
Package ‘Sieve’
June 22, 2022

Type Package

Title Nonparametric Estimation by the Method of Sieves

Version 1.0

Date 2022-05-27

Author Tianyu Zhang

Maintainer Tianyu Zhang <zty@uw.edu>

Description
Performs multivariate nonparametric regression/classification by the method of sieves (or us-
ing orthogonal series). The method is suitable for continuous/binary problems with multivari-
ate or moderate high-dimensional features (dimension < 100). The main estimator in this pack-
age, penalized sieve estimator, is adaptive to the feature dimension with provable theoreti-
cal guarantees. Moreover, such a method is computationally tractable in the sense it typi-
cally has a polynomial dependence (rather than an exponential one) on the feature dimen-
sion and an almost linear dependence on the sample size. Details of the methods and model as-
sumptions can be found in: Tianyu Zhang, and Noah Simon (2022) <arXiv:2206.02994>.

License GPL-2

Imports Rcpp (>= 1.0.7), combinat, glmnet, methods

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-06-22 19:20:08 UTC

R topics documented:
Sieve-package . 2
GenSamples . 3
sieve_predict . 4
sieve_preprocess . 6
sieve_solver . 8

Index 10

1

https://arxiv.org/abs/2206.02994

2 Sieve-package

Sieve-package Nonparametric Estimation by the Method of Sieves

Description

Performs multivariate nonparametric regression/classification by the method of sieves (or using or-
thogonal series). The method is suitable for continuous/binary problems with multivariate or mod-
erate high-dimensional features (dimension < 100). The main estimator in this package, penalized
sieve estimator, is adaptive to the feature dimension with provable theoretical guarantees. Moreover,
such a method is computationally tractable in the sense it typically has a polynomial dependence
(rather than an exponential one) on the feature dimension and an almost linear dependence on the
sample size. Details of the methods and model assumptions can be found in: Tianyu Zhang, and
Noah Simon (2022) <arXiv:2206.02994>.

Details

The DESCRIPTION file:

Package: Sieve
Type: Package
Title: Nonparametric Estimation by the Method of Sieves
Version: 1.0
Date: 2022-05-27
Author: Tianyu Zhang
Maintainer: Tianyu Zhang <zty@uw.edu>
Description: Performs multivariate nonparametric regression/classification by the method of sieves (or using orthogonal series). The method is suitable for continuous/binary problems with multivariate or moderate high-dimensional features (dimension < 100). The main estimator in this package, penalized sieve estimator, is adaptive to the feature dimension with provable theoretical guarantees. Moreover, such a method is computationally tractable in the sense it typically has a polynomial dependence (rather than an exponential one) on the feature dimension and an almost linear dependence on the sample size. Details of the methods and model assumptions can be found in: Tianyu Zhang, and Noah Simon (2022) <arXiv:2206.02994>.
License: GPL-2
Imports: Rcpp (>= 1.0.7), combinat, glmnet, methods
LinkingTo: Rcpp, RcppArmadillo
RoxygenNote: 7.1.1

Index of help topics:

GenSamples Generate some simulation/testing samples with
nonlinear truth.

Sieve-package Nonparametric Estimation by the Method of
Sieves

sieve_predict Predict the outcome of interest for new samples
sieve_preprocess Preprocess the original data for sieve

estimation.
sieve_solver Calculate the coefficients for the basis

functions

~~ An overview of how to use the ~~ ~~ package, including the most ~~ ~~ important functions ~~

GenSamples 3

Author(s)

Tianyu Zhang

Maintainer: Tianyu Zhang <zty@uw.edu>

References

Tianyu Zhang and Noah Simon (2022) <arXiv:2206.02994>

Examples

xdim <- 5
basisN <- 1000
type <- 'cosine'

#non-linear additive truth. Half of the features are truly associated with the outcome
TrainData <- GenSamples(s.size = 300, xdim = xdim,

frho = 'additive', frho.para = xdim/2)

#noise-free testing samples
TestData <- GenSamples(s.size = 1e3, xdim = xdim, noise.para = 0,

frho = 'additive', frho.para = xdim/2)

sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
basisN = basisN, type = type, interaction_order = 2)

sieve.model <- sieve_solver(sieve.model, TrainData$Y, l1 = TRUE)

sieve_model_prediction <- sieve_predict(testX = TestData[,2:(xdim+1)],
testY = TestData$Y, sieve.model)

GenSamples Generate some simulation/testing samples with nonlinear truth.

Description

This function is used in several examples in the package.

Usage

GenSamples(
s.size,
xdim = 1,
x.dis = "uniform",
x.para = NULL,
frho = "linear",
frho.para = 100,

4 sieve_predict

y.type = "continuous",
noise.dis = "normal",
noise.para = 0.5

)

Arguments

s.size a number. Sample size.

xdim a number. Dimension of the feature vectors X.

x.dis a string. It specifies the distribution of feature X. The default is uniform distri-
bution over xdim-dimensional unit cube.

x.para extra parameter to specify the feature distribution.

frho a string. It specifies the true regression/log odds functions used to generate the
data set. The default is a linear function.

frho.para extra parameter to specify the true underlying regression/log odds function.

y.type a string. Default is y.type = 'continuous', meaning the outcome is numerical
and the problem is regression. Set it to y.type = 'binary' for binary outcome.

noise.dis a string. For the distribution of the noise variable (under regression probelm
settings). Default is Gaussian distribution.

noise.para a number. It specifies the magnitude of the noise in regression settings.

Value

a data.frame. The variable Y is the outcome (either continuous or binary). Each of the rest of the
variables corresponds to one dimension of the feature vector.

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#generate some noise-free testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim, noise.para = 0)

sieve_predict Predict the outcome of interest for new samples

Description

Use the fitted sieve regression model from sieve_solver. It also returns the testing mean-squared
errors.

Usage

sieve_predict(model, testX, testY = NULL)

sieve_predict 5

Arguments

model a list. Use the fitted model from sieve_solver.
testX a data frame. Dimension equals to test sample size x feature diemnsion. Should

be of a similar format as the training feature provided to sieve_preprocess.
testY a vector. The outcome of testing samples (if known). Default is NULL. For

regression problems, the algorithm also returns the testing mean-squared errors.

Value

a list.

predictY a matrix. Dimension is test sample size (# of rows) x number of penalty hy-
perparameter lambda (# of columns). For regression problem, that is, when
family = "gaussian", each entry is the estimated conditional mean (or predictor
of outcome Y). For classification problems (family = "binomial"), each entry is
the predicted probability of having Y = 1 (which class is defined as "class 1"
depends on the training data labeling).

MSE For regression problem, when testY is provided, the algorithm also calculates
the mean-sqaured errors using testing data. Each entry of MSE correponds to one
value of penalization hyperparameter lambda

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y)
#generate 1000 testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim)
sieve.prediction <- sieve_predict(model = sieve.fit,

testX = TestData[,2:(xdim+1)],
testY = TestData$Y)

###if the outcome is binary,
###need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y,

family = 'binomial')

###the predicted value is conditional probability (of taking class 1).
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.prediction <- sieve_predict(model = sieve.fit,

testX = TestData[,2:(xdim+1)])

6 sieve_preprocess

sieve_preprocess Preprocess the original data for sieve estimation.

Description

Generate the design matrix for the downstream lasso-type penalized model fitting.

Usage

sieve_preprocess(
X,
basisN = NULL,
maxj = NULL,
type = "cosine",
interaction_order = 3,
index_matrix = NULL,
norm_feature = TRUE,
norm_para = NULL

)

Arguments

X a data frame containing original features. The (i,j)-th element is the j-th dimen-
sion of the i-th sample’s feature vector. So the number of rows equals to the
sample size and the number of columns equals to the feature dimension.

basisN number of sieve basis function. It is in general larger than the dimension of the
original feature. Default is 50*dimension of original feature. A larger value has
a smaller approximation error but it is harder to estimate. The computational
time/memory requirement should scale linearly to basisN.

maxj a number. the maximum index product of the basis function. A larger value
means more basisN. If basisN is already specified, do not need to provide value
for this argument.

type a string. It specifies what kind of basis functions are used. The default is (aperi-
odic) cosine basis functions, which is suitable for most purpose.

interaction_order

a number. It also controls the model complexity. 1 means fitting an additive
model, 2 means fitting a model allows, 3 means interaction terms between 3
dimensions of the feature, etc. The default is 3. For large sample size, lower di-
mension problems, try a larger value (but need to be smaller than the dimension
of original features); for smaller sample size and higher dimensional problems,
try set it to a smaller value (1 or 2).

index_matrix a matrix. provide a pre-generated index matrix. The default is NULL, meaning
sieve_preprocess will generate one for the user.

norm_feature a logical variable. Default is TRUE. It means sieve_preprocess will rescale the
each dimension of features to 0 and 1. Only set to FALSE when user already
manually rescale them between 0 and 1.

sieve_preprocess 7

norm_para a matrix. It specifies how the features are normalized. For training data, use the
default value NULL.

Value

A list containing the necessary information for next step model fitting. Typically, the list is used as
the main input of Sieve::sieve_solver.

Phi a matrix. This is the design matrix directly used by the next step model fitting.
The (i,j)-th element of this matrix is the evaluation of i-th sample’s feature at the
j-th basis function. The dimension of this matrix is sample size x basisN.

X a matrix. This is the rescaled original feature/predictor matrix.

type a string. The type of basis funtion.

index_matrix a matrix. It specifies what are the product basis functions used when construct-
ing the design matrix Phi. It has a dimension basisN x dimension of original
features. There are at most interaction_order many non-1 elements in each row.

basisN a number. Number of sieve basis functions.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
#sieve.model$Phi #Phi is the design matrix

xdim <- 5 #1 dimensional feature
#generate 1000 training samples
#only the first two dimensions are truly associated with the outcome
TrainData <- GenSamples(s.size = 1000, xdim = xdim,

frho = 'additive', frho.para = 2)

#use 1000 basis functions
#each of them is a product of univariate cosine functions.
type <- 'cosine'
basisN <- 1000
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
#sieve.model$Phi #Phi is the design matrix

#fit a nonaprametric additive model by setting interaction_order = 1
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type,
interaction_order = 1)

8 sieve_solver

#sieve.model$index_matrix #for each row, there is at most one entry >= 2.
#this means there are no basis functions varying in more than 2-dimensions
#that is, we are fitting additive models without interaction between features.

sieve_solver Calculate the coefficients for the basis functions

Description

This is the main function that performs sieve estimation. It calculate the coefficients by solving a
penalized lasso type problem.

Usage

sieve_solver(
model,
Y,
l1 = TRUE,
family = "gaussian",
lambda = NULL,
nlambda = 100

)

Arguments

model a list. Typically, it is the output of Sieve::sieve_preprocess.

Y a vector. The outcome variable. The length of Y equals to the training sample
size, which should also match the row number of X in model.

l1 a logical variable. TRUE means calculating the coefficients by sovling a l1-
penalized empirical risk minimization problem. FALSE means solving a least-
square problem. Default is TRUE.

family a string. ’gaussian’, mean-squared-error regression problem.

lambda same as the lambda of glmnet::glmnet.

nlambda a number. Number of penalization hyperparameter used when solving the lasso-
type problem. Default is 100.

Value

a list. In addition to the preprocessing information, it also has the fitted value.

Phi a matrix. This is the design matrix directly used by the next step model fitting.
The (i,j)-th element of this matrix is the evaluation of i-th sample’s feature at the
j-th basis function. The dimension of this matrix is sample size x basisN.

X a matrix. This is the rescaled original feature/predictor matrix.

beta_hat a matrix. Dimension is basisN x nlambda. The j-th column corresponds to the
fitted regression coeffcients using the j-th hyperparameter in lambda.

sieve_solver 9

type a string. The type of basis funtion.

index_matrix a matrix. It specifies what are the product basis functions used when construct-
ing the design matrix Phi. It has a dimension basisN x dimension of original
features. There are at most interaction_order many non-1 elements in each row.

basisN a number. Number of sieve basis functions.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

lambda a vector. It records the penalization hyperparameter used when solving the lasso
problems. Default has a length of 100, meaning the algorithm tried 100 different
penalization hyperparameters.

family a string. ’gaussian’, continuous numerical outcome, regression probelm; ’bino-
mial’, binary outcome, classification problem.

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y)

###if the outcome is binary,
###need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y,

family = 'binomial')

Index

∗ sieve estimation; estimation using
orthogonal series

Sieve-package, 2

GenSamples, 3

Sieve (Sieve-package), 2
Sieve-package, 2
sieve_predict, 4
sieve_preprocess, 6
sieve_solver, 8

10

	Sieve-package
	GenSamples
	sieve_predict
	sieve_preprocess
	sieve_solver
	Index

