Package 'SpatialPosition'

June 14, 2021

Title Spatial Position Models

Version 2.1.1

Description Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.

Depends R (>= 3.5.0)

License GPL-3

LazyData true

Imports sf, sp, grDevices, graphics, methods, isoband, raster

Suggests lwgeom, parallel, doParallel, foreach, cartography, knitr, rmarkdown

URL https://github.com/riatelab/SpatialPosition

BugReports https://github.com/riatelab/SpatialPosition/issues

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Timothée Giraud [cre, aut] (<https://orcid.org/0000-0002-1932-3323>), Hadrien Commenges [aut], Joël Boulier [ctb]

Maintainer Timothée Giraud <timothee.giraud@cnrs.fr>

Repository CRAN

Date/Publication 2021-06-14 13:50:29 UTC

R topics documented:

CreateDi	stM	lati	rix	•						•	•	•	 					•				•	•			2
CreateGr	id.			•									 									•				3
hospital				•					•		•	•	 							•	•	•	•	•	•	4

CreateDistMatrix

huff	4
isopoly	6
mcStewart	8
paris	10
plotHuff	10
plotReilly	11
plotStewart	12
quickStewart	13
rasterHuff	15
rasterReilly	16
rasterStewart	17
reilly	18
smoothy	20
SpatialPosition	22
spatMask	22
spatPts	22
spatUnits	23
stewart	23
	26

Index

CreateDistMatrix Create a Distance Matrix Between Two Spatial Objects

Description

This function creates a distance matrix between two spatial objects (sp or sf objects).

Usage

```
CreateDistMatrix(knownpts, unknownpts, bypassctrl = FALSE, longlat = TRUE)
```

Arguments

knownpts	sp or sf object; rows of the distance matrix.
unknownpts	sp or sf object; columns of the distance matrix.
bypassctrl	logical; bypass the distance matrix size control (see Details).
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.

Details

The function returns a full matrix of distances in meters. If the matrix to compute is too large (more than 100,000,000 cells, more than 10,000,000 origins or more than 10,000,000 destinations) the function sends a confirmation message to warn users about the amount of RAM mobilized. Use pypassctrl = TRUE to skip this control.

CreateGrid

Value

A distance matrix, row names are knownpts row names, column names are unknownpts row names.

See Also

CreateGrid

Examples

CreateGrid

Create a Regularly Spaced Points Grid

Description

This function creates a regular grid of points from the extent of a given spatial object and a given resolution.

Usage

CreateGrid(w, resolution, returnclass = "sp")

Arguments

W	sp or sf object; the spatial extent of this object is used to create the regular grid.
resolution	numeric; resolution of the grid (in map units). If resolution is not set, the grid will contain around 7500 points. (optional)
returnclass	"sp" or "sf"; class of the returned object.

Value

The output of the function is a regularly spaced points grid with the extent of w.

See Also

CreateDistMatrix

Examples

4

```
# Create a grid of paris extent and 200 meters
# resolution
library(SpatialPosition)
library(sf)
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
plot(st_geometry(mygrid), cex = 0.1, pch = ".")
plot(st_geometry(paris), border="red", lwd = 2, add = TRUE)</pre>
```

hospital

Public Hospitals

Description

An sf POINT data frame of 18 public hospitals with their capacity ("capacity" = number of beds).

huff

Huff Catchment Areas

Description

This function computes the catchment areas as defined by D. Huff (1964).

Usage

```
huff(
    knownpts,
    unknownpts,
    matdist,
    varname,
    typefct = "exponential",
    span,
    beta,
    resolution,
    mask,
    bypassctrl = FALSE,
    longlat = TRUE,
    returnclass = "sp"
)
```

huff

huff

Arguments

knownpts	sp or sf object; this is the set of known observations to estimate the catchment areas from.
unknownpts	sp or sf object; this is the set of unknown units for which the function computes the estimates. Not used when resolution is set up. (optional)
matdist	matrix; distance matrix between known observations and unknown units for which the function computes the estimates. Row names match the row names of knownpts and column names match the row names of unknownpts. matdist can contain any distance metric (time distance or euclidean distance for ex- ample). If matdist is not set, the distance matrix is automaticly built with CreateDistMatrix. (optional)
varname	character; name of the variable in the knownpts dataframe from which values are computed. Quantitative variable with no negative values.
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDistance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).
span	numeric; distance where the density of probability of the spatial interaction func- tion equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output grid (in map units). If resolution is not set, the grid will contain around 7000 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
bypassctrl	logical; bypass the distance matrix size control (see CreateDistMatrix De- tails).
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.
returnclass	"sp" or "sf"; class of the returned object.

Value

Point object with the computed catchment areas in a new field named OUTPUT.

References

HUFF D. (1964) Defining and Estimating a Trading Area. Journal of Marketing, 28: 34-38.

See Also

huff, rasterHuff, plotHuff, CreateGrid, CreateDistMatrix.

isopoly

Examples

```
# Create a grid of paris extent and 200 meters
# resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")</pre>
# Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid,</pre>
                          longlat = FALSE)
# Compute Huff catchment areas from known points (hospital) on a given
# grid (mygrid) using a given distance matrix (mymat)
myhuff <- huff(knownpts = hospital, unknownpts = mygrid,</pre>
               matdist = mymat, varname = "capacity",
               typefct = "exponential", span = 1250,
               beta = 3, mask = paris, returnclass = "sf")
# Compute Huff catchment areas from known points (hospital) on a
# grid defined by its resolution
myhuff2 <- huff(knownpts = hospital, varname = "capacity",</pre>
                typefct = "exponential", span = 1250, beta = 3,
                resolution = 200, mask = paris, returnclass= "sf")
# The two methods have the same result
identical(myhuff, myhuff2)
# the function output an sf object
class(myhuff)
```

isopoly

Create Spatial Polygons Contours from a Raster

Description

This function creates spatial polygons of contours from a raster.

Usage

```
isopoly(
    x,
    nclass = 8,
    breaks,
    mask,
    xcoords = "COORDX",
    ycoords = "COORDY",
    var = "OUTPUT",
    returnclass = "sp"
)
```

Arguments

х	sf POINT data.frame; must contain X, Y and OUTPUT fields
nclass	numeric; a number of class.

6

isopoly

breaks	numeric; a vector of break values.
mask	sf POLYGON data.frame; mask used to clip contour shapes.
xcoords	character; name of the X coordinates field in x.
ycoords	character; name of the Y coordinates field in x.
var	character; name of the OUTPUT field in x.
returnclass	"sp" or "sf"; class of the returned object.

Value

The output is an sf POLYGON data.frame. The data frame contains four fields: id (id of each polygon), min and max (minimum and maximum breaks of the polygon), center (central values of classes).

See Also

stewart.

```
data(hospital)
# Compute Stewart potentials
mystewart <- stewart(knownpts = hospital, varname = "capacity",</pre>
                     typefct = "exponential", span = 1000, beta = 3,
                     mask = paris, returnclass = "sf")
# Create contour
contourpoly <- isopoly(x = mystewart,</pre>
                       nclass = 6.
                       mask = paris, returnclass = "sf")
library(sf)
plot(st_geometry(contourpoly))
if(require(cartography)){
 # Created breaks
 bks <- sort(unique(c(contourpoly$min, contourpoly$max)))</pre>
 opar <- par(mar = c(0, 0, 1.2, 0))
 # Display the map
 choroLayer(x = contourpoly,
             var = "center", legend.pos = "topleft",
             breaks = bks, border = "grey90",
             1wd = 0.2,
             legend.title.txt = "Potential number\nof beds in the\nneighbourhood",
             legend.values.rnd = 0)
 plot(st_geometry(paris), add = TRUE)
 propSymbolsLayer(x = hospital, var = "capacity",
                   legend.pos = "right",
                   legend.title.txt = "Number of beds",
                   col = "#ff000020")
 layoutLayer(title = "Global Accessibility to Public Hospitals",
              sources = "", author = "")
 par(opar)
}
```

mcStewart

Description

This function computes Stewart potentials using parallel computation.

Usage

```
mcStewart(
    knownpts,
    unknownpts,
    varname,
    typefct = "exponential",
    span,
    beta,
    resolution,
    mask,
    cl,
    size = 1000,
    longlat = TRUE,
    returnclass = "sp"
)
```

Arguments

knownpts	sp or sf object; this is the set of known observations to estimate the potentials from.
unknownpts	sp or sf object; this is the set of unknown units for which the function computes the estimates. Not used when resolution is set up. (optional)
varname	character; name of the variable in the knownpts dataframe from which potentials are computed. Quantitative variable with no negative values.
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDistance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).
span	numeric; distance where the density of probability of the spatial interaction func- tion equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output SpatialPointsDataFrame (in map units). If resolution is not set, the grid will contain around 7250 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
cl	numeric; number of clusters. By default cl is determined using parallel::detectCores().

mcStewart

size	numeric; mcStewart splits unknownpts in chunks, size indicates the size of each chunks.
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.
returnclass	"sp" or "sf"; class of the returned object.

Details

The parallel implementation splits potentials computations along chunks of unknownpts (or chunks of the grid defined using resolution).

Value

Point object with the computed potentials in a new field named OUTPUT.

See Also

stewart.

```
## Not run:
if(require(cartography)){
  nuts3.spdf@data <- nuts3.df</pre>
  t1 <- system.time(</pre>
    s1 <- stewart(knownpts = nuts3.spdf,resolution = 40000,</pre>
                   varname = "pop2008",
                   typefct = "exponential", span = 100000,
                   beta = 3, mask = nuts3.spdf, returnclass = "sf")
  )
  t2 <- system.time(</pre>
    s2 <- mcStewart(knownpts = nuts3.spdf, resolution = 40000,</pre>
                     varname = "pop2008",
                     typefct = "exponential", span = 100000,
                     beta = 3, mask = nuts3.spdf, cl = 3, size = 500,
                     returnclass = "sf")
  )
  identical(s1, s2)
  cat("Elapsed time\n", "stewart:", t1[3], "\n mcStewart:",t2[3])
  iso <- isopoly(x = s2,
                  breaks = c(0,1000000,2000000, 5000000, 10000000, 20000000,
                             200004342),
                  mask = nuts3.spdf, returnclass = "sf")
  # cartography
  opar <- par(mar = c(0,0,1.2,0))
  bks <- sort(unique(c(iso$min, iso$max)))</pre>
  choroLayer(x = iso, var = "center", breaks = bks, border = NA,
             legend.title.txt = "pop")
  layoutLayer("potential population", "","", scale = NULL)
  par(opar)
```

```
}
## End(Not run)
```

paris

Paris Polygon

Description

An sf POLYGON data frame of the Paris perimeter.

plotHuff	Plot a Huff Raster	
----------	--------------------	--

Description

This function plots the raster produced by the rasterHuff function.

Usage

plotHuff(x, add = FALSE)

Arguments

Х	raster; output of the rasterHuff function.
add	logical; if TRUE the raster is added to the current plot, if FALSE the raster is
	displayed in a new plot.

Value

Display the raster nicely.

See Also

huff, rasterHuff.

Examples

10

plotReilly

Description

This function plots the raster produced by the rasterReilly function.

Usage

plotReilly(x, add = FALSE, col = rainbow)

Arguments

х	raster; output of the rasterReilly function.
add	logical; if TRUE the raster is added to the current plot, if FALSE the raster is displayed in a new plot.
col	function; color ramp function, such as colorRampPalette.

Details

Display the raster nicely.

See Also

reilly, rasterReilly.

plotStewart

Description

This function plots the raster produced by the rasterStewart function.

Usage

```
plotStewart(
    x,
    add = FALSE,
    breaks = NULL,
    typec = "equal",
    nclass = 5,
    legend.rnd = 0,
    col = colorRampPalette(c("#FEA3A3", "#980000"))
)
```

Arguments

x	raster; output of the rasterStewart function.
add	logical; if TRUE the raster is added to the current plot, if FALSE the raster is displayed in a new plot.
breaks	numeric; vector of break values to map. If used, this parameter overrides typec and nclass parameters
typec	character; either "equal" or "quantile", how to discretize the values.
nclass	numeric (integer), number of classes.
legend.rnd	numeric (integer); number of digits used to round the values displayed in the legend.
col	function; color ramp function, such as colorRampPalette.

Value

Display the raster nicely and return the list of break values (invisible).

See Also

stewart, rasterStewart, quickStewart, CreateGrid, CreateDistMatrix.

quickStewart

Examples

quickStewart

Create Polygons of Potentials Contours

Description

This function is a wrapper around stewart, and isopoly functions. Providing only the main parameters of these functions, it simplifies a lot the computation of potentials. This function creates polygons of potential values. It also allows to compute directly the ratio between the potentials of two variables.

Usage

```
quickStewart(
  х,
  spdf,
  df,
  spdfid = NULL,
  dfid = NULL,
  var,
  var2.
  typefct = "exponential",
  span,
  beta,
  resolution,
  mask,
  nclass = 8,
  breaks,
  bypassctrl = FALSE,
  returnclass = "sp"
)
```

Arguments

Х	sp or sf object; this is the set of known observations to estimate the potentials from.
spdf	a SpatialPolygonsDataFrame.
df	a data frame that contains the values to compute
spdfid	name of the identifier field in spdf, default to the first column of the spdf data frame. (optional)
dfid	name of the identifier field in df, default to the first column of df. (optional)
var	name of the numeric field in df used to compute potentials.
var2	name of the numeric field in df used to compute potentials. This field is used for ratio computation (see Details).
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDistance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).
span	numeric; distance where the density of probability of the spatial interaction func- tion equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output SpatialPointsDataFrame (in map units). If resolution is not set, the grid will contain around 7250 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
nclass	numeric; a targeted number of classes (default to 8). Not used if breaks is set.
breaks	numeric; a vector of values used to discretize the potentials.
bypassctrl	logical; bypass the distance matrix size control (see CreateDistMatrix De- tails).
returnclass	"sp" or "sf"; class of the returned object.

Details

If var2 is provided, the ratio between the potentials of var (numerator) and var2 (denominator) is computed.

Value

A polyfon object is returned ("sp" or "sf", see isopoly Value).

See Also

stewart, isopoly

rasterHuff

Examples

```
# load data
data("hospital")
# Compute potentials
pot <- quickStewart(x = hospital,</pre>
                     var = "capacity",
                     span = 1000,
                     beta = 2, mask = paris,
                     returnclass = "sf")
# cartography
if(require("cartography")){
  breaks <- sort(c(unique(pot$min), max(pot$max)), decreasing = FALSE)</pre>
  choroLayer(x = pot,
             var = "center", breaks = breaks,
             legend.pos = "topleft",
             legend.title.txt = "Nb. of Beds")
}
# Compute a ratio of potentials
hospital$dummy <- hospital$capacity + c(rep(50, 18))</pre>
pot2 <- quickStewart(x = hospital,</pre>
                      var = "capacity",
                      var2 = "dummy",
                      span = 1000,
                      beta = 2,
                      mask = paris,
                      returnclass = "sf")
# cartography
if(require("cartography")){
  breaks <- sort(c(unique(pot2$min), max(pot2$max)), decreasing = FALSE)</pre>
  choroLayer(x = pot2,
             var = "center", breaks = breaks,
             legend.pos = "topleft",legend.values.rnd = 3,
             legend.title.txt = "Nb. of DummyBeds")
}
```

rasterHuff

Create a Raster from a Huff SpatialPointsDataFrame

Description

This function creates a raster from a regularly spaced Huff grid (output of the huff function).

Usage

rasterHuff(x, mask = NULL)

Arguments

х	sp or sf object; output of the huff function.
mask	sp or sf object; this object is used to clip the raster. (optional)

Value

Raster of catchment areas values.

See Also

huff, plotHuff.

Examples

rasterReilly Create a Raster from a Reilly Regular Grid

Description

This function creates a raster from a regularly spaced Reilly grid (output of the reilly function).

Usage

```
rasterReilly(x, mask = NULL)
```

Arguments

Х	sp or sf object; output of the reilly function.
mask	sp or sf object; this object is used to clip the raster. (optional)

Value

Raster of catchment areas values. The raster uses a RAT (ratify) that contains the correspondance between raster values and catchement areas values. Use unique(levels(rasterName)[[1]]) to see the correspondance table.

See Also

reilly, plotReilly.

16

rasterStewart

Examples

rasterStewart Create a Raster from a Stewart Regular Grid

Description

This function creates a raster from a regularly spaced Stewart points grid (output of the stewart function).

Usage

```
rasterStewart(x, mask = NULL)
```

Arguments

х	sp or sf object; output of the stewart function.
mask	sp or sf object; this object is used to clip the raster. (optional)

Value

Raster of potential values.

See Also

stewart, quickStewart, plotStewart, CreateGrid, CreateDistMatrix.

```
mystewartraster <- rasterStewart(x = mystewart, mask = paris)
plot(mystewartraster)</pre>
```

reilly

Reilly Catchment Areas

Description

This function computes the catchment areas as defined by W.J. Reilly (1931).

Usage

```
reilly(
    knownpts,
    unknownpts,
    matdist,
    varname,
    typefct = "exponential",
    span,
    beta,
    resolution,
    mask,
    bypassctrl = FALSE,
    longlat = TRUE,
    returnclass = "sp"
)
```

Arguments

knownpts	sp or sf object; this is the set of known observations to estimate the catchment areas from.
unknownpts	sp or sf object; this is the set of unknown units for which the function computes the estimates. Not used when resolution is set up. (optional)
matdist	matrix; distance matrix between known observations and unknown units for which the function computes the estimates. Row names match the row names of knownpts and column names match the row names of unknownpts. matdist can contain any distance metric (time distance or euclidean distance for exam- ple). If matdist is not set, the distance matrix is built with CreateDistMatrix. (optional)
varname	character; name of the variable in the knownpts dataframe from which values are computed. Quantitative variable with no negative values.
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDistance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).

18

reilly

span	numeric; distance where the density of probability of the spatial interaction func- tion equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output grid (in map units). If resolution is not set, the grid will contain around 7250 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
bypassctrl	logical; bypass the distance matrix size control (see CreateDistMatrix De- tails).
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.
returnclass	"sp" or "sf"; class of the returned object.

Value

Point object with the computed catchment areas in a new field named OUTPUT. Values match the row names of knownpts.

References

REILLY, W. J. (1931) The law of retail gravitation, W. J. Reilly, New York.

See Also

reilly, rasterReilly, plotReilly, CreateGrid, CreateDistMatrix.

```
# Create a grid of paris extent and 200 meters
# resolution
data(hospital)
mygrid <- CreateGrid(w = hospital, resolution = 200, returnclass = "sf")</pre>
# Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid)</pre>
# Compute Reilly catchment areas from known points (hospital) on a given
# grid (mygrid) using a given distance matrix (mymat)
myreilly2 <- reilly(knownpts = hospital, unknownpts = mygrid,</pre>
                    matdist = mymat, varname = "capacity",
                    typefct = "exponential", span = 1250,
                    beta = 3, mask = paris, returnclass = "sf")
# Compute Reilly catchment areas from known points (hospital) on a
# grid defined by its resolution
myreilly <- reilly(knownpts = hospital, varname = "capacity",</pre>
                   typefct = "exponential", span = 1250, beta = 3,
                   resolution = 200, mask = paris, returnclass = "sf")
# The function output an sf object
class(myreilly)
# The OUTPUT field values match knownpts row names
head(unique(myreilly$OUTPUT))
```

smoothy

Description

This function computes a distance weighted mean. It offers the same parameters as stewart: user defined distance matrix, user defined impedance function (power or exponential), user defined exponent.

Usage

```
smoothy(
   knownpts,
   unknownpts,
   matdist,
   varname,
   typefct = "exponential",
   span,
   beta,
   resolution,
   mask,
   bypassctrl = FALSE,
   longlat = TRUE,
   returnclass = "sp"
)
```

Arguments

knownpts	sp or sf object; this is the set of known observations to estimate the potentials from.
unknownpts	sp or sf object; this is the set of unknown units for which the function computes the estimates. Not used when resolution is set up. (optional)
matdist	matrix; distance matrix between known observations and unknown units for which the function computes the estimates. Row names match the row names of knownpts and column names match the row names of unknownpts. matdist can contain any distance metric (time distance or euclidean distance for exam- ple). If matdist is NULL, the distance matrix is built with CreateDistMatrix. (optional)
varname	character; name of the variable in the knownpts dataframe from which potentials are computed. Quantitative variable with no negative values.
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDistance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).

smoothy

span	numeric; distance where the density of probability of the spatial interaction func- tion equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output grid (in map units). If resolution is not set, the grid will contain around 7250 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
bypassctrl	logical; bypass the distance matrix size control (see CreateDistMatrix De- tails).
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.
returnclass	"sp" or "sf"; class of the returned object.

Value

Point object with the computed distance weighted mean in a new field named OUTPUT.

See Also

stewart.

```
# Create a grid of paris extent and 200 meters
# resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")</pre>
# Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid)</pre>
# Compute distance weighted mean from known points (hospital) on a given
# grid (mygrid) using a given distance matrix (mymat)
mysmoothy <- smoothy(knownpts = hospital, unknownpts = mygrid,</pre>
                     matdist = mymat, varname = "capacity",
                     typefct = "exponential", span = 1250,
                     beta = 3, mask = paris, returnclass = "sf")
# Compute distance weighted mean from known points (hospital) on a
# grid defined by its resolution
mysmoothy2 <- smoothy(knownpts = hospital, varname = "capacity",</pre>
                      typefct = "exponential", span = 1250, beta = 3,
                      resolution = 200, mask = paris, returnclass = "sf")
# The two methods have the same result
identical(mysmoothy, mysmoothy2)
# Computed values
summary(mysmoothy$OUTPUT)
```

SpatialPosition Spatial Position Package

Description

Computes spatial position models:

- · Stewart potentials,
- Reilly catchment areas,
- Huff catchment areas.

An introduction to the package conceptual background and usage:

```
- vignette(topic = "SpatialPosition")
A Stewart potentials use case:
```

```
- vignette(topic = "StewartExample").
```

References

COMMENGES H., GIRAUD, T., LAMBERT, N. (2016) "ESPON FIT: Functional Indicators for Spatial-Aware Policy-Making", Cartographica: The International Journal for Geographic Information and Geovisualization, 51(3): 127-136.

spatMask

Paris Perimeter

Description

A SpatialPolygonsDataFrame of the Paris perimeter.

Details

This is a deprecated dataset.

spatPts

Public Hospitals

Description

A SpatialPointsDataFrame of 18 public hospitals with their capacity (Capacite field = number of beds).

Details

This is a deprecated dataset.

spatUnits

Description

A SpatialPolygonsDataFrame of the 20 spatial arrondissements of the Paris.

Details

This is a deprecated dataset.

stewart

Stewart Potentials

Description

This function computes the potentials as defined by J.Q. Stewart (1942).

Usage

```
stewart(
    knownpts,
    unknownpts,
    matdist,
    varname,
    typefct = "exponential",
    span,
    beta,
    resolution,
    mask,
    bypassctrl = FALSE,
    longlat = TRUE,
    returnclass = "sp"
)
```

Arguments

knownpts	sp or sf object; this is the set of known observations to estimate the potentials from.
unknownpts	sp or sf object; this is the set of unknown units for which the function computes the estimates. Not used when resolution is set up. (optional)
matdist	matrix; distance matrix between known observations and unknown units for which the function computes the estimates. Row names match the row names of knownpts and column names match the row names of unknownpts. matdist can contain any distance metric (time distance or euclidean distance for exam- ple). If matdist is missing, the distance matrix is built with CreateDistMatrix. (optional)

varname	character; name of the variable in the knownpts dataframe from which potentials are computed. Quantitative variable with no negative values.
typefct	character; spatial interaction function. Options are "pareto" (means power law) or "exponential". If "pareto" the interaction is defined as: $(1 + alpha * mDistance) ^ (-beta)$. If "exponential" the interaction is defined as: exp(- alpha * mDistance ^ beta). The alpha parameter is computed from parameters given by the user (beta and span).
span	numeric; distance where the density of probability of the spatial interaction function equals 0.5.
beta	numeric; impedance factor for the spatial interaction function.
resolution	numeric; resolution of the output grid (in map units). If resolution is not set, the grid will contain around 7250 points. (optional)
mask	sp or sf object; the spatial extent of this object is used to create the regularly spaced points output. (optional)
bypassctrl	logical; by pass the distance matrix size control (see ${\tt CreateDistMatrix}$ Details).
longlat	logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid) distance.
returnclass	"sp" or "sf"; class of the returned object.

Value

Point object with the computed potentials in a new field named OUTPUT.

References

STEWART J.Q. (1942) "Measure of the influence of a population at a distance", Sociometry, 5(1): 63-71.

See Also

rasterStewart, plotStewart, quickStewart, isopoly, CreateGrid, CreateDistMatrix.

stewart

Index

colorRampPalette, 11, 12 CreateDistMatrix, 2, 3, 5, 12, 14, 17-21, 23, 24 CreateGrid, 3, 3, 5, 12, 17, 19, 24 hospital, 4 huff, 4, 5, 10, 15, 16 isopoly, 6, 13, 14, 24 mcStewart, 8 paris, 10 plotHuff, 5, 10, 16 plotReilly, 11, 16, 19 plotStewart, 12, 17, 24 quickStewart, 12, 13, 17, 24 rasterHuff, *5*, *10*, 15 rasterReilly, *11*, 16, *19* rasterStewart, *12*, 17, *24* ratify, 16 reilly, 11, 16, 18, 19 smoothy, 20 SpatialPosition, 22 spatMask, 22spatPts, 22 spatUnits, 23 stewart, 7, 9, 12-14, 17, 20, 21, 23