object to get

Value

Returns data from the requested slot within the integrated object

```
GetResidual Calculate pearson residuals of features not in the scale.data
```


Description

This function calls sctransform::get_residuals.

Usage

```
    GetResidual(
        object,
        features,
        assay = NULL,
        umi.assay = NULL,
        clip.range = NULL,
        replace.value = FALSE,
        na.rm = TRUE,
        verbose = TRUE
    )
```


Arguments

object	A seurat object
features	Name of features to add into the scale.data Name of the assay of the seurat object generated by SCTransform
assay	Name of the assay of the seurat object containing UMI matrix and the default is RNA
clip.range	Numeric of length two specifying the min and max values the Pearson residual will be clipped to
replace.value	Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.
na.rm	For features where there is no feature model stored, return NA for residual value in scale.data when na.rm = FALSE. When na.rm is TRUE, only return residuals for features with a model stored for all cells.
verbose	Whether to print messages and progress bars

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

```
    get_residuals
```


Examples

```
data("pbmc_small")
pbmc_small <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small <- GetResidual(object = pbmc_small, features = c('MS4A1', 'TCL1A'))
```

GetTissueCoordinates.SlideSeq
Get Tissue Coordinates

Description

Get Tissue Coordinates

Usage

```
## S3 method for class 'SlideSeq'
GetTissueCoordinates(object, ...)
    ## S3 method for class 'STARmap'
    GetTissueCoordinates(object, qhulls = FALSE, ...)
    ## S3 method for class 'VisiumV1'
    GetTissueCoordinates(
        object,
        scale = "lowres",
        cols = c("imagerow", "imagecol"),
    )
```


Arguments

object	An object
\ldots	Arguments passed to other methods
qhulls	return qhulls instead of centroids
scale	A factor to scale the coordinates by; choose from: 'tissue', 'fiducial', 'hires', 'lowres', or NULL for no scaling
cols	Columns of tissue coordinates data.frame to pull

See Also

SeuratObject::GetTissueCoordinates

```
GetTransferPredictions
```


Get the predicted identity

Description

Utility function to easily pull out the name of the class with the maximum prediction. This is useful if you've set prediction. assay = TRUE in TransferData and want to have a vector with the predicted class.

Usage

```
    GetTransferPredictions(
        object,
        assay = "predictions",
        slot = "data",
        score.filter = 0.75
    )
```


Arguments

object Seurat object
assay \quad Name of the assay holding the predictions
slot Slot of the assay in which the prediction scores are stored
score.filter Return "Unassigned" for any cell with a score less than this value

Value

Returns a vector of predicted class names

Examples

```
## Not run:
    prediction.assay <- TransferData(anchorset = anchors, refdata = reference$class)
    query[["predictions"]] <- prediction.assay
    query$predicted.id <- GetTransferPredictions(query)
## End(Not run)
```


Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject: :Graph-class

GroupCorrelation Compute the correlation of features broken down by groups with another covariate

Description

Compute the correlation of features broken down by groups with another covariate

Usage

GroupCorrelation(object, assay = NULL, slot = "scale.data", var = NULL, group.assay = NULL, min.cells = 5, ngroups $=6$, do.plot $=$ TRUE
)

Arguments

object	Seurat object
assay	Assay to pull the data from
slot	Slot in the assay to pull feature expression data from (counts, data, or scale.data)
var	Variable with which to correlate the features
group.assay	Compute the gene groups based off the data in this assay.
min.cells	Only compute for genes in at least this many cells
ngroups	Number of groups to split into
do.plot	Display the group correlation boxplot (via GroupCorrelationPlot)

Value

A Seurat object with the correlation stored in metafeatures

GroupCorrelationPlot Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

Description

Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

Usage

```
    GroupCorrelationPlot(
        object,
        assay = NULL,
        feature.group = "feature.grp",
        cor = "nCount_RNA_cor"
    )
```


Arguments

object	Seurat object
assay	Assay where the feature grouping info and correlations are stored
feature.group	Name of the column in meta.features where the feature grouping info is stored
cor	Name of the column in meta.features where correlation info is stored

Value

Returns a ggplot boxplot of correlations split by group
HoverLocator Hover Locator

Description

Get quick information from a scatterplot by hovering over points

Usage

HoverLocator(plot, information = NULL, axes = TRUE, dark.theme = FALSE, ...)

Arguments

plot	A ggplot2 plot
information	An optional dataframe or matrix of extra information to be displayed on hover
axes	Display or hide x-and y-axes
dark. theme	Plot using a dark theme?
\ldots	Extra parameters to be passed to layout

See Also

layout ggplot_build DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
HoverLocator(plot = plot, information = FetchData(object = pbmc_small, vars = 'percent.mito'))
## End(Not run)
```

HTODemux Demultiplex samples based on data from cell 'hashing'

Description

Assign sample-of-origin for each cell, annotate doublets.

Usage

```
HTODemux(
        object,
        assay = "HTO",
        positive.quantile = 0.99,
        init = NULL,
        nstarts = 100,
        kfunc = "clara",
        nsamples = 100,
        seed = 42,
        verbose = TRUE
    )
```


Arguments

object	Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized.		
assay	Name of the Hashtag assay (HTO by default)		
positive.quantile		\quad	The quantile of inferred 'negative' distribution for each hashtag - over which the
:---			
cell is considered 'positive'. Default is 0.99			

kfunc	Clustering function for initial hashtag grouping. Default is "clara" for fast k- medoids clustering on large applications, also support "kmeans" for kmeans clustering		
nsamples	Number of samples to be drawn from the dataset used for clustering, for kfunc $=$		
sclara"		\quad	Sets the random seed. If NULL, seed is not set
:---			
verbose	\quad Prints the output \quad.		

Value

The Seurat object with the following demultiplexed information stored in the meta data:
hash.maxID Name of hashtag with the highest signal
hash.secondID Name of hashtag with the second highest signal
hash.margin The difference between signals for hash.maxID and hash.secondID
classification Classification result, with doublets/multiplets named by the top two highest hashtags
classification.global Global classification result (singlet, doublet or negative)
hash.ID Classification result where doublet IDs are collapsed

See Also

HTOHeatmap

Examples

```
## Not run:
object <- HTODemux(object)
## End(Not run)
```


Description

Draws a heatmap of hashtag oligo signals across singlets/doublets/negative cells. Allows for the visualization of HTO demultiplexing results.

Usage

```
HTOHeatmap(
        object,
        assay = "HTO",
        classification = paste0(assay, "_classification"),
        global.classification = paste0(assay, "_classification.global"),
        ncells = 5000,
        singlet.names = NULL,
        raster = TRUE
)
```


Arguments

object	Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized, and demultiplexing has been run with HTODemux().
assay	Hashtag assay name.
classification	
global.classification	
The naming for metadata column with classification result from HTODemux().	

Value

Returns a ggplot2 plot object.

See Also

HTODemux

Examples

```
## Not run:
object <- HTODemux(object)
HTOHeatmap(object)
## End(Not run)
```


Description

Get variable feature information from SCTAssay objects

Usage

```
## S3 method for class 'SCTAssay'
HVFInfo(object, selection.method, status = FALSE, ...)
```


Arguments

```
    object An object
    selection.method
        Which method to pull. For HVFInfo and VariableFeatures, choose one from
        one of the following:
                            - "vst"
                            - "sctransform" or "sct"
                            - "mean.var.plot", "dispersion", "mvp", or "disp"
        For SVFInfo and SpatiallyVariableFeatures, choose from:
                            - "markvariogram"
                            - "moransi"
    status Add variable status to the resulting data frame
    ... Arguments passed to other methods
```


See Also

HVFInfo

Examples

```
# Get the HVF info directly from an SCTAssay object
pbmc_small <- SCTransform(pbmc_small)
HVFInfo(pbmc_small[["SCT"]], selection.method = 'sct')[1:5, ]
```

IFeaturePlot Visualize features in dimensional reduction space interactively

Description

Visualize features in dimensional reduction space interactively

Usage

IFeaturePlot(object, feature, dims $=c(1,2)$, reduction $=$ NULL, slot $=$ "data")

Arguments

object	Seurat object
feature	Feature to plot
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
slot	Which slot to pull expression data from?

Value

Returns the final plot as a ggplot object

```
IntegrateData Integrate data
```


Description

Perform dataset integration using a pre-computed AnchorSet.

Usage

IntegrateData(anchorset, new.assay.name = "integrated", normalization.method = c("LogNormalize", "SCT"), features = NULL,
features.to.integrate $=$ NULL,
dims = 1:30,
k.weight = 100, weight. reduction $=$ NULL, sd.weight = 1,

```
    sample.tree = NULL,
    preserve.order = FALSE,
    eps = 0,
    verbose = TRUE
)
```


Arguments

anchorset An AnchorSet object generated by FindIntegrationAnchors
new. assay. name Name for the new assay containing the integrated data
normalization.method
Name of normalization method used: LogNormalize or SCT
features Vector of features to use when computing the PCA to determine the weights.
Only set if you want a different set from those used in the anchor finding process
features.to.integrate
Vector of features to integrate. By default, will use the features used in anchor finding.
dims Number of dimensions to use in the anchor weighting procedure
k.weight Number of neighbors to consider when weighting anchors
weight. reduction
Dimension reduction to use when calculating anchor weights. This can be one of:

- A string, specifying the name of a dimension reduction present in all objects to be integrated
- A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
- A vector of DimReduc objects, specifying the object to use for each object in the integration
- NULL, in which case a new PCA will be calculated and used to calculate anchor weights
Note that, if specified, the requested dimension reduction will only be used for calculating anchor weights in the first merge between reference and query, as the merged object will subsequently contain more cells than was in query, and weights will need to be calculated for all cells in the object.
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
sample.tree Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix $(\mathrm{c}(-2,1,-3,-1)$, $\mathrm{ncol}=2)$ gives:

$$
\begin{array}{lrc}
& {[, 1]} & {[, 2]} \\
{[1,]} & -2 & -3 \\
{[2,]} & 1 & -1
\end{array}
$$

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1 .
If NULL, the sample tree will be computed automatically.
preserve.order Do not reorder objects based on size for each pairwise integration.
eps \quad Error bound on the neighbor finding algorithm (from RANN)
verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147

For pairwise integration:

- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k. weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k.weight anchors.
- Compute the anchor integration matrix as the difference between the two expression matrices for every pair of anchor cells
- Compute the transformation matrix as the product of the integration matrix and the weights matrix.
- Subtract the transformation matrix from the original expression matrix.

For multiple dataset integration, we perform iterative pairwise integration. To determine the order of integration (if not specified via sample. tree), we

- Define a distance between datasets as the total number of cells in the smaller dataset divided by the total number of anchors between the two datasets.
- Compute all pairwise distances between datasets
- Cluster this distance matrix to determine a guide tree

Value

Returns a Seurat object with a new integrated Assay. If normalization.method = "LogNormalize", the integrated data is returned to the data slot and can be treated as log-normalized, corrected data. If normalization.method = "SCT", the integrated data is returned to the scale. data slot and can be treated as centered, corrected Pearson residuals.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
    pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
    pancreas.list[[i]] <- FindVariableFeatures(
        pancreas.list[[i]], selection.method = "vst",
        nfeatures = 2000, verbose = FALSE
    )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)
# integrate data
integrated <- IntegrateData(anchorset = anchors)
## End(Not run)
```

IntegrateEmbeddings Integrate low dimensional embeddings

Description

Perform dataset integration using a pre-computed Anchorset of specified low dimensional representations.

Usage

```
IntegrateEmbeddings(anchorset, ...)
```

\#\# S3 method for class 'IntegrationAnchorSet'
IntegrateEmbeddings(
anchorset,
new.reduction.name = "integrated_dr",
reductions = NULL,
dims.to.integrate $=$ NULL,
k.weight = 100,
weight.reduction $=$ NULL,
sd.weight = 1 ,

```
    sample.tree = NULL,
    preserve.order = FALSE,
    verbose = TRUE,
)
## S3 method for class 'TransferAnchorSet'
IntegrateEmbeddings(
    anchorset,
    reference,
    query,
    new.reduction.name = "integrated_dr",
    reductions = "pcaproject",
    dims.to.integrate = NULL,
    k.weight = 100,
    weight.reduction = NULL,
    reuse.weights.matrix = TRUE,
    sd.weight = 1,
    preserve.order = FALSE,
    verbose = TRUE,
    ...
)
```


Arguments

anchorset	An AnchorSet object
\ldots	Reserved for internal use

new. reduction. name
Name for new integrated dimensional reduction.
reductions Name of reductions to be integrated. For a TransferAnchorSet, this should be the name of a reduction present in the anchorset object (for example, "pcaproject"). For an IntegrationAnchorSet, this should be a DimReduc object containing all cells present in the anchorset object.
dims.to.integrate
Number of dimensions to return integrated values for
k.weight Number of neighbors to consider when weighting anchors
weight.reduction
Dimension reduction to use when calculating anchor weights. This can be one of:

- A string, specifying the name of a dimension reduction present in all objects to be integrated
- A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
- A vector of DimReduc objects, specifying the object to use for each object in the integration
- NULL, in which case the full corrected space is used for computing anchor weights.

sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix $(\mathrm{c}(-2,1,-3,-1)$, ncol $=2$) gives:
	[,1] [,2]
	$[1] \quad-,2 \quad-3$
	$[2] \quad 1 \quad-$,
	Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.
	If NULL, the sample tree will be computed automatically.
preserve.order	Do not reorder objects based on size for each pairwise integration.
verbose	Print progress bars and output
reference	Reference object used in anchorset construction
query	Query object used in anchorset construction
reuse.weights.matrix	
	Can be used in conjunction with the store.weights parameter in TransferData to reuse a precomputed weights matrix.

Details

The main steps of this procedure are identical to IntegrateData with one key distinction. When computing the weights matrix, the distance calculations are performed in the full space of integrated embeddings when integrating more than two datasets, as opposed to a reduced PCA space which is the default behavior in IntegrateData.

Value

When called on a TransferAnchorSet (from FindTransferAnchors), this will return the query object with the integrated embeddings stored in a new reduction. When called on an IntegrationAnchorSet (from IntegrateData), this will return a merged object with the integrated reduction stored.

```
IntegrationAnchorSet-class
```

The IntegrationAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

IntegrationData-class The IntegrationData Class

Description

The IntegrationData object is an intermediate storage container used internally throughout the integration procedure to hold bits of data that are useful downstream.

Slots

neighbors List of neighborhood information for cells (outputs of RANN: :nn2)
weights Anchor weight matrix
integration.matrix Integration matrix
anchors Anchor matrix
offsets The offsets used to enable cell look up in downstream functions
objects.ncell Number of cells in each object in the object.list
sample.tree Sample tree used for ordering multi-dataset integration

ISpatialDimPlot Visualize clusters spatially and interactively

Description

Visualize clusters spatially and interactively

Usage

ISpatialDimPlot(object, image $=$ NULL, group.by $=$ NULL, alpha $=c(0.3,1)$)

Arguments

object	Seurat object
image	Name of the image to use in the plot
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

Value

Returns final plot as a ggplot object

Description

Visualize features spatially and interactively

Usage

```
    ISpatialFeaturePlot(
        object,
        feature,
        image = NULL,
        slot = "data",
        alpha \(=c(0.1,1)\)
    )
```


Arguments

object	Seurat object
feature	Feature to visualize
image	Name of the image to use in the plot
slot	Which slot to pull expression data from?
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

Value

Returns final plot as a ggplot object

Description

Randomly permutes a subset of data, and calculates projected PCA scores for these 'random' genes. Then compares the PCA scores for the 'random' genes with the observed PCA scores to determine statistical signifance. End result is a p-value for each gene's association with each principal component.

Usage

```
JackStraw(
        object,
        reduction = "pca",
        assay = NULL,
        dims = 20,
        num.replicate = 100,
        prop.freq = 0.01,
        verbose = TRUE,
        maxit = 1000
)
```


Arguments

object	Seurat object
reduction	DimReduc to use. ONLY PCA CURRENTLY SUPPORTED.
assay	Assay used to calculate reduction.
dims	Number of PCs to compute significance for
num. replicate	Number of replicate samplings to perform
prop. freq	Proportion of the data to randomly permute for each replicate
verbose	Print progress bar showing the number of replicates that have been processed.
maxit	maximum number of iterations to be performed by the irlba function of RunPCA

Value

Returns a Seurat object where JS(object = object[['pca']], slot = 'empirical') represents p-values for each gene in the PCA analysis. If ProjectPCA is subsequently run, JS(object = object[['pca']], slot $=$ 'full') then represents p -values for all genes.

References

Inspired by Chung et al, Bioinformatics (2014)

Examples

```
## Not run:
data("pbmc_small")
pbmc_small = suppressWarnings(JackStraw(pbmc_small))
head(JS(object = pbmc_small[['pca']], slot = 'empirical'))
## End(Not run)
```


Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject: JackStrawData-class

```
JackStrawPlot JackStraw Plot
```


Description

Plots the results of the JackStraw analysis for PCA significance. For each PC, plots a QQ-plot comparing the distribution of p -values for all genes across each PC, compared with a uniform distribution. Also determines a p-value for the overall significance of each PC (see Details).

Usage

```
JackStrawPlot(
    object,
    dims = 1:5,
    cols = NULL,
    reduction = "pca",
    xmax = 0.1,
    ymax = 0.3
    )
```


Arguments

object	Seurat object
dims	Dims to plot
cols	Vector of colors, each color corresponds to an individual PC. This may also be a single character or numeric value corresponding to a palette as specified by brewer. pal. info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
reduction	reduction to pull jackstraw info from
$x m a x$	X-axis maximum on each QQ plot.
ymax	Y-axis maximum on each QQ plot.

Details

Significant PCs should show a p-value distribution (black curve) that is strongly skewed to the left compared to the null distribution (dashed line) The p-value for each PC is based on a proportion test comparing the number of genes with a p-value below a particular threshold (score.thresh), compared with the proportion of genes expected under a uniform distribution of p-values.

Value
A ggplot object

Author(s)

Omri Wurtzel

See Also

ScoreJackStraw

Examples

```
data("pbmc_small")
JackStrawPlot(object = pbmc_small)
```

L2CCA L2-Normalize CCA

Description

Perform 12 normalization on CCs

Usage

L2CCA(object, ...)

Arguments

object Seurat object
... Additional parameters to L2Dim.
L2Dim L2-normalization

Description

Perform 12 normalization on given dimensional reduction

Usage

L2Dim(object, reduction, new.dr = NULL, new.key = NULL)

Arguments

object	Seurat object
reduction	Dimensional reduction to normalize
new.dr	name of new dimensional reduction to store (default is olddr.12)
new.key	name of key for new dimensional reduction

Value

Returns a Seurat object

LabelClusters Label clusters on a ggplot2-based scatter plot

Description

Label clusters on a ggplot2-based scatter plot

Usage

LabelClusters(plot,
id,
clusters = NULL,
labels = NULL,
split.by = NULL,
repel = TRUE,
box = FALSE,
geom = "GeomPoint", position = "median",
)

Arguments

plot	A ggplot2-based scatter plot
id	Name of variable used for coloring scatter plot
clusters	Vector of cluster ids to label
labels	Custom labels for the clusters
split.by	Split labels by some grouping label, useful when using facet_wrap or facet_grid
repel	Use geom_text_repel to create nicely-repelled labels
box	Use geom_label/geom_label_repel (includes a box around the text labels)
geom	Name of geom to get X/Y aesthetic names for
position	How to place the label if repel = FALSE. If "median", place the label at the median position. If "nearest" place the label at the position of the nearest data
	point to the median.
\ldots	Extra parameters to geom_text_repel, such as size

Value

A ggplot2-based scatter plot with cluster labels

See Also

geom_text_repel geom_text

Examples

```
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
LabelClusters(plot = plot, id = 'ident')
```

LabelPoints

Add text labels to a ggplot2 plot

Description

Add text labels to a ggplot2 plot

Usage

```
LabelPoints(
    plot,
    points,
    labels = NULL,
    repel = FALSE,
    xnudge = 0.3,
    ynudge = 0.05,
)
```


Arguments

$$
\begin{array}{ll}
\text { plot } & \text { A ggplot2 plot with a GeomPoint layer } \\
\text { points } & \begin{array}{l}
\text { A vector of points to label; if NULL, will use all points in the plot }
\end{array} \\
\text { labels } & \begin{array}{l}
\text { A vector of labels for the points; if NULL, will use rownames of the data provided } \\
\text { to the plot at the points selected }
\end{array} \\
\text { repel } & \begin{array}{l}
\text { Use geom_text_repel to create a nicely-repelled labels; this is slow when a lot } \\
\text { of points are being plotted. If using repel, set xnudge and ynudge to } 0
\end{array} \\
\text { xnudge, ynudge } & \begin{array}{l}
\text { Amount to nudge X and Y coordinates of labels by }
\end{array} \\
\ldots & \text { Extra parameters passed to geom_text }
\end{array}
$$

Value

A ggplot object

See Also

geom_text

Examples

```
data("pbmc_small")
ff <- TopFeatures(object = pbmc_small[['pca']])
cc <- TopCells(object = pbmc_small[['pca']])
plot <- FeatureScatter(object = pbmc_small, feature1 = ff[1], feature2 = ff[2])
LabelPoints(plot = plot, points = cc)
```

LinkedPlots Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Description

Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Usage

```
LinkedDimPlot(
    object,
    dims = 1:2,
    reduction = NULL,
    image = NULL,
    group.by = NULL,
    alpha = c(0.1, 1),
    combine = TRUE
)
```

```
LinkedFeaturePlot(
    object,
    feature,
    dims = 1:2,
    reduction = NULL,
    image = NULL,
    slot = "data",
    alpha = c(0.1, 1),
    combine = TRUE
)
```


Arguments

object	Seurat object
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
image	Name of the image to use in the plot
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
feature	Feature to visualize
slot	Which slot to pull expression data from?

Value

Returns final plots. If combine, plots are stiched together using CombinePlots; otherwise, returns a list of ggplot objects

Examples

```
## Not run:
LinkedDimPlot(seurat.object)
LinkedFeaturePlot(seurat.object, feature = 'Hpca')
## End(Not run)
```


Description

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

Usage

Load10X_Spatial(data.dir,
filename = "filtered_feature_bc_matrix.h5",
assay = "Spatial",
slice = "slice1",
filter.matrix = TRUE,
to. upper = FALSE,
image $=$ NULL,
)

Arguments

data.dir	Directory containing the H5 file specified by filename and the image data in a subdirectory called spatial
filename	Name of H5 file containing the feature barcode matrix assay
slice	Name of the initial assay
filter.matrix	Name for the stored image of the tissue slice
to. upper	Converts all feature names to upper case. This can provide an approximate conversion of mouse to human gene names which can be useful in an explorative analysis. For cross-species comparisons, orthologous genes should be identified
across species and used instead.	

Value

A Seurat object

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show filtered_feature_bc_matrix.h5
Load10X_Spatial(data.dir = data_dir)
```

```
## End(Not run)
```

LoadAnnoyIndex Load the Annoy index file

Description

Load the Annoy index file

Usage

LoadAnnoyIndex(object, file)

Arguments

object	Neighbor object
file	Path to file with annoy index

Value

Returns the Neighbor object with the index stored

Description

Load STARmap data

Usage

LoadSTARmap(data.dir, counts.file = "cell_barcode_count.csv", gene.file = "genes.csv", qhull.file = "qhulls.tsv", centroid.file = "centroids.tsv", assay = "Spatial", image = "image"
)

Arguments

data.dir	location of data directory that contains the counts matrix, gene name, qhull, and centroid files.
counts.file	name of file containing the counts matrix (csv)
gene.file	name of file containing the gene names (csv)
qhull.file	name of file containing the hull coordinates (tsv)
centroid.file	name of file containing the centroid positions (tsv)
assay	Name of assay to associate spatial data to
image	Name of "image" object storing spatial coordinates

Value

A Seurat object

See Also

STARmap

Description

Calculates a metric that describes how well the local structure of each group prior to integration is preserved after integration. This procedure works as follows: For each group, compute a PCA, compute the top num.neighbors in pca space, compute the top num.neighbors in corrected pca space, compute the size of the intersection of those two sets of neighbors. Return the average over all groups.

```
Usage
    LocalStruct(
        object,
        grouping.var,
        idents = NULL,
        neighbors = 100,
        reduction = "pca",
        reduced.dims = 1:10,
        orig.dims = 1:10,
        verbose = TRUE
    )
```


Arguments

object	Seurat object
grouping.var	Grouping variable
idents	Optionally specify a set of idents to compute metric for
neighbors	Number of neighbors to compute in pca/corrected pca space
reduction	Dimensional reduction to use for corrected space
reduced.dims	Number of reduced dimensions to use
orig.dims	Number of PCs to use in original space
verbose	Display progress bar

Value

Returns the average preservation metric

LogNormalize Normalize raw data

Description

Normalize count data per cell and transform to log scale

Usage

LogNormalize(data, scale.factor $=10000$, verbose $=$ TRUE)

Arguments

data	Matrix with the raw count data
scale.factor	Scale the data. Default is 1e4
verbose	Print progress

Value

Returns a matrix with the normalize and log transformed data

Examples

```
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- LogNormalize(data = mat)
mat_norm
```


Description

Calculate the variance to mean ratio (VMR) in non-logspace (return answer in log-space)

Usage

$\operatorname{LogVMR}(x, \ldots)$

Arguments

x
... Other arguments (not used)

Value

Returns the VMR in log-space

Examples

$\log V M R(x=c(1,2,3))$

Description

This metric was designed to help identify query cells that aren't well represented in the reference dataset. The intuition for the score is that we are going to project the query cells into a referencedefined space and then project them back onto the query. By comparing the neighborhoods before and after projection, we identify cells who's local neighborhoods are the most affected by this transformation. This could be because there is a population of query cells that aren't present in the reference or the state of the cells in the query is significantly different from the equivalent cell type in the reference.

Usage

```
MappingScore(anchors, ...)
## Default S3 method:
MappingScore(
    anchors,
    combined.object,
    query.neighbors,
    ref.embeddings,
    query.embeddings,
    kanchors = 50,
    ndim = 50,
    ksmooth = 100,
    ksnn = 20,
    snn.prune = 0,
    subtract.first.nn = TRUE,
    nn.method = "annoy",
    n.trees = 50,
    query.weights = NULL,
    verbose = TRUE,
    ...
)
## S3 method for class 'AnchorSet'
MappingScore(
    anchors,
    kanchors = 50,
    ndim = 50,
    ksmooth = 100,
    ksnn = 20,
    snn.prune = 0,
    subtract.first.nn = TRUE,
    nn.method = "annoy",
    n.trees = 50,
        query.weights = NULL,
        verbose = TRUE,
)
```


Arguments

anchors AnchorSet object or just anchor matrix from the Anchorset object returned from FindTransferAnchors
... Reserved for internal use
combined.object
Combined object (ref + query) from the Anchorset object returned
query.neighbors
Neighbors object computed on query cells

ref.embeddings Reference embeddings matrix query.embeddings	
	Query embeddings matrix
kanchors	Number of anchors to use in projection steps when computing weights
ndim	Number of dimensions to use when working with low dimensional projections of the data
ksmooth	Number of cells to average over when computing transition probabilities
ksnn	Number of cells to average over when determining the kernel bandwidth from the SNN graph
snn.prune	Amount of pruning to apply to edges in SNN graph
subtract.first.nn	
	Option to the scoring function when computing distances to subtract the distance to the first nearest neighbor
nn.method	Nearest neighbor method to use (annoy or RANN)
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
query.weights	Query weights matrix for reuse
verbose	Display messages/progress

Value

Returns a vector of cell scores
MapQuery Map query cells to a reference

Description

This is a convenience wrapper function around the following three functions that are often run together when mapping query data to a reference: TransferData, IntegrateEmbeddings, ProjectUMAP. Note that by default, the weight. reduction parameter for all functions will be set to the dimension reduction method used in the FindTransferAnchors function call used to construct the anchor object, and the dims parameter will be the same dimensions used to find anchors.

Usage

MapQuery (
anchorset,
query,
reference,
refdata = NULL,
new.reduction.name = NULL,
reference. reduction $=$ NULL,
reference. dims = NULL,

```
    query.dims = NULL,
    reduction.model = NULL,
    transferdata.args = list(),
    integrateembeddings.args = list(),
    projectumap.args = list(),
    verbose = TRUE
)
```


Arguments

anchorset	An AnchorSet object
query	Query object used in anchorset construction
reference	Reference object used in anchorset construction
refdata	Data to transfer. This can be specified in one of two ways:

- The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
- The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with GetAssayData and provide that matrix here.
new. reduction. name
Name for new integrated dimensional reduction.
reference. reduction
Name of reduction to use from the reference for neighbor finding
reference.dims Dimensions (columns) to use from reference
query. dims Dimensions (columns) to use from query
reduction.model
DimReduc object that contains the umap model
transferdata.args
A named list of additional arguments to TransferData
integrateembeddings.args
A named list of additional arguments to IntegrateEmbeddings
projectumap.args
A named list of additional arguments to ProjectUMAP
verbose Print progress bars and output

Value

Returns a modified query Seurat object containing:

- New Assays corresponding to the features transferred and/or their corresponding prediction scores from TransferData
- An integrated reduction from IntegrateEmbeddings
- A projected UMAP reduction of the query cells projected into the reference UMAP using ProjectUMAP

```
merge.SCTAssay Merge SCTAssay objects
```


Description

Merge SCTAssay objects

Usage

```
    ## S3 method for class 'SCTAssay'
    merge(
        x = NULL,
        y = NULL,
        add.cell.ids = NULL,
        merge.data = TRUE,
        na.rm = TRUE,
        ..
    )
```


Arguments

x
y
add.cell.ids A character vector of length $(x=c(x, y))$; appends the corresponding values to the start of each objects' cell names
merge.data Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
na.rm If na.rm = TRUE, this will only preserve residuals that are present in all SCTAssays being merged. Otherwise, missing residuals will be populated with NAs.
... Arguments passed to other methods

Description

Calculates relative contribution of each feature to each cell for given set of features.

```
Usage
    MetaFeature(
    object,
    features,
    meta.name = "metafeature",
    cells = NULL,
    assay = NULL,
    slot = "data"
)
```


Arguments

object	A Seurat object
features	List of features to aggregate
meta. name	Name of column in metadata to store metafeature
cells	List of cells to use (default all cells)
assay	Which assay to use
slot	Which slot to take data from (default data)

Value

Returns a Seurat object with metafeature stored in objct metadata

Examples

```
data("pbmc_small")
pbmc_small <- MetaFeature(
        object = pbmc_small,
        features = c("LTB", "EAF2"),
        meta.name = 'var.aggregate'
)
head(pbmc_small[[]])
```

MinMax

Description

Apply a ceiling and floor to all values in a matrix

Usage

MinMax(data, min, max)

Arguments

data
min all values below this min value will be replaced with min
$\max \quad$ all values above this max value will be replaced with max

Value

Returns matrix after performing these floor and ceil operations

Examples

```
mat <- matrix (data \(=\) rbinom \((\mathrm{n}=25\), size \(=20\), prob \(=0.2)\), nrow \(=5\) )
mat
MinMax (data \(=\) mat, \(\min =4, \max =5)\)
```

```
MixingMetric Calculates a mixing metric
```


Description

Here we compute a measure of how well mixed a composite dataset is. To compute, we first examine the local neighborhood for each cell (looking at max.k neighbors) and determine for each group (could be the dataset after integration) the k nearest neighbor and what rank that neighbor was in the overall neighborhood. We then take the median across all groups as the mixing metric per cell.

Usage

```
MixingMetric(
        object,
        grouping.var,
        reduction = "pca",
        dims = 1:2,
        k = 5,
        max.k = 300,
        eps = 0,
        verbose = TRUE
    )
```


Arguments

object	Seurat object
grouping.var	Grouping variable for dataset
reduction	Which dimensionally reduced space to use
dims	Dimensions to use

k	Neighbor number to examine per group
max.k	Maximum size of local neighborhood to compute
eps	Error bound on the neighbor finding algorithm (from RANN)
verbose	Displays progress bar

Value

Returns a vector of values of the mixing metric for each cell

```
MixscapeHeatmap Differential expression heatmap for mixscape
```


Description

Draws a heatmap of single cell feature expression with cells ordered by their mixscape ko probabilities.

Usage

```
MixscapeHeatmap(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    balanced = TRUE,
    logfc.threshold = 0.25,
    assay = "RNA",
    max.genes = 100,
    test.use = "wilcox",
    max.cells.group = NULL,
    order.by.prob = TRUE,
    group.by = NULL,
    mixscape.class = "mixscape_class",
    prtb.type = "KO",
    fc.name = "avg_log2FC",
    pval.cutoff = 0.05,
)
```


Arguments

object An object
ident. 1 Identity class to define markers for; pass an object of class phylo or 'clustertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
ident. 2 A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident. 1 , must pass a node to find markers for

balanced
$\operatorname{logfc.threshold~}$

Limit testing to genes which show, on average, at least X-fold difference (log-
scale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold
speeds up the function, but can miss weaker signals.

assay
max.genes

test.use \quad| Assay to use in differential expression testing |
| :--- |

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells. 1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC$0.5) * 2$) ranked matrix of putative differentially expressed genes.
- " t " : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support prefiltering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/L

[^0]Number of cells per identity to plot.

order.by.prob	Order cells on heatmap based on their mixscape knockout probability from high- est to lowest score.
group.by	(Deprecated) Option to split densities based on mixscape classification. Please use mixscape.class instead
mixscape.class	metadata column with mixscape classifications.
prtb.type	specify type of CRISPR perturbation expected for labeling mixscape classifica- tions. Default is KO.
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame. Default is avg_log2FC
pval.cutoff	P-value cut-off for selection of significantly DE genes.
\ldots	Arguments passed to other methods and to specific DE methods

Value

A ggplot object.

$$
\text { MixscapeLDA } \quad \text { Linear discriminant analysis on pooled CRISPR screen data. }
$$

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data. Finally, it uses the first 10 principle components from each projection as input to lda in MASS package together with mixscape class labels.

Usage

```
MixscapeLDA(
    object,
    assay = NULL,
    ndims.print = 1:5,
    nfeatures.print = 30,
    reduction.key = "LDA_",
    seed = 42,
    pc.assay = "PRTB",
    labels = "gene",
    nt.label = "NT",
    npcs = 10,
    verbose = TRUE,
    logfc.threshold = 0.25
)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { An object of class Seurat. } \\
\text { assay } & \text { Assay to use for performing Linear Discriminant Analysis (LDA). } \\
\text { ndims.print } & \text { Number of LDA dimensions to print. } \\
\text { nfeatures.print } & \\
& \begin{array}{l}
\text { Number of features to print for each LDA component. }
\end{array} \\
\text { reduction.key } & \text { Reduction key name. } \\
\text { seed } & \text { Value for random seed } \\
\text { pc.assay } & \text { Assay to use for running Principle components analysis. } \\
\text { labels } & \begin{array}{l}
\text { Meta data column with target gene class labels. }
\end{array} \\
\begin{array}{ll}
\text { nt.label } & \text { Name of non-targeting cell class. } \\
\text { npcs } & \text { Number of principle components to use. } \\
\text { verbose } & \begin{array}{l}
\text { Print progress bar. }
\end{array} \\
\text { logfc. threshold }
\end{array} & \begin{array}{l}
\text { Limit testing to genes which show, on average, at least X-fold difference (log- } \\
\text { scale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold }
\end{array} \\
& \text { speeds up the function, but can miss weaker signals. }
\end{array}
$$

Value

Returns a Seurat object with LDA added in the reduction slot.

ModalityWeights-class The ModalityWeights Class

Description

The ModalityWeights class is an intermediate data storage class that stores the modality weight and other related information needed for performing downstream analyses - namely data integration (FindModalityWeights) and data transfer (FindMultiModalNeighbors).

Slots

modality. weight.list A list of modality weights value from all modalities
modality.assay Names of assays for the list of dimensional reductions
params A list of parameters used in the FindModalityWeights
score.matrix a list of score matrices representing cross and within-modality prediction score, and kernel value
command Store log of parameters that were used

MULTIseqDemux Demultiplex samples based on classification method from MULTI-seq (McGinnis et al., bioRxiv 2018)

Description

Identify singlets, doublets and negative cells from multiplexing experiments. Annotate singlets by tags.

Usage

MULTIseqDemux (
object,
assay = "HTO",
quantile $=0.7$,
autoThresh = FALSE,
maxiter = 5,
qrange $=\operatorname{seq}($ from $=0.1$, to $=0.9$, by $=0.05)$,
verbose = TRUE
)

Arguments

object	Seurat object. Assumes that the specified assay data has been added
assay	Name of the multiplexing assay (HTO by default)
quantile	The quantile to use for classification
autoThresh	Whether to perform automated threshold finding to define the best quantile. De- fault is FALSE
maxiter	Maximum number of iterations if autoThresh = TRUE. Default is 5
qrange	A range of possible quantile values to try if autoThresh = TRUE
verbose	Prints the output

Value

A Seurat object with demultiplexing results stored at object\$MULTI_ID

References

https://www.biorxiv.org/content/10.1101/387241v1

Examples

```
## Not run:
object <- MULTIseqDemux(object)
## End(Not run)
```

```
    Neighbor-class The Neighbor Class
```


Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Neighbor-class
NNPlot Highlight Neighbors in DimPlot

Description

It will color the query cells and the neighbors of the query cells in the DimPlot

Usage

NNPlot (
object,
reduction,
nn.idx,
query.cells,
dims = 1:2,
label = FALSE,
label.size = 4,
repel = FALSE,
sizes.highlight = 2,
pt.size $=1$,
cols.highlight $=c(" \# 377 e b 8 ", \quad " \# 41 a 1 c ")$,
na.value = "\#bdbdbd",
order = c("self", "neighbors", "other"),
show.all.cells = TRUE,
)

Arguments

object	Seurat object
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
nn.idx	the neighbor index of all cells

query.cells dims	cells used to find their neighbors Dimensions to plot, must be a two-length numeric vector specifying x- and y- dimensions
label label.size repel sizes.highlight	Whether to label the clusters Sets size of labels
Repel labels	

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects
NormalizeData Normalize Data

Description

Normalize the count data present in a given assay.

Usage

```
    NormalizeData(object, ...)
    ## Default S3 method:
    NormalizeData(
        object,
        normalization.method = "LogNormalize",
        scale.factor = 10000,
        margin = 1,
        block.size = NULL,
        verbose = TRUE,
    )
```

```
## S3 method for class 'Assay'
NormalizeData(
    object,
    normalization.method = "LogNormalize",
    scale.factor = 10000,
    margin = 1,
    verbose = TRUE,
    ...
)
## S3 method for class 'Seurat'
NormalizeData(
    object,
    assay = NULL,
    normalization.method = "LogNormalize",
    scale.factor = 10000,
    margin = 1,
    verbose = TRUE,
    ...
)
```


Arguments

object	An object
	Arguments passed to other methods
normalization.method	
	Method for normalization.
	- LogNormalize: Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log 1p.
	- CLR: Applies a centered log ratio transformation
	- RC: Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set scale. factor $=1 \mathrm{e} 6$
scale.factor	Sets the scale factor for cell-level normalization
margin	If performing CLR normalization, normalize across features (1) or cells (2)
block.size	How many cells should be run in each chunk, will try to split evenly across threads
verbose	display progress bar for normalization procedure
assay	Name of assay to use

Value

Returns object after normalization

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)
## End(Not run)
```

PCASigGenes \quad Significant genes from a PCA

Description

Returns a set of genes, based on the JackStraw analysis, that have statistically significant associations with a set of PCs.

Usage

PCASigGenes(object, pcs.use, pval.cut = 0.1, use.full = FALSE, max.per.pc = NULL
)

Arguments

object	Seurat object
pcs.use	PCS to use.
pval.cut	P-value cutoff
use.full	Use the full list of genes (from the projected PCA). Assumes that ProjectDim has been run. Currently, must be set to FALSE.
max.per.pc	Maximum number of genes to return per PC. Used to avoid genes from one PC dominating the entire analysis.

Value

A vector of genes whose p-values are statistically significant for at least one of the given PCs.

See Also

ProjectDim JackStraw

Examples

```
data("pbmc_small")
PCASigGenes(pbmc_small, pcs.use = 1:2)
```


Description

Calculate the percentage of a vector above some threshold

Usage

PercentAbove(x, threshold)

Arguments

x	Vector of values
threshold	Threshold to use when calculating percentage

Value

Returns the percentage of x values above the given threshold

Examples

set.seed(42)
PercentAbove(sample(1:100, 10), 75)

$$
\begin{aligned}
& \text { PercentageFeatureSet } \begin{array}{l}
\text { Calculate the percentage of all counts that belong to a given set of } \\
\text { features }
\end{array}
\end{aligned}
$$

Description

This function enables you to easily calculate the percentage of all the counts belonging to a subset of the possible features for each cell. This is useful when trying to compute the percentage of transcripts that map to mitochondrial genes for example. The calculation here is simply the column sum of the matrix present in the counts slot for features belonging to the set divided by the column sum for all features times 100 .

Usage

```
PercentageFeatureSet(
        object,
        pattern = NULL,
        features = NULL,
        col.name = NULL,
        assay = NULL
)
```


Arguments

object
pattern
features
col.name Name in meta.data column to assign. If this is not null, returns a Seurat object with the proportion of the feature set stored in metadata.
assay Assay to use

Value

Returns a vector with the proportion of the feature set or if md.name is set, returns a Seurat object with the proportion of the feature set stored in metadata.

Examples

```
data("pbmc_small")
# Calculate the proportion of transcripts mapping to mitochondrial genes
# NOTE: The pattern provided works for human gene names. You may need to adjust depending on your
# system of interest
pbmc_small[["percent.mt"]] <- PercentageFeatureSet(object = pbmc_small, pattern = "^MT-")
```

 PlotClusterTree Plot clusters as a tree

Description

Plots previously computed tree (from BuildClusterTree)

Usage

PlotClusterTree(object, direction = "downwards", ...)

Arguments

object	Seurat object
direction	A character string specifying the direction of the tree (default is downwards) Possible options: "rightwards", "leftwards", "upwards", and "downwards".
\ldots	Additional arguments to ape: :plot. phylo

Value

Plots dendogram (must be precomputed using BuildClusterTree), returns no value

Examples

```
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    PlotClusterTree(object = pbmc_small)
}
```

PlotPerturbScore Function to plot perturbation score distributions.

Description

Density plots to visualize perturbation scores calculated from RunMixscape function.

Usage

PlotPerturbScore(object,
target.gene.class = "gene",
target.gene.ident $=$ NULL,
mixscape.class = "mixscape_class",
col = "orange2",
split.by = NULL,
before.mixscape = FALSE,
prtb.type = "KO"
)

Arguments

object An object of class Seurat.
target.gene.class
meta data column specifying all target gene names in the experiment.
target.gene.ident
Target gene name to visualize perturbation scores for.
mixscape.class meta data column specifying mixscape classifications.
$\begin{array}{ll}\text { col } & \begin{array}{l}\text { Specify color of target gene class or knockout cell class. For control non- } \\ \text { targeting and non-perturbed cells, colors are set to different shades of grey. }\end{array} \\ \text { split.by } & \begin{array}{l}\text { For datasets with more than one cell type. Set equal TRUE to visualize pertur- } \\ \text { bation scores for each cell type separately. }\end{array} \\ \text { before.mixscape } & \begin{array}{l}\text { Option to split densities based on mixscape classification (default) or original } \\ \text { target gene classification. Default is set to NULL and plots cells by original } \\ \text { class ID. }\end{array} \\ \text { prtb.type } & \begin{array}{l}\text { specify type of CRISPR perturbation expected for labeling mixscape classifica- } \\ \text { tions. Default is KO. }\end{array}\end{array}$

Value

A ggplot object.
PolyDimPlot Polygon DimPlot

Description

Plot cells as polygons, rather than single points. Color cells by identity, or a categorical variable in metadata

Usage

PolyDimPlot(
object,
group.by = NULL,
cells = NULL,
poly.data = "spatial",
flip.coords = FALSE
)

Arguments

object	Seurat object
group.by	A grouping variable present in the metadata. Default is to use the groupings present in the current cell identities (Idents (object = object))
cells	Vector of cells to plot (default is all cells)
poly.data	Name of the polygon dataframe in the misc slot
flip.coords	Flip x and y coordinates

Value

Returns a ggplot object

```
PolyFeaturePlot Polygon FeaturePlot
```


Description

Plot cells as polygons, rather than single points. Color cells by any value accessible by FetchData.

```
Usage
    PolyFeaturePlot(
        object,
        features,
        cells = NULL,
        poly.data = "spatial",
        ncol = ceiling(x = length(x = features)/2),
        min.cutoff = 0,
        max.cutoff = NA,
        common.scale = TRUE,
        flip.coords = FALSE
    )
```


Arguments

object	Seurat object
features	Vector of features to plot. Features can come from: - An Assay feature (e.g. a gene name - "MS4A1") - A column name from meta.data (e.g. mitochondrial percentage - "percent.mito") - A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
cells	Vector of cells to plot (default is all cells)
poly.data	Name of the polygon dataframe in the misc slot
ncol	Number of columns to split the plot into
min.cutoff	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of 'q\#\#' where '\#\#' is the quantile (eg, 'q1', 'q10')
max.cutoff	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of 'q\#\#' where '\#\#' is the quantile (eg, 'q1', 'q10')
common.scale	...
flip.coords	Flip x and y coordinates

Value

Returns a ggplot object

Description

This function will predict expression or cell embeddings from its k nearest neighbors index. For each cell, it will average its k neighbors value to get its new imputed value. It can average expression value in assays and cell embeddings from dimensional reductions.

Usage

PredictAssay(object, nn.idx, assay, reduction = NULL, dims = NULL, return.assay = TRUE, slot = "scale.data", features = NULL, mean. function = rowMeans, seed $=4273$, verbose $=$ TRUE
)

Arguments

object	The object used to calculate knn
nn.idx	k near neighbour indices. A cells x k matrix.
assay	Assay used for prediction
reduction	Cell embedding of the reduction used for prediction
dims	Number of dimensions of cell embedding
return.assay	Return an assay or a predicted matrix
slot	slot used for prediction
features	features used for prediction
mean.function	the function used to calculate row mean
seed	Sets the random seed to check if the nearest neighbor is query cell
verbose	Print progress

Value

return an assay containing predicted expression value in the data slot

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data.

Usage

PrepLDA(object, de.assay = "RNA", pc.assay = "PRTB", labels = "gene", nt.label = "NT", npcs = 10, verbose = TRUE, logfc.threshold $=0.25$
)

Arguments

object	An object of class Seurat.
de. assay	Assay to use for selection of DE genes.
pc. assay	Assay to use for running Principle components analysis.
labels	Meta data column with target gene class labels.
nt. label	Name of non-targeting cell class.
npcs	Number of principle components to use.
verbose	Print progress bar.
logfc. threshold	

Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.

Value

Returns a list of the first 10 PCs from each projection.

PrepSCTFindMarkers Prepare object to run differential expression on SCT assay with multiple models

Description

Given a merged object with multiple SCT models, this function uses minimum of the median UMI (calculated using the raw UMI counts) of individual objects to reverse the individual SCT regression model using minimum of median UMI as the sequencing depth covariate. The counts slot of the SCT assay is replaced with recorrected counts and the data slot is replaced with $\log 1 \mathrm{p}$ of recorrected counts.

Usage

PrepSCTFindMarkers(object, assay = "SCT", verbose = TRUE)

Arguments

object	Seurat object with SCT assays
assay	Assay name where for SCT objects are stored; Default is 'SCT'
verbose	Print messages and progress

Value

Returns a Seurat object with recorrected counts and data in the SCT assay.

Examples

```
data("pbmc_small")
pbmc_small1 <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small2 <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_merged <- merge(x = pbmc_small1, y = pbmc_small2)
pbmc_merged <- PrepSCTFindMarkers(object = pbmc_merged)
markers <- FindMarkers(
    object = pbmc_merged,
    ident.1 = "0",
    ident.2 = "1",
    assay = "SCT"
)
pbmc_subset <- subset(pbmc_merged, idents = c("0", "1"))
markers_subset <- FindMarkers(
    object = pbmc_subset,
    ident. 1 = "0",
    ident.2 = "1",
    assay = "SCT",
    recorrect_umi = FALSE
)
```


Description

This function takes in a list of objects that have been normalized with the SCTransform method and performs the following steps:

- If anchor.features is a numeric value, calls SelectIntegrationFeatures to determine the features to use in the downstream integration procedure.
- Ensures that the sctransform residuals for the features specified to anchor.features are present in each object in the list. This is necessary because the default behavior of SCTransform is to only store the residuals for the features determined to be variable. Residuals are recomputed for missing features using the stored model parameters via the GetResidual function.
- Subsets the scale.data slot to only contain the residuals for anchor.features for efficiency in downstream processing.

```
Usage
    PrepSCTIntegration(
        object.list,
        assay = NULL,
        anchor.features = 2000,
        sct.clip.range = NULL,
        verbose = TRUE
    )
```


Arguments

object.list A list of Seurat objects to prepare for integration
assay The name of the Assay to use for integration. This can be a single name if all the assays to be integrated have the same name, or a character vector containing the name of each Assay in each object to be integrated. The specified assays must have been normalized using SCTransform. If NULL (default), the current default assay for each object is used.
anchor.features
Can be either:

- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process
sct.clip.range Numeric of length two specifying the min and max values the Pearson residual will be clipped to
verbose Display output/messages

Value

A list of Seurat objects with the appropriate scale.data slots containing only the required anchor. features.

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset and take the first 2 to integrate
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]
# perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)
# select integration features and prep step
features <- SelectIntegrationFeatures(pancreas.list)
pancreas.list <- PrepSCTIntegration(
        pancreas.list,
        anchor.features = features
)
# downstream integration steps
anchors <- FindIntegrationAnchors(
        pancreas.list,
        normalization.method = "SCT",
        anchor.features = features
)
pancreas.integrated <- IntegrateData(anchors)
## End(Not run)
```


Description

Takes a pre-computed dimensional reduction (typically calculated on a subset of genes) and projects this onto the entire dataset (all genes). Note that the cell loadings will remain unchanged, but now there are gene loadings for all genes.

Usage

ProjectDim(
object,
reduction = "pca",

```
    assay = NULL,
    dims.print = 1:5,
    nfeatures.print = 20,
    overwrite = FALSE,
    do.center = FALSE,
    verbose = TRUE
)
```


Arguments

object	Seurat object
reduction	Reduction to use
assay	Assay to use
dims.print	Number of dims to print features for
nfeatures.print	
	Number of features with highest/lowest loadings to print for each dimension
overwrite	Replace the existing data in feature.loadings
do.center	Center the dataset prior to projection (should be set to TRUE)
verbose	Print top genes associated with the projected dimensions

Value

Returns Seurat object with the projected values

Examples

```
data("pbmc_small")
pbmc_small
pbmc_small <- ProjectDim(object = pbmc_small, reduction = "pca")
# Vizualize top projected genes in heatmap
DimHeatmap(object = pbmc_small, reduction = "pca", dims = 1, balanced = TRUE)
```


Description

This function will take a query dataset and project it into the coordinates of a provided reference UMAP. This is essentially a wrapper around two steps:

- FindNeighbors - Find the nearest reference cell neighbors and their distances for each query cell.
- RunUMAP - Perform umap projection by providing the neighbor set calculated above and the umap model previously computed in the reference.

Usage

```
ProjectUMAP(query, ...)
## Default S3 method:
ProjectUMAP(
    query,
    query.dims = NULL,
    reference,
    reference.dims = NULL,
    k.param = 30,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "cosine",
    12.norm = FALSE,
    cache.index = TRUE,
    index = NULL,
    neighbor.name = "query_ref.nn",
    reduction.model,
)
## S3 method for class 'DimReduc'
ProjectUMAP(
    query,
    query.dims = NULL,
    reference,
    reference.dims = NULL,
    k.param = 30,
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "cosine",
    l2.norm = FALSE,
    cache.index = TRUE,
    index = NULL,
    neighbor.name = "query_ref.nn",
    reduction.model,
)
## S3 method for class 'Seurat'
ProjectUMAP(
    query,
    query.reduction,
    query.dims = NULL,
    reference,
    reference.reduction,
    reference.dims = NULL,
    k.param = 30,
```

```
    nn.method = "annoy",
    n.trees = 50,
    annoy.metric = "cosine",
    l2.norm = FALSE,
    cache.index = TRUE,
    index = NULL,
    neighbor.name = "query_ref.nn",
    reduction.model,
    reduction.name = "ref.umap",
    reduction.key = "refUMAP_",
)
```


Arguments

query	Query dataset
	Additional parameters to RunUMAP
query.dims	Dimensions (columns) to use from query
reference	Reference dataset
reference.dims	Dimensions (columns) to use from reference
k.param	Defines k for the k-nearest neighbor algorithm
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
annoy.metric	Distance metric for annoy. Options include: euclidean, cosine, manhattan, and hamming
12. norm	Take L2Norm of the data
cache.index	Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE)
index	Precomputed index. Useful if querying new data against existing index to avoid recomputing.
	Name to store neighbor information in the query
reduction.model	
	DimReduc object that contains the umap model
query.reduction	
	Name of reduction to use from the query for neighbor finding
reference. reduction	
	Name of reduction to use from the reference for neighbor finding
reduction. name	Name of projected UMAP to store in the query
reduction.key	Value for the projected UMAP key

Radius.SlideSeq Get Spot Radius

Description

Get Spot Radius

Usage

```
## S3 method for class 'SlideSeq'
Radius(object)
## S3 method for class 'STARmap'
Radius(object)
## S3 method for class 'VisiumV1'
Radius(object)
```


Arguments

object An image object

See Also

SeuratObject: :Radius
Read10X Load in data from 10X

Description

Enables easy loading of sparse data matrices provided by 10X genomics.

Usage

```
    Read10X(
        data.dir,
        gene.column = 2,
        cell.column = 1,
        unique.features = TRUE,
        strip.suffix = FALSE
    )
```


Arguments

data.dir Directory containing the matrix.mtx, genes.tsv (or features.tsv), and barcodes.tsv files provided by 10X. A vector or named vector can be given in order to load several data directories. If a named vector is given, the cell barcode names will be prefixed with the name.
gene.column Specify which column of genes.tsv or features.tsv to use for gene names; default is 2
cell. column Specify which column of barcodes.tsv to use for cell names; default is 1
unique.features
Make feature names unique (default TRUE)
strip.suffix Remove trailing "-1" if present in all cell barcodes.

Value

If features.csv indicates the data has multiple data types, a list containing a sparse matrix of the data from each type will be returned. Otherwise a sparse matrix containing the expression data will be returned.

Examples

```
## Not run:
# For output from CellRanger < 3.0
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show barcodes.tsv, genes.tsv, and matrix.mtx
expression_matrix <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = expression_matrix)
# For output from CellRanger >= 3.0 with multiple data types
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show barcodes.tsv.gz, features.tsv.gz, and matrix.mtx.gz
data <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = data$`Gene Expression`)
seurat_object[['Protein']] = CreateAssayObject(counts = data$`Antibody Capture`)
## End(Not run)
```

Read10X_h5 Read 10X hdf5 file

Description

Read count matrix from 10X CellRanger hdf5 file. This can be used to read both scATAC-seq and scRNA-seq matrices.

Usage

Read10X_h5(filename, use.names = TRUE, unique.features = TRUE)

Arguments

filename Path to h5 file use. names Label row names with feature names rather than ID numbers. unique.features	
	Make feature names unique (default TRUE)

Value

Returns a sparse matrix with rows and columns labeled. If multiple genomes are present, returns a list of sparse matrices (one per genome).

```
Read10X_Image Load a 10X Genomics Visium Image
```


Description

Load a 10X Genomics Visium Image

```
Usage
    Read10X_Image(
        image.dir,
        image.name = "tissue_lowres_image.png",
        filter.matrix = TRUE,
    )
```


Arguments

image.dir Path to directory with 10X Genomics visium image data; should include files tissue_lowres_image.png,
image.name The file name of the image. Defaults to tissue_lowres_image.png. scalefactors_json.json and tissue_positions_list.csv
filter.matrix Filter spot/feature matrix to only include spots that have been determined to be over tissue.
... Ignored for now

Value

A VisiumV1 object

See Also

VisiumV1 Load10X_Spatial

Description

Enables easy loading of sparse data matrices

Usage

```
    ReadMtx(
        mtx,
        cells,
        features,
        cell.column = 1,
        feature.column = 2,
        cell.sep = "\t",
        feature.sep = "\t",
        skip.cell = 0,
        skip.feature = 0,
        mtx.transpose = FALSE,
        unique.features = TRUE,
        strip.suffix = FALSE
    )
```


Arguments

mtx \quad Name or remote URL of the mtx file
cells Name or remote URL of the cells/barcodes file
features Name or remote URL of the features/genes file
cell.column Specify which column of cells file to use for cell names; default is 1
feature.column Specify which column of features files to use for feature/gene names; default is 2
cell.sep Specify the delimiter in the cell name file
feature.sep Specify the delimiter in the feature name file
skip.cell Number of lines to skip in the cells file before beginning to read cell names
skip.feature Number of lines to skip in the features file before beginning to gene names
$m t x$.transpose Transpose the matrix after reading in
unique.features
Make feature names unique (default TRUE)
strip.suffix Remove trailing " -1 " if present in all cell barcodes.

Value

A sparse matrix containing the expression data.

Examples

```
## Not run:
# For local files:
expression_matrix <- ReadMtx(
    mtx = "count_matrix.mtx.gz", features = "features.tsv.gz",
    cells = "barcodes.tsv.gz"
)
seurat_object <- CreateSeuratObject(counts = expression_matrix)
# For remote files:
expression_matrix <- ReadMtx(mtx = "http://localhost/matrix.mtx",
cells = "http://localhost/barcodes.tsv",
features = "http://localhost/genes.tsv")
seurat_object <- CreateSeuratObject(counts = data)
## End(Not run)
```

ReadParseBio Read output from Parse Biosciences

Description

Read output from Parse Biosciences

Usage

ReadParseBio(data.dir, ...)

Arguments

data.dir Directory containing the data files
... Extra parameters passed to ReadMtx

ReadSlideSeq Load Slide-seq spatial data

Description

Load Slide-seq spatial data

Usage

ReadSlideSeq(coord.file, assay = "Spatial")

Arguments

coord.file	Path to csv file containing bead coordinate positions
assay	Name of assay to associate image to

Value

A SlideSeq object

See Also

SlideSeq

ReadSTARsolo

Read output from STARsolo

Description

Read output from STARsolo

Usage

ReadSTARsolo(data.dir, ...)

Arguments

$$
\begin{array}{ll}
\text { data.dir } & \text { Directory containing the data files } \\
\ldots & \text { Extra parameters passed to ReadMtx }
\end{array}
$$

RegroupIdents Regroup idents based on meta.data info

Description

For cells in each ident, set a new identity based on the most common value of a specified metadata column.

Usage

RegroupIdents(object, metadata)

Arguments

object	Seurat object
metadata	Name of metadata column

Value

A Seurat object with the active idents regrouped

Examples

```
data("pbmc_small")
pbmc_small <- RegroupIdents(pbmc_small, metadata = "groups")
```

RelativeCounts Normalize raw data to fractions

Description

Normalize count data to relative counts per cell by dividing by the total per cell. Optionally use a scale factor, e.g. for counts per million (CPM) use scale. factor $=1 \mathrm{e} 6$.

Usage

RelativeCounts(data, scale.factor $=1$, verbose $=$ TRUE)

Arguments

data	Matrix with the raw count data
scale.factor	Scale the result. Default is 1
verbose	Print progress

Value

Returns a matrix with the relative counts

Examples

```
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- RelativeCounts(data = mat)
mat_norm
```


Description

Rename Cells in an Object

```
Usage
    ## S3 method for class 'SCTAssay'
    RenameCells(object, new.names = NULL, ...)
    ## S3 method for class 'SlideSeq'
    RenameCells(object, new.names = NULL, ...)
    ## S3 method for class 'STARmap'
    RenameCells(object, new.names = NULL, ...)
    ## S3 method for class 'VisiumV1'
    RenameCells(object, new.names = NULL, ...)
```


Arguments

object An object
new. names vector of new cell names
... Arguments passed to other methods

See Also

SeuratObject: :RenameCells

RidgePlot \quad Single cell ridge plot

Description

Draws a ridge plot of single cell data (gene expression, metrics, PC scores, etc.)

Usage

```
RidgePlot(
    object,
    features,
    cols = NULL,
    idents = NULL,
    sort = FALSE,
    assay = NULL,
    group.by = NULL,
    y.max = NULL,
    same.y.lims = FALSE,
    log = FALSE,
    ncol = NULL,
    slot = "data",
    stack = FALSE,
    combine = TRUE,
    fill.by = "feature"
)
```


Arguments

object features	Seurat object Features to plot (gene expression, metrics, PC scores, anything that can be re- treived by FetchData)
cols	Colors to use for plotting
idents	Which classes to include in the plot (default is all)
sort	Sort identity classes (on the x-axis) by the average expression of the attribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction
assay	Name of assay to use, defaults to the active assay
group.by	Group (color) cells in different ways (for example, orig.ident)
y.max	Maximum y axis value
same.y.lims	Set all the y-axis limits to the same values plot the feature axis on log scale
ncol	Number of columns if multiple plots are displayed
slot	Use non-normalized counts data for plotting
stack	Horizontally stack plots for each feature
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot
fill.by	Color violins/ridges based on either 'feature' or 'ident'

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
RidgePlot(object = pbmc_small, features = 'PC_1')
```

RunCCA Perform Canonical Correlation Analysis

Description

Runs a canonical correlation analysis using a diagonal implementation of CCA. For details about stored CCA calculation parameters, see PrintCCAParams.

Usage

```
RunCCA(object1, object2, ...)
    ## Default S3 method:
    RunCCA(
        object1,
        object2,
        standardize = TRUE,
        num.cc = 20,
        seed.use = 42,
        verbose = FALSE,
    )
    ## S3 method for class 'Seurat'
    RunCCA(
        object1,
        object2,
        assay1 = NULL,
        assay2 = NULL,
        num.cc = 20,
        features = NULL,
        renormalize = FALSE,
        rescale = FALSE,
        compute.gene.loadings = TRUE,
        add.cell.id1 = NULL,
        add.cell.id2 = NULL,
        verbose = TRUE,
    )
```


Arguments

object1	First Seurat object
object2	Second Seurat object.
	Extra parameters (passed onto MergeSeurat in case with two objects passed, passed onto ScaleData in case with single object and rescale.groups set to TRUE)
standardize	Standardize matrices - scales columns to have unit variance and mean 0
num.cc	Number of canonical vectors to calculate
seed.use	Random seed to set. If NULL, does not set a seed
verbose	Show progress messages
assay1, assay2	Assays to pull from in the first and second objects, respectively
features	Set of genes to use in CCA. Default is the union of both the variable features sets present in both objects.
renormalize	Renormalize raw data after merging the objects. If FALSE, merge the data matrices also.
rescale	Rescale the datasets prior to CCA. If FALSE, uses existing data in the scale data slots.
compute.gene.loadings	
	Also compute the gene loadings. NOTE - this will scale every gene in the dataset which may impose a high memory cost.
add.cell.id1, add.cell.id2	
	Add ...

Value

Returns a combined Seurat object with the CCA results stored.

See Also

merge. Seurat

Examples

```
data("pbmc_small")
pbmc_small
# As CCA requires two datasets, we will split our test object into two just for this example
pbmc1 <- subset(pbmc_small, cells = colnames(pbmc_small)[1:40])
pbmc2 <- subset(pbmc_small, cells = colnames(x = pbmc_small)[41:80])
pbmc1[["group"]] <- "group1"
pbmc2[["group"]] <- "group2"
pbmc_cca <- RunCCA(object1 = pbmc1, object2 = pbmc2)
# Print results
print(x = pbmc_cca[["cca"]])
```

RunICA
Run Independent Component Analysis on gene expression

Description

Run fastica algorithm from the ica package for ICA dimensionality reduction. For details about stored ICA calculation parameters, see PrintICAParams.

Usage

```
    RunICA(object, ...)
```

 \#\# Default S3 method:
 RunICA(
 object,
 assay \(=\) NULL,
 nics \(=50\),
 rev.ica = FALSE,
 ica.function = "icafast",
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print \(=30\),
 reduction.name = "ica",
 reduction.key = "ica_",
 seed.use \(=42\),
 ...
)
 \#\# S3 method for class 'Assay'
 RunICA(
 object,
 assay = NULL,
 features = NULL,
 nics = 50,
 rev.ica \(=\) FALSE,
 ica.function = "icafast",
 verbose \(=\) TRUE,
 ndims.print \(=1: 5\),
 nfeatures.print \(=30\),
 reduction.name = "ica",
 reduction.key = "ica_",
 seed.use = 42,
)
 \#\# S3 method for class 'Seurat'
 RunICA(
    ```
    object,
    assay = NULL,
    features = NULL,
    nics = 50,
    rev.ica = FALSE,
    ica.function = "icafast",
    verbose = TRUE,
    ndims.print = 1:5,
    nfeatures.print = 30,
    reduction.name = "ica",
    reduction.key = "IC_",
    seed.use = 42,
)
```


Arguments

| object | Seurat object |
| :---: | :---: |
| | Additional arguments to be passed to fastica |
| assay | Name of Assay ICA is being run on |
| nics | Number of ICs to compute |
| rev.ica | By default, computes the dimensional reduction on the cell x feature matrix. Setting to true will compute it on the transpose (feature x cell matrix). |
| ica.function | ICA function from ica package to run (options: icafast, icaimax, icajade) |
| verbose | Print the top genes associated with high/low loadings for the ICs |
| ndims.print | ICs to print genes for |
| nfeatures.print | |
| | Number of genes to print for each IC |
| reduction.name | dimensional reduction name |
| reduction.key | dimensional reduction key, specifies the string before the number for the dimension names. |
| seed.use | Set a random seed. Setting NULL will not set a seed. |
| features | Features to compute ICA on |

RunLDA
Run Linear Discriminant Analysis

Description

Run Linear Discriminant Analysis
Function to perform Linear Discriminant Analysis.

Usage

```
RunLDA(object, ...)
## Default S3 method:
RunLDA(
    object,
    labels,
    assay = NULL,
    verbose = TRUE,
    ndims.print = 1:5,
    nfeatures.print = 30,
    reduction.key = "LDA_",
    seed = 42,
)
## S3 method for class 'Assay'
RunLDA(
    object,
    assay = NULL,
    labels,
    features = NULL,
    verbose = TRUE,
    ndims.print = 1:5,
    nfeatures.print = 30,
    reduction.key = "LDA_",
    seed = 42,
)
## S3 method for class 'Seurat'
RunLDA(
    object,
    assay = NULL,
    labels,
    features = NULL,
    reduction.name = "lda",
    reduction.key = "LDA_",
    seed = 42,
    verbose = TRUE,
    ndims.print = 1:5,
    nfeatures.print = 30,
)
```


Arguments

object An object of class Seurat.

| $\ldots .$. | Arguments passed to other methods |
| :--- | :--- |
| labels | Meta data column with target gene class labels. |
| assay | Assay to use for performing Linear Discriminant Analysis (LDA). |
| verbose | Print the top genes associated with high/low loadings for the PCs |
| ndims.print | Number of LDA dimensions to print. |
| nfeatures.print | Number of features to print for each LDA component. |
| reduction.key | Reduction key name. |
| seed | Value for random seed |
| features | Features to compute LDA on |
| reduction.name | dimensional reduction name, lda by default |

Run the mark variogram computation on a given position matrix and expression matrix.

Description

Wraps the functionality of markvario from the spatstat package.

Usage

RunMarkVario(spatial.location, data, ...)

Arguments

spatial.location
A 2 column matrix giving the spatial locations of each of the data points also in data
data Matrix containing the data used as "marks" (e.g. gene expression)
Arguments passed to markvario
RunMixscape Run Mixscape

Description

Function to identify perturbed and non-perturbed gRNA expressing cells that accounts for multiple treatments/conditions/chemical perturbations.

Usage

```
    RunMixscape(
        object,
        assay = "PRTB",
        slot = "scale.data",
        labels = "gene",
        nt.class.name = "NT",
        new.class.name = "mixscape_class",
        min.de.genes = 5,
        min.cells = 5,
        de.assay = "RNA",
        logfc.threshold = 0.25,
        iter.num = 10,
        verbose = FALSE,
        split.by = NULL,
        fine.mode = FALSE,
        fine.mode.labels = "guide_ID",
        prtb.type = "KO"
    )
```


Arguments

object An object of class Seurat.
assay Assay to use for mixscape classification.
slot Assay data slot to use.
labels metadata column with target gene labels.
nt.class.name Classification name of non-targeting gRNA cells.
new.class. name Name of mixscape classification to be stored in metadata.
min.de.genes Required number of genes that are differentially expressed for method to separate perturbed and non-perturbed cells.
min.cells Minimum number of cells in target gene class. If fewer than this many cells are assigned to a target gene class during classification, all are assigned NP.
de.assay Assay to use when performing differential expression analysis. Usually RNA.
logfc. threshold
Limit testing to genes which show, on average, at least X-fold difference (logscale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.
iter.num Number of normalmixEM iterations to run if convergence does not occur.
verbose Display messages
split.by metadata column with experimental condition/cell type classification information. This is meant to be used to account for cases a perturbation is condition/cell type-specific.
fine.mode When this is equal to TRUE, DE genes for each target gene class will be calculated for each gRNA separately and pooled into one DE list for calculating the perturbation score of every cell and their subsequent classification.
fine.mode.labels
metadata column with gRNA ID labels.
prtb.type specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.

Value

Returns Seurat object with with the following information in the meta data and tools slots:
mixscape_class Classification result with cells being either classified as perturbed (KO, by default) or non-perturbed (NP) based on their target gene class.
mixscape_class.global Global classification result (perturbed, NP or NT)
p_ko Posterior probabilities used to determine if a cell is KO (default). Name of this item will change to match prtb.type parameter setting. (>0.5) or NP
perturbation score Perturbation scores for every cell calculated in the first iteration of the function.

RunMoransI Compute Moran's I value.

Description

Wraps the functionality of the Moran.I function from the ape package. Weights are computed as 1/distance.

Usage

RunMoransI(data, pos, verbose $=$ TRUE)

Arguments

| data | Expression matrix |
| :--- | :--- |
| pos | Position matrix |
| verbose | Display messages/progress |

RunPCA Run Principal Component Analysis

Description

Run a PCA dimensionality reduction. For details about stored PCA calculation parameters, see PrintPCAParams.

Usage

RunPCA(object, ...)
\#\# Default S3 method:
RunPCA(
object,
assay = NULL,
npcs $=50$,
rev.pca = FALSE,
weight.by.var = TRUE,
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print $=30$,
reduction.key = "PC_",
seed.use $=42$,
approx = TRUE,
...
)
\#\# S3 method for class 'Assay'
RunPCA(
object,
assay = NULL,
features = NULL,
npcs $=50$,
rev.pca = FALSE,
weight.by.var = TRUE, verbose = TRUE, ndims.print $=1: 5$, nfeatures.print $=30$, reduction.key = "PC_", seed.use = 42,
)
\#\# S3 method for class 'Seurat'
RunPCA(
object,

```
    assay = NULL,
    features = NULL,
    npcs = 50,
    rev.pca = FALSE,
    weight.by.var = TRUE,
    verbose = TRUE,
    ndims.print = 1:5,
    nfeatures.print = 30,
    reduction.name = "pca",
    reduction.key = "PC_",
    seed.use = 42,
)
```


Arguments

| object | An object |
| :---: | :---: |
| | Arguments passed to other methods and IRLBA |
| assay | Name of Assay PCA is being run on |
| npes | Total Number of PCs to compute and store (50 by default) |
| rev.pca | By default computes the PCA on the cell x gene matrix. Setting to true will compute it on gene x cell matrix. |
| weight.by.var | Weight the cell embeddings by the variance of each PC (weights the gene loadings if rev.pca is TRUE) |
| verbose | Print the top genes associated with high/low loadings for the PCs |
| ndims.print | PCs to print genes for |
| nfeatures.print | |
| | Number of genes to print for each PC |
| reduction.key | dimensional reduction key, specifies the string before the number for the dimension names. PC by default |
| seed.use | Set a random seed. By default, sets the seed to 42 . Setting NULL will not set a seed. |
| approx | Use truncated singular value decomposition to approximate PCA |
| features | Features to compute PCA on. If features=NULL, PCA will be run using the variable features for the Assay. Note that the features must be present in the scaled data. Any requested features that are not scaled or have 0 variance will be dropped, and the PCA will be run using the remaining features. |
| reduction.name dimensional reduction name, pca by default | |

Value

Returns Seurat object with the PCA calculation stored in the reductions slot

Description

Run a supervised LSI (SLSI) dimensionality reduction supervised by a cell-cell kernel. SLSI is used to capture a linear transformation of peaks that maximizes its dependency to the given cell-cell kernel.

Usage

RunSLSI(object, ...)
\#\# Default S3 method:
RunSLSI(
object,
assay = NULL,
$\mathrm{n}=50$,
reduction.key = "SLSI_",
graph = NULL,
verbose = TRUE,
seed.use $=42$,
)
\#\# S3 method for class 'Assay'
RunSLSI(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.key = "SLSI_",
graph = NULL,
verbose = TRUE,
seed.use $=42$,
)
\#\# S3 method for class 'Seurat'
RunSLSI(
object,
assay = NULL,
features = NULL,
n = 50,
reduction.name = "slsi",
reduction.key = "SLSI_",
graph = NULL,

```
        verbose = TRUE,
        seed.use = 42,
    )
```


Arguments

| object | An object |
| :--- | :--- |
| \ldots | Arguments passed to IRLBA irlba |
| assay | Name of Assay SLSI is being run on |
| n | Total Number of SLSI components to compute and store |
| reduction.key | dimensional reduction key, specifies the string before the number for the dimen-
 sion names |
| graph | Graph used supervised by SLSI
 verbose |
| Display messages | |
| seed.use | Set a random seed. Setting NULL will not set a seed.
 features |
| Features to compute SLSI on. If NULL, SLSI will be run using the variable
 features for the Assay. | |
| reduction. name | dimensional reduction name |

Value

Returns Seurat object with the SLSI calculation stored in the reductions slot
RunSPCA Run Supervised Principal Component Analysis

Description

Run a supervised PCA (SPCA) dimensionality reduction supervised by a cell-cell kernel. SPCA is used to capture a linear transformation which maximizes its dependency to the given cell-cell kernel. We use SNN graph as the kernel to supervise the linear matrix factorization.

Usage

RunSPCA(object, ...)
\#\# Default S3 method:
RunSPCA(object, assay = NULL, npcs = 50,
reduction.key = "SPC_",
graph = NULL,
verbose $=$ FALSE,

```
    seed.use = 42,
)
## S3 method for class 'Assay'
RunSPCA(
    object,
    assay = NULL,
    features = NULL,
    npcs = 50,
    reduction.key = "SPC_",
    graph = NULL,
    verbose = TRUE,
    seed.use = 42,
)
## S3 method for class 'Seurat'
RunSPCA(
    object,
    assay = NULL,
    features = NULL,
    npcs = 50,
    reduction.name = "spca",
    reduction.key = "SPC_",
    graph = NULL,
    verbose = TRUE,
    seed.use = 42,
)
```


Arguments

| object | An object |
| :--- | :--- |
| \ldots | Arguments passed to other methods and IRLBA |
| assay | Name of Assay SPCA is being run on |
| npcs | Total Number of SPCs to compute and store (50 by default)
 reduction. key
 dimensional reduction key, specifies the string before the number for the dimen-
 sion names. SPC by default |
| graph | Graph used supervised by SPCA |
| verbose | Print the top genes associated with high/low loadings for the SPCs
 seed. use |
| Set a random seed. By default, sets the seed to 42. Setting NULL will not set a
 seed. | |
| features | Features to compute SPCA on. If features=NULL, SPCA will be run using the
 variable features for the Assay. |
| reduction. name | dimensional reduction name, spca by default |

Value

Returns Seurat object with the SPCA calculation stored in the reductions slot

References

Barshan E, Ghodsi A, Azimifar Z, Jahromi MZ. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition. 2011 Jul 1;44(7):1357-71. https://www.sciencedirect.com/science/article/pii/S0031320310005819? casa_token=AZMFg50tPnAAAAAA:_Udu7GJ7G2ed1-XSmr-3IGSISUwcHfMpNtCj-qacXH5SBC4nwzVid36GXI3r8XG8dK5W0Qu

RunTSNE Run t-distributed Stochastic Neighbor Embedding

Description

Run t-SNE dimensionality reduction on selected features. Has the option of running in a reduced dimensional space (i.e. spectral tSNE, recommended), or running based on a set of genes. For details about stored TSNE calculation parameters, see PrintTSNEParams.

Usage

```
RunTSNE(object, ...)
## S3 method for class 'matrix'
RunTSNE(
    object,
    assay = NULL,
    seed.use = 1,
    tsne.method = "Rtsne",
    dim.embed = 2,
    reduction.key = "tSNE_",
    )
    ## S3 method for class 'DimReduc'
    RunTSNE(
        object,
        cells = NULL,
        dims = 1:5,
        seed.use = 1,
        tsne.method = "Rtsne",
        dim.embed = 2,
        reduction.key = "tSNE_",
    )
    ## S3 method for class 'dist'
```

```
RunTSNE(
    object,
    assay = NULL,
    seed.use = 1,
    tsne.method = "Rtsne",
    dim.embed = 2,
    reduction.key = "tSNE_",
    ...
)
## S3 method for class 'Seurat'
RunTSNE(
    object,
    reduction = "pca",
    cells = NULL,
    dims = 1:5,
    features = NULL,
    seed.use = 1,
    tsne.method = "Rtsne",
    dim.embed = 2,
    distance.matrix = NULL,
    reduction.name = "tsne",
    reduction.key = "tSNE_",
)
```


Arguments

| object | Seurat object |
| :---: | :---: |
| | Arguments passed to other methods and to t-SNE call (most commonly used is perplexity) |
| assay | Name of assay that that t-SNE is being run on |
| seed.use | Random seed for the t-SNE. If NULL, does not set the seed |
| tsne.method | Select the method to use to compute the tSNE. Available methods are:
 - Rtsne: Use the Rtsne package Barnes-Hut implementation of tSNE (default)
 - FIt-SNE: Use the FFT-accelerated Interpolation-based t-SNE. Based on Kluger Lab code found here: https://github.com/KlugerLab/FIt-SNE |
| dim.embed | The dimensional space of the resulting tSNE embedding (default is 2). For example, set to 3 for a 3d tSNE |
| reduction.key | dimensional reduction key, specifies the string before the number for the dimension names. tSNE_by default |
| cells | Which cells to analyze (default, all cells) |
| dims | Which dimensions to use as input features |
| reduction | Which dimensional reduction (e.g. PCA, ICA) to use for the tSNE. Default is PCA |

features If set, run the tSNE on this subset of features (instead of running on a set of reduced dimensions). Not set (NULL) by default; dims must be NULL to run on features
distance.matrix
If set, runs tSNE on the given distance matrix instead of data matrix (experimental)
reduction. name dimensional reduction name, specifies the position in the object\$dr list. tsne by default
RunUMAP Run UMAP

Description

Runs the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique. To run using umap.method="umap-learn", you must first install the umap-learn python package (e.g. via pip install umap-learn). Details on this package can be found here: https: //github.com/lmcinnes/umap. For a more in depth discussion of the mathematics underlying UMAP, see the ArXiv paper here: https://arxiv.org/abs/1802.03426.

Usage

RunUMAP (object, ...)
\#\# Default S3 method:
RunUMAP(
object,
reduction.key = "UMAP_",
assay = NULL,
reduction.model = NULL,
return.model = FALSE,
umap.method = "uwot",
n. neighbors $=30 \mathrm{~L}$,
n. components $=2 \mathrm{~L}$,
metric = "cosine",
n.epochs = NULL,
learning. rate $=1$,
min. dist $=0.3$,
spread $=1$,
set.op.mix.ratio $=1$,
local.connectivity = 1L,
repulsion.strength = 1,
negative.sample.rate $=5$,
a = NULL,
b $=$ NULL,
uwot.sgd = FALSE,
seed.use $=42$,

```
    metric.kwds = NULL,
    angular.rp.forest = FALSE,
    densmap = FALSE,
    dens.lambda = 2,
    dens.frac = 0.3,
    dens.var.shift = 0.1,
    verbose = TRUE,
    ...
)
## S3 method for class 'Graph'
RunUMAP(
    object,
    assay = NULL,
    umap.method = "umap-learn",
    n.components = 2L,
    metric = "correlation",
    n.epochs = 0L,
    learning.rate = 1,
    min.dist = 0.3,
    spread = 1,
    repulsion.strength = 1,
    negative.sample.rate = 5L,
    a = NULL,
    b = NULL,
    uwot.sgd = FALSE,
    seed.use = 42L,
    metric.kwds = NULL,
    densmap = FALSE,
    densmap.kwds = NULL,
    verbose = TRUE,
    reduction.key = "UMAP_",
)
## S3 method for class 'Neighbor'
RunUMAP(object, reduction.model, ...)
## S3 method for class 'Seurat'
RunUMAP(
    object,
    dims = NULL,
    reduction = "pca",
    features = NULL,
    graph = NULL,
    assay = DefaultAssay(object = object),
    nn.name = NULL,
    slot = "data",
```

```
    umap.method = "uwot",
    reduction.model = NULL,
    return.model = FALSE,
    n.neighbors = 30L,
    n.components = 2L,
    metric = "cosine",
    n.epochs = NULL,
    learning.rate = 1,
    min.dist = 0.3,
    spread = 1,
    set.op.mix.ratio = 1,
    local.connectivity = 1L,
    repulsion.strength = 1,
    negative.sample.rate = 5L,
    a = NULL,
    b = NULL,
    uwot.sgd = FALSE,
    seed.use = 42L,
    metric.kwds = NULL,
    angular.rp.forest = FALSE,
    densmap = FALSE,
    dens.lambda = 2,
    dens.frac = 0.3,
    dens.var.shift = 0.1,
    verbose = TRUE,
    reduction.name = "umap",
    reduction.key = "UMAP_",
)
```


Arguments

```
    object An object
    ... Arguments passed to other methods and UMAP
    reduction.key dimensional reduction key, specifies the string before the number for the dimen-
        sion names. UMAP by default
    assay Assay to pull data for when using features, or assay used to construct Graph
        if running UMAP on a Graph
    reduction.model
        DimReduc object that contains the umap model
    return.model whether UMAP will return the uwot model
    umap.method UMAP implementation to run. Can be
    uwot: Runs umap via the uwot R package
    uwot-learn: Runs umap via the uwot R package and return the learned umap
                    model
    umap-learn: Run the Seurat wrapper of the python umap-learn package
```

| n. neighbors | This determines the number of neighboring points used in local approximations
 of manifold structure. Larger values will result in more global structure being
 preserved at the loss of detailed local structure. In general this parameter should
 often be in the range 5 to 50 . |
| :--- | :--- |
| n. components | The dimension of the space to embed into. |
| metric | metric: This determines the choice of metric used to measure distance in the
 input space. A wide variety of metrics are already coded, and a user defined
 function can be passed as long as it has been JITd by numba.
 he number of training epochs to be used in optimizing the low dimensional em-
 bedding. Larger values result in more accurate embeddings. If NULL is speci- |
| fied, a value will be selected based on the size of the input dataset (200 for large | |
| datasets, 500 for small). | |

| seed.use | Set a random seed. By default, sets the seed to 42. Setting NULL will not set a
 seed |
| :--- | :--- |
| metric.kwds | A dictionary of arguments to pass on to the metric, such as the p value for |
| Minkowski distance. If NULL then no arguments are passed on. | |

Value

Returns a Seurat object containing a UMAP representation

References

McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
# Run UMAP map on first 5 PCs
pbmc_small <- RunUMAP(object = pbmc_small, dims = 1:5)
# Plot results
DimPlot(object = pbmc_small, reduction = 'umap')
## End(Not run)
```

SampleUMI Sample UMI

Description

Downsample each cell to a specified number of UMIs. Includes an option to upsample cells below specified UMI as well.

Usage

SampleUMI(data, max.umi = 1000, upsample = FALSE, verbose = FALSE)

Arguments

| data | Matrix with the raw count data |
| :--- | :--- |
| max.umi | Number of UMIs to sample to |
| upsample | Upsamples all cells with fewer than max.umi |
| verbose | Display the progress bar |

Value

Matrix with downsampled data

Examples

```
data("pbmc_small")
counts = as.matrix(x = GetAssayData(object = pbmc_small, assay = "RNA", slot = "counts"))
downsampled = SampleUMI(data = counts)
head(x = downsampled)
```


SaveAnnoyIndex Save the Annoy index

Description

Save the Annoy index

Usage

SaveAnnoyIndex(object, file)

Arguments

object A Neighbor object with the annoy index stored
file Path to file to write index to

ScaleData Scale and center the data.

Description

Scales and centers features in the dataset. If variables are provided in vars.to.regress, they are individually regressed against each feature, and the resulting residuals are then scaled and centered.

Usage

ScaleData(object, ...)
\#\# Default S3 method:
ScaleData(
object,
features = NULL,
vars.to.regress = NULL, latent. data = NULL, split.by = NULL, model.use = "linear", use.umi = FALSE, do.scale = TRUE, do.center = TRUE, scale. $\max =10$, block.size = 1000, min.cells.to.block = 3000, verbose $=$ TRUE,
)

```
## S3 method for class 'Assay'
ScaleData(
    object,
    features = NULL,
    vars.to.regress = NULL,
    latent.data = NULL,
    split.by = NULL,
    model.use = "linear",
    use.umi = FALSE,
    do.scale = TRUE,
    do.center = TRUE,
    scale.max = 10,
    block.size = 1000,
    min.cells.to.block = 3000,
    verbose = TRUE,
)
## S3 method for class 'Seurat'
ScaleData(
    object,
    features = NULL,
    assay = NULL,
    vars.to.regress = NULL,
    split.by = NULL,
    model.use = "linear",
    use.umi = FALSE,
    do.scale = TRUE,
    do.center = TRUE,
    scale.max = 10,
    block.size = 1000,
    min.cells.to.block = 3000,
    verbose = TRUE,
)
```


Arguments

| object | An object |
| :--- | :--- |
| \ldots | Arguments passed to other methods |
| features | Vector of features names to scale/center. Default is variable features. |
| vars.to.regress | |

Variables to regress out (previously latent.vars in RegressOut). For example, nUMI, or percent.mito.
latent. data Extra data to regress out, should be cells x latent data
split.by \quad Name of variable in object metadata or a vector or factor defining grouping of cells. See argument f in split for more details

| model. use | Use a linear model or generalized linear model (poisson, negative binomial) for
 the regression. Options are 'linear' (default), 'poisson', and 'negbinom'
 Regress on UMI count data. Default is FALSE for linear modeling, but auto-
 matically set to TRUE if model.use is 'negbinom' or 'poisson' |
| :--- | :--- |
| use.umi | Whether to scale the data. |
| do.scale | |
| do.center | Whether to center the data.
 scale.max
 Max value to return for scaled data. The default is 10. Setting this can help
 reduce the effects of features that are only expressed in a very small number of
 cells. If regressing out latent variables and using a non-linear model, the default
 is 50. |
| block.size | Default size for number of features to scale at in a single computation. Increas-
 ing block.size may speed up calculations but at an additional memory cost. |
| min.cells.to.block | |
| If object contains fewer than this number of cells, don't block for scaling calcu- | |

Details

ScaleData now incorporates the functionality of the function formerly known as RegressOut (which regressed out given the effects of provided variables and then scaled the residuals). To make use of the regression functionality, simply pass the variables you want to remove to the vars.to.regress parameter.
Setting center to TRUE will center the expression for each feature by subtracting the average expression for that feature. Setting scale to TRUE will scale the expression level for each feature by dividing the centered feature expression levels by their standard deviations if center is TRUE and by their root mean square otherwise.

Description

Get image scale factors

Usage

ScaleFactors(object, ...)
scalefactors(spot, fiducial, hires, lowres)
\#\# S3 method for class 'VisiumV1'
ScaleFactors(object, ...)
\#\# S3 method for class 'VisiumV1'
ScaleFactors(object, ...)

Arguments

| object | An object to get scale factors from |
| :--- | :--- |
| \ldots. | Arguments passed to other methods |
| spot | Spot full resolution scale factor |
| fiducial | Fiducial full resolution scale factor |
| hires | High resolutoin scale factor |
| lowres | Low resolution scale factor |

Value

An object of class scalefactors

Note

scalefactors objects can be created with scalefactors()

Description

Significant PCs should show a p-value distribution that is strongly skewed to the left compared to the null distribution. The p-value for each PC is based on a proportion test comparing the number of features with a p-value below a particular threshold (score.thresh), compared with the proportion of features expected under a uniform distribution of p -values.

Usage

```
ScoreJackStraw(object, ...)
    ## S3 method for class 'JackStrawData'
    ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
    ## S3 method for class 'DimReduc'
    ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
    ## S3 method for class 'Seurat'
    ScoreJackStraw(
        object,
        reduction = "pca",
        dims = 1:5,
        score.thresh = 1e-05,
        do.plot = FALSE,
    )
```


Arguments

| object | An object |
| :--- | :--- |
| \ldots. | Arguments passed to other methods |
| dims | Which dimensions to examine |
| score.thresh | Threshold to use for the proportion test of PC significance (see Details) |
| reduction | Reduction associated with JackStraw to score |
| do.plot | Show plot. To return ggplot object, use JackStrawPlot after running Score- |
| | JackStraw. |

Value

Returns a Seurat object

Author(s)

Omri Wurtzel

See Also

```
JackStrawPlot
JackStrawPlot
```

SCTAssay-class The SCTModel Class

Description

The SCTModel object is a model and parameters storage from SCTransform. It can be used to calculate Pearson residuals for new genes.

The SCTAssay object contains all the information found in an Assay object, with extra information from the results of SCTransform

Usage

```
## S3 method for class 'SCTAssay'
levels(x)
    ## S3 replacement method for class 'SCTAssay'
    levels(x) <- value
```


Arguments

x
value

An SCTAssay object
New levels, must be in the same order as the levels present

Value

levels: SCT model names
levels<-: x with updated SCT model names

Slots

feature.attributes A data.frame with feature attributes in SCTransform
cell.attributes A data.frame with cell attributes in SCTransform
clips A list of two numeric of length two specifying the min and max values the Pearson residual will be clipped to. One for vst and one for SCTransform
umi. assay Name of the assay of the seurat object containing UMI matrix and the default is RNA
model A formula used in SCTransform
arguments other information used in SCTransform
median_umi Median UMI (or scale factor) used to calculate corrected counts
SCTModel.list A list containing SCT models

Get and set SCT model names

SCT results are named by initial run of SCTransform in order to keep SCT parameters straight between runs. When working with merged SCTAssay objects, these model names are important. levels allows querying the models present. levels<- allows the changing of the names of the models present, useful when merging SCTAssay objects. Note: unlike normal levels<-, levels<-. SCTAssay allows complete changing of model names, not reordering.

Creating an SCTAssay from an Assay

Conversion from an Assay object to an SCTAssay object by is done by adding the additional slots to the object. If from has results generated by SCTransform from Seurat v3.0.0 to v3.1.1, the conversion will automagically fill the new slots with the data

See Also

Assay

Assay

Examples

```
## Not run:
# SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)
## End(Not run)
# SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)
pbmc_small[["SCT"]]
```

```
## Not run:
# Query and change SCT model names
levels(pbmc_small[['SCT']])
levels(pbmc_small[['SCT']]) <- '3'
levels(pbmc_small[['SCT']])
## End(Not run)
```

SCTransform

Use regularized negative binomial regression to normalize UMI count data

Description

This function calls sctransform::vst. The sctransform package is available at https://github.com/ChristophH/sctransform. Use this function as an alternative to the NormalizeData, FindVariableFeatures, ScaleData workflow. Results are saved in a new assay (named SCT by default) with counts being (corrected) counts, data being $\log 1 \mathrm{p}$ (counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of new assay.

Usage

```
SCTransform(
    object,
    assay = "RNA",
    new.assay.name = "SCT",
    reference.SCT.model = NULL,
    do.correct.umi = TRUE,
    ncells = 5000,
    residual.features = NULL,
    variable.features.n = 3000,
    variable.features.rv.th = 1.3,
    vars.to.regress = NULL,
    do.scale = FALSE,
    do.center = TRUE,
    clip.range = c(-sqrt(x = ncol(x = object[[assay]])/30), sqrt(x = ncol(x =
        object[[assay]])/30)),
    conserve.memory = FALSE,
    return.only.var.genes = TRUE,
    seed.use = 1448145,
    verbose = TRUE,
)
```


Arguments

```
    object A seurat object
    assay Name of assay to pull the count data from; default is 'RNA'
    new.assay.name Name for the new assay containing the normalized data
    reference.SCT.model
    If not NULL, compute residuals for the object using the provided SCT model;
    supports only log_umi as the latent variable. If residual.features are not spec-
    ified, compute for the top variable.features.n specified in the model which are
    also present in the object. If residual.features are specified, the variable features
    of the resulting SCT assay are set to the top variable.features.n in the model.
    do.correct.umi Place corrected UMI matrix in assay counts slot; default is TRUE
    ncells Number of subsampling cells used to build NB regression; default is 5000
    residual.features
    Genes to calculate residual features for; default is NULL (all genes). If specified,
    will be set to VariableFeatures of the returned object.
    variable.features.n
    Use this many features as variable features after ranking by residual variance;
    default is 3000. Only applied if residual.features is not set.
    variable.features.rv.th
    Instead of setting a fixed number of variable features, use this residual variance
    cutoff; this is only used when variable.features.n is set to NULL; default is
    1.3. Only applied if residual.features is not set.
vars.to.regress
Variables to regress out in a second non-regularized linear regression. For example, percent.mito. Default is NULL
do.scale Whether to scale residuals to have unit variance; default is FALSE
do.center Whether to center residuals to have mean zero; default is TRUE
clip.range Range to clip the residuals to; default is c(-sqrt (n/30), sqrt(n/30)), where
    n}\mathrm{ is the number of cells
    conserve.memory
If set to TRUE the residual matrix for all genes is never created in full; useful for large data sets, but will take longer to run; this will also set return.only.var.genes to TRUE; default is FALSE
return.only.var.genes
If set to TRUE the scale.data matrices in output assay are subset to contain only the variable genes; default is TRUE
seed.use Set a random seed. By default, sets the seed to 1448145 . Setting NULL will not set a seed.
verbose Whether to print messages and progress bars
... Additional parameters passed to sctransform: :vst
```


Value

Returns a Seurat object with a new assay (named SCT by default) with counts being (corrected) counts, data being log 1 (counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of the new assay.

See Also

correct_counts get_residuals

Examples

```
data("pbmc_small")
SCTransform(object = pbmc_small)
```

SCTResults
Get SCT results from an Assay

Description

Pull the SCTResults information from an SCTAssay object.

Usage

```
SCTResults(object, ...)
```

SCTResults(object, ...) <- value
\#\# S3 method for class 'SCTModel'
SCTResults(object, slot, ...)
\#\# S3 replacement method for class 'SCTModel'
SCTResults(object, slot, ...) <- value
\#\# S3 method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...)
\#\# S3 replacement method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...) <- value
\#\# S3 method for class 'Seurat'
SCTResults(object, assay = "SCT", slot, model = NULL, ...)

Arguments

object An object
... Arguments passed to other methods (not used)
value new data to set
slot Which slot to pull the SCT results from
model Name of SCModel to pull result from. Available names can be retrieved with levels.
assay Assay in the Seurat object to pull from

Value

Returns the value present in the requested slot for the requested group. If group is not specified, returns a list of slot results for each group unless there is only one group present (in which case it just returns the slot directly).

```
SelectIntegrationFeatures
```


Select integration features

Description

Choose the features to use when integrating multiple datasets. This function ranks features by the number of datasets they are deemed variable in, breaking ties by the median variable feature rank across datasets. It returns the top scoring features by this ranking.

Usage

SelectIntegrationFeatures(
object.list,
nfeatures = 2000,
assay $=$ NULL,
verbose = TRUE,
fvf.nfeatures $=2000$,
)

Arguments

| object.list | List of seurat objects |
| :--- | :--- |
| nfeatures | Number of features to return |
| assay | Name or vector of assay names (one for each object) from which to pull the
 variable features. |
| verbose | Print messages
 fvf.nfeatures |
| nfeatures for FindVariableFeatures. Used if VariableFeatures have not
 been set for any object in object.list. | |
| \ldots | Additional parameters to FindVariableFeatures |

Details

If for any assay in the list, FindVariableFeatures hasn't been run, this method will try to run it using the fvf.nfeatures parameter and any additional ones specified through the

Value

A vector of selected features

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset and take the first 2
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]
# perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)
# select integration features
features <- SelectIntegrationFeatures(pancreas.list)
## End(Not run)
```

SetIntegrationData Set integration data

Description

Set integration data

Usage

SetIntegrationData(object, integration.name, slot, new.data)

Arguments

| object | Seurat object |
| :--- | :--- |
| integration.name | |
| | Name of integration object |
| slot | Which slot in integration object to set |
| new.data | New data to insert |

Value

Returns a Seurat object

Description

Converts a quantile in character form to a number regarding some data. String form for a quantile is represented as a number prefixed with " q "; for example, 10th quantile is " $q 10$ " while 2 nd quantile is "q2". Will only take a quantile of non-zero data values

Usage

SetQuantile(cutoff, data)

Arguments

cutoff The cutoff to turn into a quantile
data The data to turn find the quantile of

Value

The numerical representation of the quantile

Examples

```
set.seed(42)
SetQuantile('q10', sample(1:100, 10))
```


Description

The Seurat object is a representation of single-cell expression data for R ; for more details, please see the documentation in SeuratObject

See Also

```
SeuratObject::Seurat-class
```

SeuratCommand-class The SeuratCommand Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject: :SeuratCommand-class

Seurat Theme Seurat Themes

Description

Various themes to be applied to ggplot2-based plots
SeuratTheme The curated Seurat theme, consists of ...
DarkTheme A dark theme, axes and text turn to white, the background becomes black
NoAxes Removes axis lines, text, and ticks
NoLegend Removes the legend
FontSize Sets axis and title font sizes
NoGrid Removes grid lines
SeuratAxes Set Seurat-style axes
SpatialTheme A theme designed for spatial visualizations (eg PolyFeaturePlot, PolyDimPlot)
RestoreLegend Restore a legend after removal
RotatedAxis Rotate X axis text 45 degrees
BoldTitle Enlarges and emphasizes the title

Usage

SeuratTheme()
CenterTitle(...)

DarkTheme(...)
FontSize(
x.text = NULL,
y.text = NULL,
x.title = NULL,
y.title $=$ NULL,

```
    main = NULL,
)
    NoAxes(..., keep.text = FALSE, keep.ticks = FALSE)
    NoLegend(...)
    NoGrid(...)
    SeuratAxes(...)
    SpatialTheme(...)
    RestoreLegend(..., position = "right")
    RotatedAxis(...)
    BoldTitle(...)
    WhiteBackground(...)
```


Arguments

... Extra parameters to be passed to theme
x.text, y.text $\quad X$ and Y axis text sizes
x.title, y.title

X and Y axis title sizes
main Plot title size
keep.text Keep axis text
keep.ticks Keep axis ticks
position A position to restore the legend to

Value

A ggplot2 theme object

See Also

theme

Examples

```
# Generate a plot with a dark theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd=2), y = rbinom(n=100, size = 100, prob=0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + DarkTheme(legend.position = 'none')
```

```
# Generate a plot with no axes
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p<- ggplot(data = df, mapping = aes (x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoAxes()
# Generate a plot with no legend
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoLegend()
# Generate a plot with no grid lines
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p<- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoGrid()
```

SlideSeq-class The SlideSeq class

Description

The SlideSeq class represents spatial information from the Slide-seq platform

Slots

coordinates ...

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
key Key for the image

SpatialImage-class The SpatialImage Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::SpatialImage-class

SpatialPlot Visualize spatial clustering and expression data.

Description

SpatialPlot plots a feature or discrete grouping (e.g. cluster assignments) as spots over the image that was collected. We also provide SpatialFeaturePlot and SpatialDimPlot as wrapper functions around SpatialPlot for a consistent naming framework.

Usage

```
SpatialPlot(
        object,
    group.by = NULL,
    features = NULL,
    images = NULL,
    cols = NULL,
    image.alpha = 1,
    crop = TRUE,
    slot = "data",
    min.cutoff = NA,
    max.cutoff = NA,
    cells.highlight = NULL,
    cols.highlight = c("#DE2D26", "grey50"),
    facet.highlight = FALSE,
    label = FALSE,
    label.size = 5,
    label.color = "white",
    label.box = TRUE,
    repel = FALSE,
    ncol = NULL,
    combine = TRUE,
    pt.size.factor = 1.6,
    alpha = c(1, 1),
    stroke = 0.25,
    interactive = FALSE,
    do.identify = FALSE,
    identify.ident = NULL,
    do.hover = FALSE,
    information = NULL
    )
    SpatialDimPlot(
    object,
    group.by = NULL,
    images = NULL,
    cols = NULL,
```

```
    crop = TRUE,
    cells.highlight = NULL,
    cols.highlight = c("#DE2D26", "grey50"),
    facet.highlight = FALSE,
    label = FALSE,
    label.size = 7,
    label.color = "white",
    repel = FALSE,
    ncol = NULL,
    combine = TRUE,
    pt.size.factor = 1.6,
    alpha = c(1, 1),
    image.alpha = 1,
    stroke = 0.25,
    label.box = TRUE,
    interactive = FALSE,
    information = NULL
)
SpatialFeaturePlot(
    object,
    features,
    images = NULL,
    crop = TRUE,
    slot = "data",
    min.cutoff = NA,
    max.cutoff = NA,
    ncol = NULL,
    combine = TRUE,
    pt.size.factor = 1.6,
    alpha = c(1, 1),
    image.alpha = 1,
    stroke = 0.25,
    interactive = FALSE,
    information = NULL
)
```


Arguments

| object | A Seurat object |
| :--- | :--- |
| group.by | Name of meta.data column to group the data by |
| features | Name of the feature to visualize. Provide either group.by OR features, not both. |
| images | Name of the images to use in the plot(s) |
| cols | Vector of colors, each color corresponds to an identity class. This may also be
 a single character or numeric value corresponding to a palette as specified by
 brewer. pal.info. By default, ggplot2 assigns colors |
| image.alpha | Adjust the opacity of the background images. Set to 0 to remove. |

| crop | Crop the plot in to focus on points plotted. Set to FALSE to show entire back-
 ground image. |
| :--- | :--- |
| slot | If plotting a feature, which data slot to pull from (counts, data, or scale.data) |
| min. cutoff, max. cutoff | |
| Vector of minimum and maximum cutoff values for each feature, may specify | |
| quantile in the form of 'q\#\#' where '\#\#' is the quantile (eg, 'q1', 'q10') | |

Value

If do.identify, either a vector of cells selected or the object with selected cells set to the value of identify. ident (if set). Else, if do. hover, a plotly object with interactive graphics. Else, a ggplot object

Examples

```
## Not run:
# For functionality analagous to FeaturePlot
SpatialPlot(seurat.object, features = "MS4A1")
SpatialFeaturePlot(seurat.object, features = "MS4A1")
# For functionality analagous to DimPlot
SpatialPlot(seurat.object, group.by = "clusters")
SpatialDimPlot(seurat.object, group.by = "clusters")
## End(Not run)
```

SplitObject Splits object into a list of subsetted objects.

Description

Splits object based on a single attribute into a list of subsetted objects, one for each level of the attribute. For example, useful for taking an object that contains cells from many patients, and subdividing it into patient-specific objects.

Usage

SplitObject(object, split.by = "ident")

Arguments

object Seurat object
split.by Attribute for splitting. Default is "ident". Currently only supported for classlevel (i.e. non-quantitative) attributes.

Value

A named list of Seurat objects, each containing a subset of cells from the original object.

Examples

```
data("pbmc_small")
# Assign the test object a three level attribute
groups <- sample(c("group1", "group2", "group3"), size = 80, replace = TRUE)
names(groups) <- colnames(pbmc_small)
pbmc_small <- AddMetaData(object = pbmc_small, metadata = groups, col.name = "group")
obj.list <- SplitObject(pbmc_small, split.by = "group")
```

STARmap-class The STARmap class

Description

The STARmap class

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
key Key for the image
subset.AnchorSet Subset an AnchorSet object

Description

Subset an AnchorSet object

Usage

```
    ## S3 method for class 'AnchorSet'
    subset(
        x,
        score.threshold = NULL,
        disallowed.dataset.pairs = NULL,
        dataset.matrix = NULL,
        group.by = NULL,
        disallowed.ident.pairs = NULL,
        ident.matrix = NULL,
    )
```


Arguments

$x \quad$ object to be subsetted.
score.threshold
Only anchor pairs with scores greater than this value are retained.
disallowed.dataset.pairs
Remove any anchors formed between the provided pairs. E.g. list $(c(1,5)$, $c(1,2))$ filters out any anchors between datasets 1 and 5 and datasets 1 and 2.
dataset.matrix Provide a binary matrix specifying whether a dataset pair is allowable (1) or not (0). Should be a dataset x dataset matrix.

```
group.by Grouping variable to determine allowable ident pairs
disallowed.ident.pairs
    Remove any anchors formed between provided ident pairs. E.g. list (c ("CD4",
    "CD8"), c("B-cell", "T-cell"))
ident.matrix Provide a binary matrix specifying whether an ident pair is allowable (1) or not
    (0). Should be an ident \(x\) ident symmetric matrix
    further arguments to be passed to or from other methods.
```


Value

Returns an AnchorSet object with specified anchors filtered out

```
SubsetByBarcodeInflections
    Subset a Seurat Object based on the Barcode Distribution Inflection
    Points
```


Description

This convenience function subsets a Seurat object based on calculated inflection points.

Usage

SubsetByBarcodeInflections(object)

Arguments

object Seurat object

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [BarcodeInflectionsPlot()] to visualize and test inflection point calculations.

Value

Returns a subsetted Seurat object.

Author(s)

Robert A. Amezquita, robert.amezquita@fredhutch.org

See Also

CalculateBarcodeInflections BarcodeInflectionsPlot

Examples

```
data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(
        object = pbmc_small,
        group.column = 'groups',
        threshold.low = 20,
        threshold.high = 30
)
SubsetByBarcodeInflections(object = pbmc_small)
```

TopCells Find cells with highest scores for a given dimensional reduction tech- nique

Description

Return a list of genes with the strongest contribution to a set of components

Usage

TopCells(object, dim = 1, ncells = 20, balanced = FALSE, ...)

Arguments

| object | DimReduc object |
| :--- | :--- |
| dim | Dimension to use |
| ncells | Number of cells to return |
| balanced | Return an equal number of cells with both + and - scores. |
| \ldots | Extra parameters passed to Embeddings |

Value

Returns a vector of cells

Examples

```
data("pbmc_small")
pbmc_small
head(TopCells(object = pbmc_small[["pca"]]))
# Can specify which dimension and how many cells to return
TopCells(object = pbmc_small[["pca"]], dim = 2, ncells = 5)
```

TopFeatures \quad| Find features with highest scores for a given dimensional reduction |
| :--- |
| technique |

Description

Return a list of features with the strongest contribution to a set of components

Usage

```
TopFeatures(
    object,
    dim = 1,
    nfeatures = 20,
    projected = FALSE,
    balanced = FALSE,
    )
```


Arguments

| object | DimReduc object |
| :--- | :--- |
| dim | Dimension to use |
| nfeatures | Number of features to return |
| projected | Use the projected feature loadings |
| balanced | Return an equal number of features with both + and - scores. |
| \ldots | Extra parameters passed to Loadings |

Value

Returns a vector of features

Examples

```
data("pbmc_small")
pbmc_small
TopFeatures(object = pbmc_small[["pca"]], dim = 1)
# After projection:
TopFeatures(object = pbmc_small[["pca"]], dim = 1, projected = TRUE)
```


Description

Return a vector of cell names of the nearest n cells.

Usage

TopNeighbors(object, cell, $n=5$)

Arguments

object Neighbor object
cell Cell of interest
$\mathrm{n} \quad$ Number of neighbors to return

Value

Returns a vector of cell names

TransferAnchorSet-class
The TransferAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.
TransferData Transfer data

Description

Transfer categorical or continuous data across single-cell datasets. For transferring categorical information, pass a vector from the reference dataset (e.g. refdata = reference\$celltype). For transferring continuous information, pass a matrix from the reference dataset (e.g. refdata $=$ GetAssayData(reference[['RNA']])).

Usage

```
TransferData(
    anchorset,
    refdata,
    reference = NULL,
    query = NULL,
    weight.reduction = "pcaproject",
    12.norm = FALSE,
    dims = NULL,
    k.weight = 50,
    sd.weight = 1,
    eps = 0,
    n.trees = 50,
    verbose = TRUE,
    slot = "data",
    prediction.assay = FALSE,
    store.weights = TRUE
)
```


Arguments

| anchorset
 refdata | An AnchorSet object generated by FindTransferAnchors
 Data to transfer. This can be specified in one of two ways:
 - The reference data itself as either a vector where the names correspond to
 the reference cells, or a matrix, where the column names correspond to the
 reference cells. |
| :--- | :--- |
| - The name of the metadata field or assay from the reference object provided. | |
| This requires the reference parameter to be specified. If pulling assay data | |
| in this manner, it will pull the data from the data slot. To transfer data from | |
| other slots, please pull the data explicitly with GetAssayData and provide | |
| that matrix here. | |

```
sd.weight Controls the bandwidth of the Gaussian kernel for weighting
eps Error bound on the neighbor finding algorithm (from RANN)
n.trees More trees gives higher precision when using annoy approximate nearest neigh-
    bor search
verbose Print progress bars and output
slot Slot to store the imputed data. Must be either "data" (default) or "counts"
prediction.assay
    Return an Assay object with the prediction scores for each class stored in the
    data slot.
store.weights Optionally store the weights matrix used for predictions in the returned query
            object.
```


Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/ 460147
For both transferring discrete labels and also feature imputation, we first compute the weights matrix.

- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k. weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k. weight anchors.

The main difference between label transfer (classification) and feature imputation is what gets multiplied by the weights matrix. For label transfer, we perform the following steps:

- Create a binary classification matrix, the rows corresponding to each possible class and the columns corresponding to the anchors. If the reference cell in the anchor pair is a member of a certain class, that matrix entry is filled with a 1 , otherwise 0 .
- Multiply this classification matrix by the transpose of weights matrix to compute a prediction score for each class for each cell in the query dataset.

For feature imputation, we perform the following step:

- Multiply the expression matrix for the reference anchor cells by the weights matrix. This returns a predicted expression matrix for the specified features for each cell in the query dataset.

Value

If query is not provided, for the categorical data in refdata, returns a data.frame with label predictions. If refdata is a matrix, returns an Assay object where the imputed data has been stored in the provided slot.
If query is provided, a modified query object is returned. For the categorical data in refdata, prediction scores are stored as Assays (prediction.score.NAME) and two additional metadata fields: predicted.NAME and predicted.NAME.score which contain the class prediction and the score for that predicted class. For continuous data, an Assay called NAME is returned. NAME here corresponds to the name of the element in the refdata list.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")
# for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]
# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)
pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)
# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)
# transfer labels
predictions <- TransferData(anchorset = anchors, refdata = pbmc.reference$seurat_annotations)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)
## End(Not run)
```

UpdateSCTAssays Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class

Description

Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class

Usage

UpdateSCTAssays(object)

Arguments

object A Seurat object

Value

A Seurat object with updated SCTAssays

UpdateSymbolList Get updated synonyms for gene symbols

Description

Find current gene symbols based on old or alias symbols using the gene names database from the HUGO Gene Nomenclature Committee (HGNC)

Usage

```
    GeneSymbolThesarus(
    symbols,
    timeout = 10,
    several.ok = FALSE,
    search.types = c("alias_symbol", "prev_symbol"),
    verbose = TRUE,
    )
    UpdateSymbolList(
        symbols,
        timeout = 10,
        several.ok = FALSE,
        verbose = TRUE,
    )
```


Arguments

| symbols | A vector of gene symbols |
| :---: | :---: |
| timeout | Time to wait before canceling query in seconds |
| several.ok | Allow several current gene symbols for each provided symbol |
| search.types | Type of query to perform: |
| | "alias_symbol" Find alternate symbols for the genes described by symbols |
| | "prev_symbol" Find new new symbols for the genes described by symbols |
| | This parameter accepts multiple options and short-hand options (eg. "prev" for "prev_symbol") |
| verbose | Show a progress bar depicting search progress |
| | Extra parameters passed to GET |

Details

For each symbol passed, we query the HGNC gene names database for current symbols that have the provided symbol as either an alias (alias_symbol) or old (prev_symbol) symbol. All other queries are not supported.

Value

GeneSymbolThesarus:, if several.ok, a named list where each entry is the current symbol found for each symbol provided and the names are the provided symbols. Otherwise, a named vector with the same information.

UpdateSymbolList: symbols with updated symbols from HGNC's gene names database

Note

This function requires internet access

Source

https://www.genenames.org/https://www.genenames.org/help/rest/

See Also

```
GET
```


Examples

```
## Not run:
GeneSybmolThesarus(symbols = c("FAM64A"))
## End(Not run)
## Not run:
UpdateSymbolList(symbols = cc.genes$s.genes)
## End(Not run)
```

VariableFeaturePlot View variable features

Description

View variable features

Usage

```
VariableFeaturePlot(
        object,
        cols = c("black", "red"),
        pt.size = 1,
        log = NULL,
        selection.method = NULL,
        assay = NULL,
        raster = NULL,
        raster.dpi = c(512, 512)
    )
```


Arguments

Value

A ggplot object

See Also

FindVariableFeatures

Examples

```
data("pbmc_small")
VariableFeaturePlot(object = pbmc_small)
```

```
    VisiumV1-class The VisiumV1 class
```


Description

The VisiumV1 class represents spatial information from the 10X Genomics Visium platform

Slots

image A three-dimensional array with PNG image data, see readPNG for more details
scale.factors An object of class scalefactors; see scalefactors for more information
coordinates A data frame with tissue coordinate information
spot. radius Single numeric value giving the radius of the spots

```
VizDimLoadings Visualize Dimensional Reduction genes
```


Description

Visualize top genes associated with reduction components

Usage

```
VizDimLoadings(
    object,
    dims = 1:5,
    nfeatures = 30,
    col = "blue",
    reduction = "pca",
    projected = FALSE,
    balanced = FALSE,
    ncol = NULL,
    combine = TRUE
)
```


Arguments

| object | Seurat object |
| :--- | :--- |
| dims | Number of dimensions to display |
| nfeatures | Number of genes to display |
| col | Color of points to use |
| reduction | Reduction technique to visualize results for |

| projected | Use reduction values for full dataset (i.e. projected dimensional reduction val-
 ues) |
| :--- | :--- |
| balanced | Return an equal number of genes with + and - scores. If FALSE (default), returns
 the top genes ranked by the scores absolute values |
| ncol | Number of columns to display |
| combine | Combine plots into a single patchworked ggplot object. If FALSE, return a list
 of ggplot objects |

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
VizDimLoadings(object = pbmc_small)
```

VlnPlot Single cell violin plot

Description

Draws a violin plot of single cell data (gene expression, metrics, PC scores, etc.)

Usage

```
VlnPlot(
    object,
    features,
    cols = NULL,
    pt.size = NULL,
    idents = NULL,
    sort = FALSE,
    assay = NULL,
    group.by = NULL,
    split.by = NULL,
    adjust = 1,
    y.max = NULL,
    same.y.lims = FALSE,
    log = FALSE,
    ncol = NULL,
    slot = "data",
    split.plot = FALSE,
    stack = FALSE,
    combine = TRUE,
    fill.by = "feature",
```

```
        flip = FALSE,
        raster = NULL
    )
```


Arguments

| object | Seurat object |
| :---: | :---: |
| features | Features to plot (gene expression, metrics, PC scores, anything that can be retreived by FetchData) |
| cols | Colors to use for plotting |
| pt.size | Point size for geom_violin |
| idents | Which classes to include in the plot (default is all) |
| sort | Sort identity classes (on the x-axis) by the average expression of the attribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction |
| assay | Name of assay to use, defaults to the active assay |
| group.by | Group (color) cells in different ways (for example, orig.ident) |
| split.by | A variable to split the violin plots by, |
| adjust | Adjust parameter for geom_violin |
| $y . \max$ | Maximum y axis value |
| same.y.lims | Set all the y-axis limits to the same values |
| log | plot the feature axis on log scale |
| ncol | Number of columns if multiple plots are displayed |
| slot | Use non-normalized counts data for plotting |
| split.plot | plot each group of the split violin plots by multiple or single violin shapes. |
| stack | Horizontally stack plots for each feature |
| combine | Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot |
| fill.by | Color violins/ridges based on either 'feature' or 'ident' |
| flip | flip plot orientation (identities on x -axis) |
| raster | Convert points to raster format. Requires 'ggrastr' to be installed. |

Value
A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

See Also

FetchData

Examples

```
data("pbmc_small")
VlnPlot(object = pbmc_small, features = 'PC_1')
VlnPlot(object = pbmc_small, features = 'LYZ', split.by = 'groups')
```


Index

```
* clustering
    FindClusters,63
    FindMultiModalNeighbors,76
    FindNeighbors,77
    FindSubCluster,82
* convenience
    DimHeatmap, 44
    DimPlot,45
    ReadParseBio,155
    ReadSTARsolo,156
    SpatialPlot,196
* datasets
    cc.genes, 27
    cc.genes.updated.2019,28
* data
    cc.genes,27
    cc.genes.updated.2019,28
* differential_expression
    FindAllMarkers,60
    FindConservedMarkers,65
    FindMarkers,69
    FoldChange, }8
    PrepSCTFindMarkers, }14
* dimensional_reduction
    JackStraw, 110
    L2CCA, 113
    L2Dim,114
    PCASigGenes, }13
    ProjectDim, }14
    ProjectUMAP,148
    RunCCA, 160
    RunICA, 162
    RunPCA, 168
    RunSLSI, 170
    RunSPCA, 171
    RunTSNE, 173
    RunUMAP, 175
    ScoreJackStraw, 184
* integration
```


* clustering

```
FindClusters, 63
FindMultiModalNeighbors, 76
FindNeighbors, 77
FindSubCluster, 82
* convenience
DimHeatmap, 44
DimPlot, 45
ReadParseBio, 155
ReadSTARsolo, 156
SpatialPlot, 196
* datasets
cc.genes, 27
cc.genes.updated. 2019, 28
* data
cc.genes, 27
cc.genes.updated. 2019, 28
* differential_expression
FindAllMarkers, 60
FindConservedMarkers, 65
FindMarkers, 69
FoldChange, 89
PrepSCTFindMarkers, 145
* dimensional_reduction
JackStraw, 110
L2CCA, 113
L2Dim, 114
PCASigGenes, 137
ProjectDim, 147
ProjectUMAP, 148
RunCCA, 160
RunICA, 162
RunPCA, 168
RunSLSI, 170
RunSPCA, 171
RunTSNE, 173
RunUMAP, 175
ScoreJackStraw, 184
* integration
```

AnnotateAnchors, 13
FindIntegrationAnchors, 66
FindTransferAnchors, 83
GetTransferPredictions, 96
IntegrateData, 103
IntegrateEmbeddings, 106
LocalStruct, 120
MappingScore, 122
MapQuery, 124
MixingMetric, 128
PredictAssay, 143
PrepSCTIntegration, 146
SelectIntegrationFeatures, 190
TransferData, 204

* mixscape

CalcPerturbSig, 24
DEenrichRPlot, 41
MixscapeHeatmap, 129
MixscapeLDA, 131
PlotPerturbScore, 140
PrepLDA, 144
RunLDA, 163
RunMixscape, 166

* objects

AnchorSet-class, 12
as.CellDataSet, 14
as.Seurat.CellDataSet, 15
as.SingleCellExperiment, 16
as.sparse.H5Group, 16
Cells.SCTModel, 30
CreateSCTAssayObject, 39
DietSeurat, 43
FilterSlideSeq, 59
GetAssay, 92
GetImage.SlideSeq, 93
GetIntegrationData, 93
GetTissueCoordinates.SlideSeq, 95
IntegrationAnchorSet-class, 108
IntegrationData-class, 109
merge.SCTAssay, 126
ModalityWeights-class, 132
Radius.SlideSeq, 151
RenameCells.SCTAssay, 158
ScaleFactors, 183
SCTAssay-class, 185
SCTResults, 189
SetIntegrationData, 191
SplitObject, 199
STARmap-class, 200
subset.AnchorSet, 200
TopCells, 202
TopFeatures, 203
TopNeighbors, 204
TransferAnchorSet-class, 204
UpdateSCTAssays, 207
VisiumV1-class, 211

* preprocessing

CalculateBarcodeInflections, 25
FindSpatiallyVariableFeatures, 81
FindVariableFeatures, 87
GetResidual, 94
HTODemux, 99
Load10X_Spatial, 118
LoadSTARmap, 119
LogNormalize, 121
MULTIseqDemux, 133
NormalizeData, 135
Read10X, 151
Read10X_h5, 152
Read10X_Image, 153
ReadMtx, 154
ReadSlideSeq, 155
RelativeCounts, 157
RunMarkVario, 165
RunMoransI, 167
SampleUMI, 180
ScaleData, 181
SCTransform, 187
SubsetByBarcodeInflections, 201

* spatial

Cells.SCTModel, 30
FilterSlideSeq, 59
FindSpatiallyVariableFeatures, 81
GetImage. SlideSeq, 93
GetTissueCoordinates.SlideSeq, 95
ISpatialDimPlot, 109
ISpatialFeaturePlot, 110

LinkedPlots, 116
PolyFeaturePlot, 142
Radius.SlideSeq, 151
ScaleFactors, 183
SlideSeq-class, 195
SpatialPlot, 196
STARmap-class, 200
VisiumV1-class, 211

* tree

BuildClusterTree, 23

* utilities

AddModuleScore, 9
AggregateExpression, 11
as.sparse.H5Group, 16
AverageExpression, 19
CaseMatch, 27
CellCycleScoring, 29
CollapseSpeciesExpressionMatrix, 35
CustomDistance, 40
ExpMean, 53
ExpSD, 53
ExpVar, 54
FastRowScale, 54
GroupCorrelation, 97
LoadAnnoyIndex, 119
LogVMR, 122
MetaFeature, 126
MinMax, 127
PercentAbove, 138
PercentageFeatureSet, 138
RegroupIdents, 156
SaveAnnoyIndex, 181
SetQuantile, 192
UpdateSymbolList, 208

* visualization

AugmentPlot, 17
AutoPointSize, 18
BarcodeInflectionsPlot, 20
BGTextColor, 21
BlackAndWhite, 22
CellScatter, 31
CellSelector, 33
CollapseEmbeddingOutliers, 34
ColorDimSplit, 36
CombinePlots, 38
contrast-theory, 39
DimHeatmap, 44

DimPlot, 45
DiscretePalette, 48
DoHeatmap, 49
DotPlot, 50
ElbowPlot, 52
FeaturePlot, 55
FeatureScatter, 58
GroupCorrelationPlot, 98
HoverLocator, 98
HTOHeatmap, 100
IFeaturePlot, 103
ISpatialDimPlot, 109
ISpatialFeaturePlot, 110
JackStrawPlot, 112
LabelClusters, 114
LabelPoints, 115
LinkedPlots, 116
NNPlot, 134
PlotClusterTree, 139
PolyDimPlot, 141
PolyFeaturePlot, 142
RidgePlot, 158
SeuratTheme, 193
SpatialPlot, 196
VariableFeaturePlot, 209
VizDimLoadings, 211
VlnPlot, 212
AddAzimuthResults, 8
AddAzimuthScores, 8
AddModuleScore, 9, 29
AggregateExpression, 11
AnchorSet, 13, 68, 103, 104, 108, 201, 204, 205
AnchorSet (AnchorSet-class), 12
AnchorSet-class, 12
AnnotateAnchors, 13
annotation_raster, 17
ape::plot.phylo, 140
as.CellDataSet, 14
as.data.frame.Matrix
(as.sparse.H5Group), 16
as.Seurat.CellDataSet, 15
as.Seurat.SingleCellExperiment (as.Seurat.CellDataSet), 15
as.SingleCellExperiment, 16
as.sparse.H5Group, 16
Assay, 105, 146, 185, 186
Assay-class, 17

AugmentPlot, 17
AutoPointSize, 18
AverageExpression, 19
BarcodeInflectionsPlot, 20, 26, 201
BGTextColor, 21
BlackAndWhite, 22
BlueAndRed (BlackAndWhite), 22
BoldTitle (SeuratTheme), 193
brewer.pal.info, 36, 46, 112, 197
BuildClusterTree, 23, 62, 74, 91, 129
CalcPerturbSig, 24
CalculateBarcodeInflections, 20, 25, 201
CaseMatch, 27
cc.genes, 27, 28
cc.genes.updated. 2019, 28

CellCycleScoring, 29
CellPlot (CellScatter), 31
Cells.SCTModel, 30
Cells.SlideSeq (Cells.SCTModel), 30
Cells. STARmap (Cells. SCTModel), 30
Cells.VisiumV1 (Cells. SCTModel), 30
CellsByImage, 31
CellScatter, 31
CellSelector, 33, 48, 57
CenterTitle (SeuratTheme), 193
CollapseEmbeddingOutliers, 34
CollapseSpeciesExpressionMatrix, 35
ColorDimSplit, 36
CombinePlots, 38, 117
contrast-theory, 39
correct_counts, 189
CreateSCTAssayObject, 39
CreateSeuratObject, 11, 19
CustomDistance, 40
CustomPalette (BlackAndWhite), 22
DarkTheme (SeuratTheme), 193
data.frame, 17
DEenrichRPlot, 41
DietSeurat, 43
DimHeatmap, 44
DimPlot, 33, 36, 37, 45, 57, 99
DimReduc, 104, 107, 205
DimReduc-class, 48
DiscretePalette, 36, 46, 48, 112
DoHeatmap, 49
DotPlot, 50

ElbowPlot, 52
Embeddings, 202
ExpMean, 53
ExpSD, 53
ExpVar, 54
facet_grid, 115
facet_wrap, 115
FastRowScale, 54
FeatureHeatmap (FeaturePlot), 55
FeatureLocator (CellSelector), 33
FeaturePlot, 33, 48, 55, 57, 99
FeatureScatter, 58
FetchData, 36, 47, 48, 51, 142, 213
FilterSlideSeq, 59
FindAllMarkers, 60
FindAllMarkersNode (FindAllMarkers), 60
FindClusters, 63
FindConservedMarkers, 65
FindIntegrationAnchors, 66, 104, 105, 206
FindMarkers, 69, 91
FindMarkersNode (FindMarkers), 69
FindMultiModalNeighbors, 76, 132
FindNeighbors, 77
FindSpatiallyVariableFeatures, 81
FindSubCluster, 82
FindTransferAnchors, 14, 83, 124, 205
FindVariableFeatures, 87, 190, 210
FindVariableGenes
(FindVariableFeatures), 87
FoldChange, 89
FontSize (SeuratTheme), 193
GenePlot (FeatureScatter), 58
GeneSymbolThesarus (UpdateSymbolList), 208
geom_raster, 45
geom_text, 115, 116
geom_text_repel, 115
GET, 208, 209
get_residuals, 94, 189
GetAssay, 92
GetAssayData, 125, 205
GetImage.SlideSeq, 93
GetImage. STARmap (GetImage.SlideSeq), 93
GetImage.VisiumV1 (GetImage. SlideSeq), 93
GetIntegrationData, 93
GetResidual, 94, 146

GetTissueCoordinates.SlideSeq, 95
GetTissueCoordinates.STARmap
(GetTissueCoordinates.SlideSeq), 95
GetTissueCoordinates.VisiumV1
(GetTissueCoordinates.SlideSeq),
95
GetTransferPredictions, 96
ggplot_build, 99
Graph, 80
Graph-class, 97
Graphs, 80
GroupCorrelation, 97
GroupCorrelationPlot, 98
hclust, 104, 108
HoverLocator, 48, 57, 98
HTODemux, 99, 101
HTOHeatmap, 100, 100
HVFInfo, 102
HVFInfo. SCTAssay, 102
ICAPlot (DimPlot), 45
IFeaturePlot, 103
image, 45
IntegrateData, 12, 66, 68, 103, 108
IntegrateEmbeddings, 86, 106, 124, 125
IntegrationAnchorSet
(IntegrationAnchorSet-class), 108
IntegrationAnchorSet-class, 108
IntegrationData
(IntegrationData-class), 109
IntegrationData-class, 109
Intensity (contrast-theory), 39
ISpatialDimPlot, 109, 198
ISpatialFeaturePlot, 110, 198
JackStraw, 110, 137
JackStrawData-class, 112
JackStrawPlot, 112, 185

L2CCA, 113
L2Dim, 114
LabelClusters, 114
Labeler (LabelPoints), 115
LabelPoints, 115
layout, 98, 99
levels. SCTAssay (SCTAssay-class), 185
levels<-. SCTAssay (SCTAssay-class), 185
LinkedDimPlot (LinkedPlots), 116
LinkedFeaturePlot (LinkedPlots), 116
LinkedPlot (LinkedPlots), 116
LinkedPlots, 116
Load10X_Spatial, 118, 153
LoadAnnoyIndex, 119
Loadings, 203
LoadSTARmap, 119
LocalStruct, 120
LogNormalize, 121
LogVMR, 122
Luminance (contrast-theory), 39
make.names, 17
MappingScore, 122
MapQuery, 86, 124
MeanVarPlot (VariableFeaturePlot), 209
merge. SCTAssay, 126
merge. Seurat, 161
MetaFeature, 126
MinMax, 127
MixingMetric, 128
MixscapeHeatmap, 129
MixscapeLDA, 131
ModalityWeights, 77
ModalityWeights
(ModalityWeights-class), 132
ModalityWeights-class, 132
MULTIseqDemux, 133
Neighbor, 79, 80, 204
Neighbor-class, 134
Neighbors, 80
NNPlot, 134
NoAxes (SeuratTheme), 193
NoGrid (SeuratTheme), 193
NoLegend (SeuratTheme), 193
NormalizeData, 135
patchwork, 37, 45, 47, 50, 57, 59, 117, 135, 159, 212, 213
PCAPlot (DimPlot), 45
PCASigGenes, 137
PCHeatmap (DimHeatmap), 44
PercentAbove, 138
PercentageFeatureSet, 138
PlotClusterTree, 139
PlotPerturbScore, 140

PolyDimPlot, 141, 193
PolyFeaturePlot, 142, 193
PredictAssay, 143
PrepLDA, 144
PrepSCTFindMarkers, 145
PrepSCTIntegration, 146
ProjectDim, 137, 147
ProjectUMAP, 124, 125, 148
PurpleAndYellow (BlackAndWhite), 22

Radius.SlideSeq, 151
Radius. STARmap (Radius.SlideSeq), 151
Radius.VisiumV1 (Radius. SlideSeq), 151
RANN, 85, 105, 206
RcppAnnoy, 85
Read10X, 151
Read10X_h5, 118, 152
Read10X_Image, 118, 153
ReadMtx, 154, 155, 156
ReadParseBio, 155
readPNG, 211
ReadSlideSeq, 155
ReadSTARsolo, 156
RegroupIdents, 156
RelativeCounts, 157
RenameCells.SCTAssay, 158
RenameCells.SlideSeq
(RenameCells.SCTAssay), 158
RenameCells.STARmap
(RenameCells.SCTAssay), 158
RenameCells.VisiumV1
(RenameCells.SCTAssay), 158
RestoreLegend (SeuratTheme), 193
RidgePlot, 158
RotatedAxis (SeuratTheme), 193
RunCCA, 160
RunICA, 162
RunLDA, 163
RunMarkVario, 82, 165
RunMixscape, 166
RunMoransI, 82, 167
RunPCA, 168
RunSLSI, 170
RunSPCA, 171
RunSVD, 84
RunTFIDF, 84
RunTSNE, 173
RunUMAP, 6, 150, 175

SampleUMI, 180
SaveAnnoyIndex, 181
ScaleData, 11, 19, 181
ScaleFactors, 183
scalefactors, 211
scalefactors (ScaleFactors), 183
ScaleFactors.VisiumV1 (ScaleFactors), 183
ScoreJackStraw, 113, 184
SCTAssay, 102, 189
SCTAssay (SCTAssay-class), 185
SCTAssay-class, 185
SCTModel (SCTAssay-class), 185
SCTransform, 146, 185, 186, 187
SCTResults, 189, 189
SCTResults<- (SCTResults), 189
SelectIntegrationFeatures, 67, 68, 146, 190
SetIntegrationData, 191
SetQuantile, 192
Seurat, 8, 12, 20, 66, 67, 80, 84, 105, 114, 120, 126, 146, 147, 191
Seurat (Seurat-package), 6
Seurat-class, 192
Seurat-package, 6
SeuratAxes (SeuratTheme), 193
SeuratCommand-class, 193
SeuratObject, 17, 48, 97, 112, 134, 192, 193, 195
SeuratObject::as.Seurat, 15
SeuratObject: :as.sparse, 17
SeuratObject::Cells, 30
SeuratObject::GetImage, 93
SeuratObject::GetTissueCoordinates, 95
SeuratObject::Radius, 151
SeuratObject::RenameCells, 158
SeuratTheme, 193
SlideSeq, 156
SlideSeq (SlideSeq-class), 195
SlideSeq-class, 195
SpatialDimPlot, 59, 60
SpatialDimPlot (SpatialPlot), 196
SpatialFeaturePlot (SpatialPlot), 196
SpatialImage-class, 195
SpatialPlot, 196
SpatialTheme (SeuratTheme), 193
split, 182
SplitDotPlotGG (DotPlot), 50

SplitObject, 199
STARmap, 120
STARmap (STARmap-class), 200
STARmap-class, 200
subset.AnchorSet, 200
SubsetByBarcodeInflections, 20, 26, 201
theme, 194
Tool, 24
TopCells, 202
TopFeatures, 203
TopNeighbors, 204
TransferAnchorSet
(TransferAnchorSet-class), 204
TransferAnchorSet-class, 204
TransferData, 12, 83, 86, 96, 124, 125, 204
TSNEPlot (DimPlot), 45
umap, 178
UMAPPlot (DimPlot), 45
UpdateSCTAssays, 207
UpdateSymbolList, 10, 208
VariableFeaturePlot, 209
VariableGenePlot (VariableFeaturePlot), 209
VisiumV1, 153
VisiumV1 (VisiumV1-class), 211
VisiumV1-class, 211
VizDimLoadings, 211
VlnPlot, 212
WhiteBackground (SeuratTheme), 193

[^0]: max.cells.group

