Package ‘SoDA’

October 28, 2020

Type Package

Title Functions and Examples for ~*Software for Data Analysis"
Version 1.0-6.1

Date 2014-06-12

Depends R(>= 2.5),methods,graphics

Author John M Chambers

Maintainer John M Chambers <jmc@r-project.org>

Description Functions, examples and other software related to the book

“*Software for Data Analysis: Programming with R". See
package?SoDA for an overview.

License GPL (>=2)
LazyLoad yes

LazyData yes
Repository CRAN
Date/Publication 2020-10-28 08:59:48 UTC

NeedsCompilation yes

R topics documented:

SoDA-package e e e
binaryRep
chunksAdd e
DateTime-class e e e e e e e
demoSource L. e e e e e
demoSource-class e e e
digest e e
dowNames e e e e e
dropModel e
evalText e e e
exampleFiles e
geoDiSt . ..o

2 SoDA-package

CEOXY . . e e e 14
GPSTrack-class e 15
JitterXY .o e 16
localRFiles e e e e e 17
MUSESIOP « « . & o v o e e e e e e e e e e e e e e e e e 18
packageAdd L. e e 18
plot-methods L e e e 19
promptAllo 20
randomGeneratorState-class L 21
randomSlippage 21
recoverHandler 22
runExample L e 23
scanGPSTrack L 24
scanRepeated L 25
ShOWENV e e 26
showLanguage 26
simulationResult L 27
SoDA-Examples e e e e 28
StrictOp e 29
track-class L. e e e e 30
trackSpeed 30
triDiagonal 31
tryRequire L e e 32
Index 33
SoDA-package Functions and Other Code for the book "Software for Data Analysis"
Description

This package contains R functions, some Fortran and C code, a little miscellaneous code in other
languages, and some data sets related to the book "Software for Data Analysis". Most of the func-
tions developed in the book will be found in this package, sometimes in a more elaborated form.

In addition, there is a large collection of R and other code and some data sets, in the "Examples”
directory of the package, including the source used to generate a number of examples shown in the
book. The R examples can be used to reproduce the book’s examples (not quite all, since a few
involve data that cannot be freely distributed).

The function runExample can be used to run or access the material in the examples. See its docu-
mentation for more details. Examples can be cited by file name or by the page on which the output
of the example begins. See exampleFiles for how this works.

A related set of functions can be used to demonstrate R examples a line at a time, with the demon-
strating human having the option to insert typed expressions during the demonstration. See demoSource,
including demoExample for the version designed for using example files from the book.

In keeping with the subtitle of the book, some of the functions in this package are slight extensions
to programming facilities for R; for example, packageAdd and promptAll to add software and
documentation to a package.

binaryRep 3

References

Chambers, John M.(2008) Software for Data Analysis: Programming with R, Springer.

binaryRep Generate Binary Representation in R

Description

Functions to generate a binary representation from numeric data, as an example of vectorizing
computations.

Usage

binaryRep(data, m = .Machine$double.digits)
binaryRepA(m)
binaryRepBits(data)

binaryRepPowers(n, m)

Arguments
data numeric data
m number of bits in mantissa
n range for powers

Value

The main function, binaryRep returns an object from class "binaryRep” providing the components
of the representation of data, as well as the original data itself.

The other functions are helper functions; see the examples in the book.

Class binaryRep
The object returned

original: The original data, of class "numeric”
sign, exponent: Objects of class "integer" for the sign and exponent.

bits: Object of class "raw” for the significand.

Examples

binaryRep(c(.1, .25, 1/3))

4 chunksAdd

chunksAdd Manage counts of text chunks

Description

Perl subroutines are used to add and delete chunks of text to tables of their counts.

Usage

chunksAdd(table, data, convert)

chunksDrop(table, data, convert)

Arguments
table A proxy reference to a Perl hash containing counts, as returned from a previous
call to chunksAdd () or chunksDrop (). On the initial call to chunksAdd() , this
argument will be omitted, and initialized as an empty table.
data A vector of items to be added or dropped from the counts in the table. Typically
a character vector but any mix of scalar items can be supplied.
convert Should the result be returned as a proxy reference to the table (a Perl hash), or
converted to a named vector in R? By default, the table is converted if the data
argument is omitted or of zero length.
Value

A proxy reference to a Perl hash, if convert is FALSE; otherwise a named vector (the conversion is
done by the Perl interface in package RSPerl, and will be a named vector of counts.

Author(s)

John M. Chambers <jmc@r-project.org>

References

http://www.omegahat.net/RSPerl/ for the RSPerl interface.

Examples

Not run:

if(require(RSPerl)){
set.seed(314)
somelLetters <- sample(letters, 100, TRUE)
tbl <- chunksAdd(data = someletters[1:50])
tbl <- chunksAdd(tbl, somelLetters[51:100])
tbl <- chunksDrop(tbl, somelLetters[1:10])
chunksAdd(tbl) # to convert the table

http://www.omegahat.net/RSPerl/

DateTime-class 5

}

End(Not run)

DateTime-class Class Union "DateTime"

Description

A class union for the standard data/time classes, "POSIXct"”,”POSIX1t", and "POSIXt".

Objects from the Class

A virtual Class: No objects may be created from it.

See Also

Class GPSTrack for a class having a slot of this class.

demoSource Flexible execution of R source for demonstrations

Description

R expressions in a source file are shown and evaluated sequentially, in an R “demo” session. Lines
are alternately shown and evaluated when the user types empty lines to the function demoInput in
another R session (the “input” session) running in the same working directory. Any R expression
typed in the input session is shown and evaluated in the demo, allowing you to add to the canned
demo.

Usage

demoSource(demo=, inputCon, where = .GlobalEnv)
demoInput(path=)

demoExample(name, package = "SoDA")
Arguments
demo Either the file name or input connection for the R source to be demonstrated, or

an object from class "demoSource”. The latter allows resuming a demo.

By default, a menu interface prompts the user to select an R source file in the
local directory or type in a path string (see localRFiles

6 demoSource

inputCon The connection from which to read prompt input. Usually omitted in which case
a call to demoInput() should occur in another R session in the same directory
(see the details).

where The environment where the demo expressions should be evaluated. By default,
in the global environment.

path The file system path where user input is passed to the demo controller. Must be
a writable location and be known to both R sessions. Usually omitted, in which
case a suitable fifo is created to communicate with demoSource().

name For demoExample (), the name of the example file, with or withouta " .R" suffix.
There should be a corresponding file in the "Examples” subdirectory of the
package.
Once the file has been determined, demoExample just calls demoSource.
package The name of the package to use to find the example file.
Details

The demo is begun by starting R twice in two separate shell (terminal) windows, in the same work-
ing directory, the input window and the demo window. To start the demo, the user calls demoInput
in the input window, with no arguments. The call to demoInput goes into a loop reading terminal
input.

In the demo window, the user then calls demoSource, usually just supplying the file name for the
source file. The input process now reads lines from the terminal and writes to a fifo that will be
read by the demo process. Empty lines (the usual) alternately display and evaluate single lines from
the source file. A line consisting only of a comma is a continuation: The next line of the source
is read and displayed but not yet evaluated. Use this mechanism to collect a bunch of lines to be
evaluated together, such as a function definition. When the last line of the bunch is displayed, enter
an empty line to evaluate all the lines at once.

A line containing only g quits from demoInput, which you need to do before starting to run another
demo. Quitting from the input also causes the quit command to be written to the fifo, at which
point demoSource returns the current state of the demo. If you quit before the demo is finished, and
you have arranged to assign the returned value from demoSource, that object can be supplied in a
subsequent call to demoSource to resume this demo.

Any input other than an empty line, comma or q is interpreted as a literal expression that the user
wants evaluated instead of the next source line.

Source lines in the demo file ending in "#SILENT"” will be silently executed before the next ordinary
line is displayed.
Value

demoSource() and demoExample () return, invisibly, the "demoSource” object describing the cur-
rent state of the demo.

See Also

demoSource-class()

demoSource-class 7

demoSource-class Class "demoSource" for objects used with demoSource() function

Description

Objects from this class are created and manipulated during interactive sessions with the demoSource ()
function. They

Objects from the Class

Objects can be created by calls of the form new("demoSource”, . ..). Generally, objects are created
by demoSource () and modified by the various utility functions that process control and demo input.
Objects from the class are normally used to save and restart an incomplete demo.

Slots

lines: Object of class "character” holding the lines of the source connection.

pos: Current position in the source buffer (the number of lines that have been processed so far).
partial: While an expression is being parsed, lines in the current expression are copied here.
expr: When an expression has been parsed, the parsed expression is stored here.

value: When an expression has been evaluated, the value is stored here.

envir: Objectof class "environment”, the environment in which expressions have been evaluated.

state: Character string used to indicate the current state of the demo. States "partial”, "parsed”,
and "evaluated” correspond having read some (or all) of the current input, to having parsed
that (and determined that it’s a complete expression), and having evaluated the expression.

See demoSource() for how one gets to these states; for example, the typical "" control input
first reads and parses to a complete expression, and then on the next such input evaluates.

The various utility functions used by demoSource () modify the demo object they receive to
reflect the step(s) taken, and then return the modified object. The call to demoSource() itself
returns (invisibly) the demo object as it stands when the demo exits. Using the returned object,
one can pause and resume a demo or interleave multiple demos.

See Also

demoSource()

8 digest

digest Create hash function digests for arbitrary R objects

Description

The digest function applies a cryptographical hash function to arbitrary R objects. By default, the
objects are internally serialized, and either one of the currently implemented MDS5 and SHA-1 hash
functions algorithms can be used to compute a compact digest of the serialized object.

This version of the function accomplishes essentially the same result as the function of the same
name in the digest package, but via somewhat different computations, as discussed in the book
“Software for Data Analysis”.

Usage

digest(object, algo=c("md5", "shal", "crc32"),
serialize=TRUE, file=FALSE, length=Inf, use.Call = FALSE)

Arguments
object An arbitrary R object which will then be passed to the serialize function,
unless the serialize argument is set to FALSE
algo The algorithms to be used; currently available choices are md5, which is also the
default, shal and crc32
serialize A logical variable indicating whether the object should be serialized using serialize.
Setting this to FALSE allows to compare the digest output of given character
strings to known control output.
file A logical variable indicating whether the object is a file name.
length Number of characters to process. By default, when length is set to Inf, the
whole string or file is processed.
use.Call Should the C interface use the .Call() interface or the .C() interface. An
internal question whose answer should not affect the result.
Details

See the documentation for the digest package version of the function, and the references below
for the underlying algorithms.

The version in the present package has been modified for tutorial reasons, to illustrate some princi-
ples of the design of interfaces to C code.

Value

The digest function returns a character string of a fixed length containing the requested digest of
the supplied R object. For MDS5, a string of length 32 is returned; for SHA-1, a string of length 40
is returned; for CRC32 a string of length 8.

digest 9

Author(s)

Dirk Eddelbuettel <edd@debian.org> for the original R interface; Antoine Lucas for the integration
of crc32; Jarek Tuszynski for the file-based operationss; Christophe Devine for the hash function
implementations for sha-1 and md5; Jean-loup Gailly and Mark Adler for crc32.

John Chambers for the modified C and R code in this package.

References

MDS5: https://www.ietf.org/rfc/rfc1321.txt.
SHA-1: https://www.itl.nist.gov/fipspubs/fip180-1.htm.
CRC32: https://zlib.net/crc_v3. txt.

The page for the code underlying the C functions used here for sha-1 and mdS5, and further refer-
ences, is no longer accessible. Please see https://en.wikipedia.org/wiki/SHA-1 and https:
//en.wikipedia.org/wiki/MD5.

http://z1ib.net for documentation on the zlib library which supplied the code for crc32.

See Also

serialize, md5sum

Examples

Standard RFC 1321 test vectors
md5Input <-
e,

nan

a’,
abc”,
"message digest”,
"abcdefghijklmnopgrstuvwxyz"”,
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz@123456789",
paste(”12345678901234567890123456789012345678901234567890123456789012",
"345678901234567890", sep=""))
md50utput <-
c("d41d8cd98f00b204e9800998ecf8427e",
"@cc175b9c0f1b6a831¢c399e269772661",
"900150983cd24fb0d6963f7d28e17f72",
"f96b697d7cb7938d525a2f31aaf161d0",
"c3fcd3d76192e4007dfb496ccab7e13b"”,
"d174ab98d277d9f5a5611¢c2c9f419d9f",
"57edf4a22be3c955ac49da2e2107b67a")

n

for (i in seq(along=md5Input)) {
md5 <- digest(md5Input[i], serialize=FALSE)
stopifnot(identical(md5, md50utput[i]))

3

shallnput <-
c("abc”,

https://www.ietf.org/rfc/rfc1321.txt
https://www.itl.nist.gov/fipspubs/fip180-1.htm
https://zlib.net/crc_v3.txt
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/MD5
http://zlib.net

10

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”,
NULL)
shalOutput <-
c("a9993e364706816aba3e25717850c26c9cd0d89d”,
"84983e441c3bd26ebaae4aalf95129e5e54670f1",
"34aa973cd4c4daasf61eeb2bdbad27316534016F")

for (i in seq(along=shallnput)) {
shal <- digest(shallnput[i], algo="shal"”, serialize=FALSE)
stopifnot(identical(shal, shalOutput[i]))

3

crc32Input <-
c("abc",
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq”,
NULL)
crc320utput <-
c("352441c2",
"171a3f5f",
"2ef80172")

for (i in seq(along=crc32Input)) {
crc32 <- digest(crc32Input[i], algo="crc32", serialize=FALSE)
stopifnot(identical(crc32, crc320utputl[i]))

}

one of the FIPS-
shal <- digest("abc”, algo="shal", serialize=FALSE)

stopifnot(identical(shal, "a9993e364706816aba3e25717850c26c9cd0d89d"))

example of a digest of a standard R list structure

digest(1ist(LETTERS, data.frame(a=letters[1:5], b=matrix(1:10,ncol=2))))

test 'length' parameter and file input

fname = file.path(R.home(),"COPYING")

x = readChar(fname, file.info(fname)$size) # read file

for (alg in c(”"shal”, "md5", "crc32")) {
partial file
h1 = digest(x , length=18000, algo=alg, serialize=FALSE)
h2
h3 = digest(substr(x,1,18000) , algo=alg, serialize=FALSE)
stopifnot(identical(h1,h2), identical(h1,h3))
whole file
h1 = digest(x , algo=alg, serialize=FALSE)
h2 = digest(fname, algo=alg, serialize=FALSE, file=TRUE)
stopifnot(identical(h1,h2))

3

compare md5 algorithm to other tools
library(tools)

fname = file.path(R.home(),"COPYING")

h1 = as.character (md5sum(fname))

h2 = digest(fname, algo="md5", file=TRUE)

digest(fname, length=18000, algo=alg, serialize=FALSE, file=TRUE)

digest

dowNames

stopifnot(identical(h1,h2))

dowNames Days of the week

Description

Days of the week, in the English language form.

Usage

data(dowNames)

Format

The format is: chr [1:7] "Sunday" "Monday" "Tuesday" "Wednesday" "Thursday" ...

dropModel Drop terms from a model

Description

Either updates a model or modifies the formula to drop all terms involving a specified variable.

Usage

dropFormula(original, drop)

dropModel (model, drop)

Arguments
original Original formula
drop Which variable to drop
model Original fitted model
Value

The modified model object or formula.

12 exampleFiles

evalText Turn a text string into an evaluated expression

Description

Turns a text string into an evaluated expression. See the "Computing with Text" chapter for why.

Usage

evalText(text, where = .GlobalEnv)

Arguments

text The string.

where The environment to use for the computation.
Value

Whatever the expression evaluates to.

Examples

See the chapter.

exampleFiles FPath to Files in the Examples Subdirectory

Description
Given one or more file names, returns the corresponding paths to files in the "Examples” subdirec-
tory of a package. With the names argument missing, returns the names of all such files.

Usage

exampleFiles(names = character(), where = "SoDA", oneFile = FALSE, path = TRUE)

Arguments

names Either character string names or page numbers matched against the file names
defined by the second argument. See details below.

where The name of the package containing the "Examples” directory, by default, this
package, or else the path name of a directory which itself contains the files of
interest.

onefFile If TRUE, and more than one file matches, the caller will be asked to select one of
these files.

path If TRUE, the file(s) will be returned with full directory paths; else, only with the

file names.

geoDist 13

Details

In any call, argument names can be a vector of character string names, expected to match files in the
directory of examples. The names may match only the leading part of the file name; in particular,
it will often be the case that the actual file name has a suffix such as " .R", omitted in the names
argument.

If the argument where is a package name, then that package is expected to have a directory named
"Examples”, as does this package. In all other circumstances, this argument must itself be the path
name of a directory containing the example files.

In the case of a package, if the package has a data frame object named examplePages, that object
will be used to match page numbers of a document on which the examples appear. In the default
case, the document is the book Software for Data Analysis. If you see an example in the book that
appears to be the output from running some R code, enter the page number on which the output
starts as the names argument. Often (though not always) the corresponding R code is one of the
files in the Examples directory of the package. Some other files, such as source in other languages
or related data, are also provided corresponding to examples.

Note that the same use of page numbers applies in calls to runExample or demoExample.

Value

Names for the matching files, or for all such files if names was missing.

See Also

runExample to run such files, and demoExample to run them as interactive demos.

geoDist Geodetic distances from latitude and longitude

Description

Given two sets of points on the earth’s surface in latitude, longitude form, returns the geodetic
distances in meters between corresponding points.

Usage

geoDist(lat1, lonl, lat2, lon2, NAOK = TRUE, DUP = TRUE)

Arguments

lat1, lon1, lat2, lon2
Latitude and longitude co-ordinates for the two sets of points.

NAOK Are NA values allowed in the co-ordinates? Default TRUE. If so, corresponding
elements of the distance will also be NA.

DUP Value for the DUP argument to . Fortran().

14 geoXY

Details

Uses a classic Fortran algorithm implementing a method that allows for the non-spherical shape of
the earth. See comments in the Fortran code for the history of the implementation.

Value

numeric vector of distances, optionally including NA values if those are allowed and present in any
of the coordinates.

References
Vincenty,T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of
nested equations. Survey Review, vol. 23(176):88-94.

See Also

For the DUP argument, see .Fortran.

geoXY Geodetic coordinates from latitude and longitude

Description

Given a set of points on the earth’s surface, in latitude and longitude form, this function returns the
corresponding coordinates in X (east-west) and Y (north-south) distances along the surface of the
earth, from a specified origin.

Usage

geoXY(latitude, longitude, lat®@, lon®, unit = 1)

Arguments

latitude, longitude
Pairs of latitude and longitude values for the points to be used.

1at@, lono The two latitude, longitude defining the origin for the desired coordinates. By
default, the southwest corner of the data; that is, the minimum values for the
supplied latitude and longitude coordinates.

unit The unit to be used for the coordinates, in meters; e.g., unit=1000 causes the
coordinates to be in kilometers.

GPSTrack-class 15

Details

The coordinates returned are an alternative to projecting the points onto a plane or other surface.
Unlike projections, there is no distortion or approximation involved, other than computational error
in the algorithm for geodetic distances. The coordinates are in principle exact replications of the
latitude and longitude, but expressed in distances along the corresponding horizontal and vertical
geodesics. Essentially, the coordinates are rotated to a parallel of latitude and a north-south meridian
through the origin, and distances returned along those lines to the latitude and longitude of the data
points. For purposes of data visualization, the advantage is that the points are suitable for plotting
as x,y values directly, regardless of the location, so long as the range of the latitude is not large
compared to the surface of the earth.

The specific computation can be imagined as follows. For each pair of latitude and longitude in
the data, the corresponding x coordinate is the distance from the origin to a point that has the same
latitude as the origin and the same longitude as the data. The y coordinate is the distance from the
origin to a point with the same longitude as the origin and the same latitude as the data. In each
case the distance is distance on the surface of the earth, as computed by the algorithm in geoDist,
with a sign given by the corresponding difference in latitude (for the y coordinate) or longitude (for
the x coordinate).
Value

A two-column matrix of coordinates, with column names "X","Y".

References

Vincenty,T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of
nested equations. Survey Review, vol. 23(176):88-94.

See Also

geoDist, which computes the distances.

Examples

xy <- geoXY(gpsObjectl@latitude, gpsObjectl@longitude, unit = 1000)
plot(xy[,1], xy[,2], asp = 1)

GPSTrack-class Class "GPSTrack"

Description

Objects representing GPS Track information, with separate slots for each of the geodetic coordinates
and for time.

16 jitterXY

Objects from the Class
Objects can be created by calls of the form new(”"GPSTrack”,...), or read from a typical file by
calling scanGPSTRACK().

Slots

latitude, longitude, elevation: Objects of class "numeric” containing the coordinates of points
on the track. A valid object requires these to be of the same length and suitable numeric ranges.

time: Object of class "DateTime"; a valid object must have the same length as the coordinates.

See Also

scanGPSTrack for reading in this data; DateTime, the virtual class for the time information (usually
"POSIXct" for the actual times.

jitterXy Add random noise to data based on graphics character size

Description

The input data, for x or y axis data, is jittered by a uniform random amount, scaled to the width and
height of a character if this data were being plotted.

Usage

jitterXY(x = c(@, 1), y = c(0, 1), xscale = 1, yscale = 1)
jitterX(x, scale = 1)
jitterY(y, scale = 1)

Arguments
X Numeric data that might be plotted on the horizontal axis.
y Numeric data that might be plotted on the vertical axis.

xscale, yscale, scale
How much to scale the random noise on the x, y axis

Value

For jitterXY a list, with x and y components containing the perturbed versions of the correspond-
ing arguments. Giving this list to plot produces a scatter plot of the two sets of data. If only one
coordinate is jittered a vector is returned; this is always the case with jitterX and jitterY.

See Also

jitter, which scales data without regard to the plotting parameters.

localRFiles 17

Examples

Not run:
with(sotu, plot(jitterXY(economy, war+peace)))

End(Not run)

localRFiles The R source files in the local directory

Description

Returns the names of the R source files in a directory, by default the current working directory.

Usage

localRFiles(directory = getwd(), suffix = "[.][RSql$", ask = FALSE)

Arguments
directory Where to look, by default the directory in which R is currently running
suffix Regular expression to identify R source files.
ask If TRUE, uses the menu function to prompt the user for one of the local R files or
to enter a file name.
Value

The character vector of matching file names.

menuRFile

Author(s)

John M. Chambers

Examples

all the example files for this package
localRFiles(system.file("R-ex",package="SoDA"))

18 packageAdd

muststop Test for an expression that should result in an error

Description

This function tests the assertion that there is an error in the expression and therefore that evaluating
it will generate an error condition.

Usage

muststop(expr, silent = TRUE)

Arguments

expr Any R expression

silent if FALSE, the error message will be reported.
Value

If an error is generated, the function returns the corresponding condition object; if not, then
muststop () will itself generate an error.

See Also

stopifnot

Examples

muststop(sqrt(”abc"))

packageAdd Add contents of R source files to a source package

Description

The contents of one or more files of R source code will be added to the specified source package:
the files themselves will be added to the R directory, and shells for the documentation will be added
to the man directory. Unlike package.skeleton, this function does not require one function per
source file and supports both class and method definitions.

Usage

packageAdd(pkg, files, path = ".", document = TRUE)

plot-methods 19

Arguments
pkg The name of the package. It must be attached to the session.
files The names of the files containing the R source to add to the package.
path The directory under which the source for pkg is stored.
document Should a skeleton documentation for the objects be generated?
Details

The file of source code is copied unchanged to the "R" subdirectory of the source package. A shell
of documentation is initialized for all the objects created by the evaluating the file.

If the file generates several function objects, the documentation shells for all of these, as generated
by the prompt() function, are merged and stored under the name of the file, suffix ".Rd", in the
"man” subdirectory of the package.

Currently method and class documentation are generated on separate files rather than being merged
with function documentation.

Value

Nothing useful. Called for its side effects.

See Also

promptAll

Examples

Not run:
packageAdd("”SoDA", "triDiagonal.R", "~/RPackage")

End(Not run)

plot-methods Methods for Plot and show in the SoDA pacakge

Description

Methods for plotting objects from the track classes.

Methods
For plot:

x = "track", y = ""missing'" Plots the points on the track.

x = ""track3", y = "missing'' Codes slot z in the plotting character of the inherited method from
class track.

Also show methods for class track and class binaryRep

20 promptAll

promptAll Create an outline of documentation for multiple objects

Description

Documentation in outline form will be generated to document together all the objects (typically
functions) whose names are given.

Usage
promptAll(objects, name, filename, where, ...)
Arguments
objects The names of the objects to be documented.
name The name for the documentation file; by default the name of the first of the
objects is used.
filename The file on which to save the outline of the documentation. By default, appends
".Rd" to name.
where Optional environment where the objects will be found. By default, uses the top
level environment of the call to promptAl11().
Optional arguments to be passed on to prompt ().
Details

The function prompt () is called for each of the objects. The usage and arguments sections of the
individual documentation are merged. In particular, all shared argument names will be listed only
once in the documentation shell.

Value

Nothing useful. Called for its side effect.

See Also

packageAdd

Examples

Not run:
promptAll(objects(pattern="trix"), "triDiagonal")

End(Not run)

randomGeneratorState-class 21

randomGeneratorState-class
Class of Objects Representing Random Generator State

Description

A class union, initially containing only "integer"”, the data type for standard R generator states.
Might eventually allow other forms of generator state, but not likely for built-in R generators.

Objects from the Class

A Class Union, no objects.

Methods

show signature(object = "randomGeneratorState”): The method assumes the standard R state;
other generator state classes would likely override this.

See Also

Class simulationResult has this class as slots.

Examples

showClass("randomGeneratorState")

randomSlippage Are simulated sequences robust?

Description
This function inserts a specified number of extra random uniforms into a sequence of calls to a
generator, and checks whether the subsequent samples re-synchronize.

Usage

randomSlippage(nRuns, exprl, expr2, slip = runif(1), check = FALSE)

Arguments
nRuns Number of runs for the comparison.
exprl, expr2 The literal expressions to be evaluated before and after the possible slippage.
slip The expression to be evaluated to cause the slippage; default runif(1).

check If TRUE, the function will check that synchronization really did occur.

22 recoverHandler

Details

The second generated result from evaluatging expr2 will resynchronize, if ever, after some number
of values generated in the original and perturbed sequence, say k1 and k2. At this point, each
sequence returns exactly the same value because each has used the same number of uniforms; from
that point on the sequences will be identical.

Re-synchronization need never occur; see the example in the reference.

Value

The function returns a matrix with nRuns rows and two columns. For each row, the returned value
is the slippages, c(k1,k2) in the Details.

Examples

set.seed(211)

RNGkind("default”, "Ahrens")

xx = randomSlippage (1000, rnorm(20), rnorm(20))
table(xx[,1], xx[,2])

recoverHandler Calling handler for recover

Description

A handler to use with function withCallingHandlers.

Usage

recoverHandler(condition)

Arguments

condition the condition passed in

Value

None of interest

runExample

23

runExample

Run or access example files

Description

This function finds and runs a file, usually of R code. The function is specialized to look for
examples included in the package and based on material in Software for Data Analysis, but can be
used for other directories containing source files as well.

Usage
runExample(what, where = , run = TRUE, ..., echo = TRUE, prompt.echo, wd)
Arguments
what Identifies the example to be run. Can be either a character string name of the file
to be run, possibly without the suffix or the page in Software for Data Analysis
where the example appears. See exampleFiles for details.
where The character string name of the package or directory in which the files are to
be found. By default, and usually, it is the SoDA package. If a package name is
given, that package must have an "Examples” directory.
run Should the example code be run, or only parsed, assuming it is R source code?
., echo, prompt.echo
Any optional arguments to the source function, assuming run is TRUE. The
default for prompt.echo is constructed from an abbreviation of the file name.
wd The working directory in which to run the example. If the argument is missing
and where is a package, the working directory is the package directory, which is
also the parent directory of the Examples directory.
If where is a directory and not a package, and wd is missing, then the working
directory is not changed. Otherwise, the working directory is set before running
the example and reset after. As you would hope, this argument is ignored if run
is FALSE.
Value

If the file is an R source file, the function returns either the value from source or the parsed version
of the file, according to whether run is TRUE.

For non-R files, the value is currently just the character vector containing the lines of the file. Future
versions may be a little more clever.

References

Chambers, John M.(2008) Software for Data Analysis, Springer.

24 scanGPSTrack

See Also
demoSource for a more interactive way to run a file of R code, and exampleFiles for direct access
to the path of the file.

Examples

Not run:
runExample("madCall”) # run file "madCall.R"
runExample(53) # the example appearing on page 53 of the book.

End(Not run)

scanGPSTrack Scan GPS Track Data into a GPSTrack class Object

Description

Attempts to scan a file or other connection containing GPS track information in a typical format,
and to store the data in an object from class GPSTrack. Optional arguments define the layout of
lines and the format used for date/time information

Usage

scanGPSTrack(con, fields, dateTimeFormat)

Arguments
con A file name or open connection from which to read the data.
fields An optional list for use by scan to interpret the fields in each line of the file. The

nn

list must include the names in the default list, which is list(date ="",time =
"" lat =0,lon =0,el = 0). Note that other fields can be included to skip over
data not needed for the track information, and that the field names can be longer,
provided that the versions here match by partial matching.

dateTimeFormat An optional character string format for the date and time, in the scheme used by
strptime. The default is the standard date/time format, "%Y-%m-%d%H: %M: %S".
Details

Data is read from the connection by scan(), and the date and time components are then re-read by
strptime, and a new object of class "GPSTrack" is created from the results. The scan takes in all
the lines available.

Value

An object of GPSTrack containing the coordinates and time as scanned.

See Also
GPSTrack

scanRepeated 25

scanRepeated Read data with multiple line patterns

Description

Data files may have non-identical patterns so that different lines require different what= arguments
to scan(). This function takes a list of such patterns and applies them in separate calls to produce
an interwoven list of the resulting data.

Usage
scanRepeated(file, what, ...)
Arguments
file The file of input data, organized so that each line can be read by a call to scan()
what A list, whose elements are suitable as the argument of the same name to scan().
The first element applies to the first line of the file, the second to the second line,
etc. Elements are recycled, so that if the pattern of the file repeats after k lines
the list only needs to be of length k.
Additional arguments to be passed to scan(), typically sep= and similar con-
trols.
Details

The function operates by setting up a call to mapply to read each line of the file as a text connection.
For this reason, really large files will be slow. See the examples in the book for alternatives in R or

Perl.

Value

A list, with one element per line. When the pattern of the lines repeats, this has the data form of
a matrix of type "list"”, with k rows. The list can be restructured in a variety of ways, but its
format is often suitable as is for computations that iterate over the sets of k line types, as in the book
example.

See Also

mapply, scan

Examples
Not run:
what = list(
list(abb = "", population = 1, area =1,
latitude = 1, longitude = 1),
list(name = "", population = 1, area = 1)

26 showLanguage

data <- scanRepeated("”stateCities.txt"”, what, sep = ",")
End(Not run)
produces a list of 100 elements, alternately state and city data.

showEnv A decent method to show or print enviornments

Description
Interprets the "name” attribute, if any, of the environment similarly to the default print method, but
spares the reader the redundant and unreadable attributes themselves.

Usage

showEnv (x)

Arguments

X Either an environment or something as.environment() will turn into one.

Value

the environment, invisibly.

showLanguage Methods to show the structure of language objects

Description

Unlike the default print methods, which only deparse objects representing expressions in the S
language, these functions, and the method for function show that they implement, show the structure
of the object, to help compute with them sensibly.

Usage
showLanguage(object, indent = "")
showCall(object, indent = "")
Arguments
object The object to be shown; usually an unevaluated expression in the language, but

anything is legal.

indent Indentation string; incremented by four spaces for each recursive level of call.

simulationResult 27

Details

Expressions in R, other than names, generally have a recursive call-like structure, with the first
element being the function called and the remainder being the arguments. The methods presented
here display the object in this form. See the examples.

Value

invisible(object)

See Also

deparse

Examples

show(quote(x))
show(as.name("[["))

xx <- quote(f(1:10))

show(xx)

a call to a function object
f <= function(x)x+1

xx[[1]] <= f

show(xx)

a literal function expression in the call
(note: the function definition has not yet been evaluated)

yy <- quote((function(x)x+1)(1:10))

show(yy)

simulationResult Create a simulation result, including first and last state

Description

The class "simulationResult” and the function of the same name record an arbitrary simulation
result, along with the state of the random number generators at the start and at the end of the
simulation, allowing trustworthy verification or repetition of the simulation.

28 SoDA-Examples

Usage

simulationResult(value, seed)

resetSeed(object, last = FALSE)

Arguments
value The simulation to be done and saved.
seed Optionally, the argument to set.seed(), to set the first state of the generator.
If omitted, the generator should have been initialized before the call, and the
current value of .Random. seed will be used.
object An object from the "simulationResult" class, usually from a call to the simulationResult ()
function.
last Optional flag, if TRUE, then the generator is reset from the last state of object,
otherwise from the first.
Value

Function simulationResult returns an object of that class, with the expr and result slots set to
the unevaluated and evaluated version of the value argument.

Slots

firstState, lastState: Objects of class "randomGeneratorState”, containing the state of the
generator before and after the simulation.

expr: The expression evaluated to produce the simulation.

result: The object returned by the simulation.

See Also

randomSlippage

SoDA-Examples Example Files for the book "Software for Data Analysis"

Description

The SoDA package has a set of files related to examples in the book. These are all found in the
directory "Examples” under the installed version of the package. The files are intended to be edited
and used as source to experiment with the examples in the book.

strictOp

Details

29

Note that not all the examples shown in the book correspond to an explicit example file. Also, some
of the data sets used are not explicitly open-source and so are not included in this package. For
example, the mars data exists on the web as an Excel file; you need to export that as a ".csv" file
to run the corresponding examples.

To find all the examples, or examples appearing on a page in the book, use exampleFiles.

See runExample to run an example file.

Author(s)

John M. Chambers <jmc @r-project.org>

strictOp

Apply strict conditions to R operators

Description

The expression is checked for stricter conditions on compatible arguments; if the conditions fail an
error or warning is issued. If no error is issued, the expression’s value is returned.

Usage

withStrictOps(expr, attach)
strictOp(expr, warnOnly = FALSE, errorCall)

Arguments

expr

attach

warnOnly

errorCall

For withStrictOps, any expression to be evaluated. Subexpressions from the
binary operators in the base package for arithmetic, comparison, and logic will
be evaluated by stricter rules. For strictOp, the expression should only be one
of these calls. Generally, withStrictOp will be more convenient to use, and
strictOp is largely for internal use.

No longer supported in CRAN, because of restriction added long after this pack-
age was written. Used to be:

Optional argument, only examined if expr is missing. If TRUE, then the "strictOps”
environment is attached, overriding the applicable operators with strict versions.
If attach is FALSE, this environment is detached. See the details.

If TRUE, only issue warnings on failures.

Optional argument for internal use, supplying the expression to be used in error
messages as the original call.

30 trackSpeed

Details
The functions apply the stricter rules for compatibility given in section 7.1 of “Software for Data
Analysis”.

Calling withStrictOps evaluates an arbitrary expression with an environment containing strict
versions of all the relevant operators. Calling withStrictOps with no arguments attaches this
environment to the search list, overriding the base versions of the operators. If the expressions pass
the strict rules, evaluation is passed on to the corresponding base package version of the operator.

Value

the value of expr

Examples
sum(rnorm(3) == as.raw(1:3))# succeeds but comparison is ambiguous
muststop(withStrictOps(sum(rnorm(3) == as.raw(1:3))),
silent = FALSE) # signals an error
track-class Class "track" ~~~
Description

Planar or 3-dimensional track objects Class track3 contains track.

Objects from the Class

Objects conceived as being on a plane or in 3-space, representing samples from an observed track.

Slots

X, Y, z: Objects of class "numeric” for the coordinates of the track.

trackSpeed Compute interpoint speeds along a track

Description

Given a vector or matrix of successive positions (in any number of dimensions), and the correspond-
ing times, returns a vector of the average speed over each step in the track.

Usage

trackSpeed(coords, time)

triDiagonal

Arguments

coords

time

Details

31

Either a vector (1 dimension) or a matrix whose rows are successive points along
a measured track.

A vector of times corresponding to the positions; either numeric or one of R’s
standard time classes.

The function computes Euclidean distances along the path, in an arbitrary number of dimensions,
though usually 1, 2, or 3, and divides by the corresponding differences in time. Missing values are
allowed in either coordinates or time, but will propagate into the computed speeds, in the sense that
the speed is NA if any of the coordinates or times at either end of the interval are missing.

Value

Numeric vector of speeds.

Examples

xy <- geoXY(object@latitude, object@longitude)
trackSpeed(cbind(xy, object@elevation), object@time)

triDiagonal

Tridiagonal Matrix Functions

Description

Functions to create forms of tridiagonal matrix objects.

Usage

triDiag(diagonal, upper, lower, nrow = length(diagonal), ncol = nrow)

triDiag2(diagonal, upper, lower, nrow = length(diagonal), ncol = nrow)

triDiag2S(diagonal, upper, lower, r = length(diagonal))

triDiag3(diagonal, upper, lower, nrow = length(diagonal), ncol = nrow)

triDiag3S(diagonal, upper, lower, r = length(diagonal))

32 tryRequire

Arguments

diagonal, upper, lower
Numeric data to store in these positions.

nrow, ncol Number of rows and columns
r size of square matrix
Value

Tridiagonal matrices, constructed by a variety of computations, as described in the book.

tryRequire Error-free test for requiring a package

Description

This function reliably tries to attach a package and silently returns FALSE if the package cannot be
attached. Unlike require, it does not generate an error if the package exists but cannot be attached
(e.g., because of version requirements).

Usage

tryRequire(what)
Arguments

what The name of the package
Details

The function intends to run silently, but this is not uniformly possible, since the quietly = TRUE op-
tion to require() does not suppress messages from other packages attached through dependencies
in this package.

The value is not returned invisibly, as it would be with require().

Value

TRUE if the package was successfully attached and FALSE otherwise.

Examples

tryRequire(RSPerl)

Index

* 1O
scanGPSTrack, 24
* array
triDiagonal, 31
* classes

DateTime-class, 5
demoSource-class, 7
GPSTrack-class, 15
randomGeneratorState-class, 21
simulationResult, 27
track-class, 30

+ datasets
dowNames, 11

+ data
scanRepeated, 25

x distribution
randomSlippage, 21

*x documentation
packageAdd, 18
promptAll, 20

* dplot
jitterXY, 16

+ math
binaryRep, 3
geoDist, 13
geoXY, 14
trackSpeed, 30

+x methods
plot-methods, 19

* misc
digest, 8

+ package
SoDA-package, 2

* programming
chunksAdd, 4
demoSource, 5
dropModel, 11
evalText, 12
exampleFiles, 12

33

localRFiles, 17
muststop, 18
packageAdd, 18
promptAll, 20
randomSlippage, 21
recoverHandler, 22
runExample, 23
showEnv, 26
showLanguage, 26
simulationResult, 27
SoDA-Examples, 28
strictOp, 29
tryRequire, 32
.Fortran, 14

as.environment, 26

binaryRep, 3

binaryRep-class (binaryRep), 3
binaryRepA (binaryRep), 3
binaryRepBits (binaryRep), 3
binaryRepPowers (binaryRep), 3

chunksAdd, 4
chunksDrop (chunksAdd), 4
condition, /8

DateTime, 16
DateTime-class, 5
demoExample, 13
demoExample (demoSource), 5
demoInput (demoSource), 5
demoSource, 2,5, 7, 24
demoSource-class, 7
deparse, 27

digest, 8

dowNames, 11

dropFormula (dropModel), 11
dropModel, 11

evalText, 12

34

exampleFiles, 2, 12, 23, 24, 29
examplePages (exampleFiles), 12
Examples (SoDA-Examples), 28

fifo, 6

geodetic (geoDist), 13
geoDist, 13, 15
geoXY, 14
GPSTrack, 5, 24
GPSTrack-class, 15

jitter, 16

jitterX (jitterXY), 16
jitterXy, 16

jitterY (jitterXY), 16

localRFiles, 5, 17

mapply, 25

mars (SoDA-Examples), 28
md5sum, 9

menuRFile (localRFiles), 17
muststop, 18

package.skeleton, I8
packageAdd, 2, 18, 20
plot, 16
plot,track,missing-method
(plot-methods), 19
plot,track3,missing-method
(plot-methods), 19
plot-methods, 19
prompt, 19, 20
promptAll, 2, 19, 20

randomGeneratorState-class, 21
randomSlippage, 21, 28
recoverHandler, 22

require, 32

resetSeed (simulationResult), 27

runExample, 2, 13,23, 29

scan, 24, 25
scanGPSTrack, 16, 24
scanRepeated, 25
serialize, 8, 9
set.seed, 28

show, 26

show,binaryRep-method (plot-methods), 19

INDEX

show, language-method (showLanguage), 26

show, randomGeneratorState-method
(randomGeneratorState-class),
21

show, simulationResult-method
(simulationResult), 27

show, track-method (plot-methods), 19

showCall (showLanguage), 26

showEnv, 26

showLanguage, 26

simulationResult, 21, 27

simulationResult-class
(simulationResult), 27

SoDA (SoDA-package), 2

SoDA-Examples, 28

SoDA-package, 2

source, 23

stopifnot, 18

strictOp, 29

strptime, 24

track-class, 30

track3-class (track-class), 30
trackSpeed, 30

triDiag (triDiagonal), 31
triDiag2 (triDiagonal), 31
triDiag2S (triDiagonal), 31
triDiag3 (triDiagonal), 31
triDiag3S (triDiagonal), 31
triDiagonal, 31

tryRequire, 32

withCallingHandlers, 22
withStrictOps (strictOp), 29

	SoDA-package
	binaryRep
	chunksAdd
	DateTime-class
	demoSource
	demoSource-class
	digest
	dowNames
	dropModel
	evalText
	exampleFiles
	geoDist
	geoXY
	GPSTrack-class
	jitterXY
	localRFiles
	muststop
	packageAdd
	plot-methods
	promptAll
	randomGeneratorState-class
	randomSlippage
	recoverHandler
	runExample
	scanGPSTrack
	scanRepeated
	showEnv
	showLanguage
	simulationResult
	SoDA-Examples
	strictOp
	track-class
	trackSpeed
	triDiagonal
	tryRequire
	Index

