Package 'StabilizedRegression'

June 30, 2022

Title Stabilizing Regression and Variable Selection

Version 1.1

Description Contains an implementation of 'StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2021) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.

BugReports https://github.com/NiklasPfister/StabilizedRegression-R/issues
Depends R (>= 3.5)
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.0
Imports MASS, R6, glmnet, corpcor, ggplot2, ggrepel
NeedsCompilation no
Author Niklas Pfister [aut, cre],
Evan Williams [ctb]
Maintainer Niklas Pfister <np@math.ku.dk>
Repository CRAN

R topics documented:

Index

Date/Publication 2022-06-30 08:40:02 UTC

pef.StabilizedRegression	2
arn_network	2
near_regressor	4
lot.SRanalysis	6
redict.StabilizedRegression	6
Ranalysis	7
tabilizedRegression	9
	10
	- 12

2 learn_network

```
{\it coef.} {\it Stabilized Regression} \\ {\it coefficients function}
```

Description

Coefficients functions for 'StabilizedRegression' objects.

Usage

```
## S3 method for class 'StabilizedRegression'
coef(object, predictive_model = FALSE, ...)
```

Arguments

```
object object of class 'StabilizedRegression'.

predictive_model

boolean specifying whether to use the

additional arguments affecting the summary produced.
```

Author(s)

Niklas Pfister

learn_network

Learn network model

Description

Learn a network model for a collection of variables.

Usage

```
learn_network(
    X,
    A = NA,
    method = "correlation",
    resampling_method = "stability_selection",
    numB = 100,
    cutoff = 0,
    pars = list(m = ncol(X), B = NA, alpha_stab = 0.05, alpha_pred = 0.05, size_weight =
        "linear", use_resampling = FALSE, prescreen_size = nrow(X) - 1, prescreen_type =
        "correlation", stab_test = "exact", pred_score = "mse", variable_importance =
        "scaled_coefficient"),
        verbose = 0,
        cores = 1
}
```

learn_network 3

Arguments

X data matrix. Numeric matrix of size n times d, where columns correspond to

individual variables.

A stabilizing variable. Numeric vector of length n which can be interpreted as a

factor.

method specifies which method to use. "SR" for Stabilized Regression (both standard

and predictive version), "SRstab" for only the standard version of SR, "SRpred" for only the predictive version of SR, "OLS" for linear OLS regression, "lasso"

for Lasso and "correlation" for correlation test.

resampling_method

specifies which resampling method to use. Should be one of "none", "stabil-

ity selection" or "permutation".

numB number of resamples to use.

cutoff tuning parameter used in stability selection to determine which sets count as

selected.

pars list of additional parameters passed to SR regression. See StabilizedRegression

for more details.

verbose 0 for no output, 1 for text output and 2 for text and diagnostic plots.

cores number of cores to use in resampling step.

Details

Uses StabilizedRegression, Lasso or correlation to construct a node-wise network between all variables in X.

Value

A list consisting of the following elements

Amat adjacency matrix, where Amat[i,j] is a score (depending on the resampling_method)

for the edge from i to j. For "stability_selection" scores correspond to selection probabilities, for "permutation" scores correspond to permutation p-values and

for "none" scores correspond to variable importance of the method.

p Total number of potential edges which can be used to compute upper bound on

false discovery rate (only computed if resampling_method == "stability_selection").

qest Average number of selected edges in stability selection, which can be used to

compute upper bound on false discovery rate (only computed if resampling_method

== "stability_selection").

If method=="SR" result is a list with two entries SRstab and SRpred each consisting of a list of the form described above.

Author(s)

Niklas Pfister

4 linear_regressor

Examples

```
## Example
set.seed(1)
X1 <- rnorm(200)
X2 <- X1 + rnorm(200)
X3 <- 0.5 * X1 + X2 + 0.2 * c(rnorm(100), rnorm(100)+20)

X <- cbind(X1, X2, X3)
A <- as.factor(rep(c(0, 1), each=100))

network <- learn_network(X, A, method="SR", resampling_method="none")
print(network[[1]]$Amat)
print(network[[2]]$Amat)</pre>
```

linear_regressor

R6 Class Representing a Linear Regression

Description

An R6-class for linear regression that is used within the StabilizedRegression framework.

Currently this is the only regression procedure that has been implemented. In order to extend the StabilizedRegression framework to a different regression procedure a custom R6-class with the same structure as this function can be written and used within StabilizedRegression.

Details

Constructer method initializes a linear regression object specifying on which subset of variables S to fit the regression and which type of stability test and prediction score to compute. The methods fit() and predict() can be applied to the object to fit and predict, respectively.

Public fields

estimator Numeric vector of regression coefficients.

S Numeric vector specifying the subset of variables to perform regression on.

scores Numeric vector of fitted stability and prediction scores.

pars List specifying the stability test via test and prediction score via pred_score.

Methods

Public methods:

- linear_regressor\$new()
- linear_regressor\$fit()
- linear_regressor\$predict()
- linear_regressor\$clone()

linear_regressor 5

Method new(): Create a new linear_regression object.

Niklas Pfister

```
Usage:
       linear_regressor$new(
         S = numeric(),
         pars = list(test = "mean", pred_score = c("mse", "mse"))
       Arguments:
       S Subset of variables.
       pars Parameters.
       Returns: A new 'linear_regression' object.
     Method fit(): Fit a 'linear_regression' object on data and computes the stability and prediction
     scores.
       Usage:
       linear_regressor$fit(X, Y, A, extra = NA)
       Arguments:
       X Predictor matrix.
       Y response vector.
       A environemnt indicator.
       extra not required (placeholder)
       Returns: A fitted 'linear_regression' object.
     Method predict(): Predict using a fitted 'linear_regression' object.
       Usage:
       linear_regressor$predict(X)
       Arguments:
       X Predictor matrix on which to predict response.
       Returns: Numeric vector of predicted response.
     Method clone(): The objects of this class are cloneable with this method.
       Usage:
       linear_regressor$clone(deep = FALSE)
       Arguments:
       deep Whether to make a deep clone.
Author(s)
```

plot.SRanalysis plot function

Description

Plot functions for 'SRanalysis' objects. Allows to visualize the stability and predictiveness trade-off of individual predictors. Green area corresponds to area for which stability selection bounds the false discovery rate (FDR) by 1.

Usage

```
## S3 method for class 'SRanalysis'
plot(x, x_axis = "SRdiff", varnames = NA, labels = FALSE, ...)
```

Arguments

x object of class 'SRanalysis'.

x_axis either "SRdiff" or "SRpred".

vector of variables names given in same ordering as columns of X. If NA the variable names saved in the SRanalysis object are used.

labels boolean specifying whether to print names for all variables with selection probability greater than 0.5. Only works if varnames has been specified.

... arguments to be passed to or from other methods.

Author(s)

Niklas Pfister

Description

Predict functions for 'StabilizedRegression' objects.

Usage

```
## S3 method for class 'StabilizedRegression'
predict(object, newdata, predictive_model = FALSE, ...)
```

SRanalysis 7

Arguments

object object of class 'StabilizedRegression'.

newdata matrix or data.frame for which the response should be predicted.

predictive_model

boolean. If TRUE the model SR (pred) is used to predict, if FALSE the model SR is used.

... additional arguments affecting the prediction produced.

Author(s)

Niklas Pfister

SRanalysis

Stability analysis

Description

Stability analysis based on stabilized regression used to analyze the trade-off between stability and predictivness of individual predictors.

Usage

```
SRanalysis(
    X,
    Y,
    A,
    num_reps = 100,
    pred_scores = c("mse", "mse_env"),
    prescreen_types = c("correlation", "correlation_env"),
    pars_SR = list(m = ncol(X), B = 100, alpha_stab = 0.05, alpha_pred = 0.05,
    size_weight = "linear", use_resampling = FALSE, prescreen_size = NA, stab_test =
        "exact", variable_importance = "scaled_coefficient"),
    threshold = 0,
    cores = 1,
    verbose = 0,
    seed = NA
)
```

Arguments

Υ

X predictor matrix. Numeric matrix of size n times d, where columns correspond to individual predictors.

response variable. Numeric vector of length n.

A stabilizing variable. Numeric vector of length n which can be interpreted as a

factor.

8 SRanalysis

num_reps number of resamples to use in stability selection.

pred_scores characeter vector of length 2, specifying the pred_score for SR and SRpred.

prescreen_types

characeter vector of length 2, specifying the prescreen_type for SR and SR-

pred.

pars_SR list of all remaining parameters going into StabilizedRegression. compute_predictive,

pred_score and prescreen_type are ignored.

threshold numeric value between 0 and 1, specifying in stability selection at which value

to select variables.

cores number of cores used in mclapply.

verbose 0 for no output, 1 for text output and 2 for text and diagnostic plots.

seed fix the seed value at the beginning of the function.

Details

This function performs two version of StabilizedRegression: SR which selects a stable and predictive model and SRpred which fits a plain predictive model. Stability selection is then performed using the variable importance measures from both these methods and from their difference SRdiff as variable selection criterion. This allows to distinguish between which predictive variables are stable and which are unstable with respect to the stabilizing variable A. The results can be visualized by plotting the resulting object using the plot() function.

Due to the resampling this function can be quite computationally involved, we therefore recommend making use of the cores parameter for parallel computations.

Value

Object of class 'SRanalysis' consisting of the following elements

results List of stability selection results for for SR, SRpred and SRdiff.

varnames Vector of variable names taken from the column names of X.

avgcoefsign_SR Vector of average coefficient signs for SR

avgcoefsign_SRpred

Vector of average coefficient signs for SRpred

Author(s)

Niklas Pfister

References

Pfister, N., E. Williams, R. Aebersold, J. Peters and P. B\"uhlmann (2019). Stabilizing Variable Selection and Regression. arXiv preprint arXiv:1911.01850.

StabilizedRegression 9

Examples

StabilizedRegression StabilizedRegression

Description

StabilizedRegression based on linear OLS

Usage

```
StabilizedRegression(
    X,
    Y,
    A,
    pars = list(m = ncol(X), B = 100, alpha_stab = 0.05, alpha_pred = 0.05, size_weight =
    "linear", compute_predictive_model = TRUE, use_resampling = FALSE, prescreen_size =
    NA, prescreen_type = "correlation", stab_test = "exact", pred_score = "mse", topk =
    1, variable_importance = "scaled_coefficient"),
    verbose = 0,
    seed = NA
)
```

Arguments

pars

Χ	predictor matrix. Numeric matrix of size n times d, where columns correspond
	to individual predictors.

Y response variable. Numeric vector of length n.

A stabilizing variable. Numeric vector of length n which can be interpreted as a factor.

list of additional parameters. m (default ncol(X)) integer specifying the largest possible subset size. B (default 100) integer specifying the number of random subsets to sample, if NA all subsets will be used. alpha_stab (default 0.05) value between 0 and 1 specifiying the stability cutoff. alpha_pred (default

10 StabilizedRegression

0.05) value between 0 and 1 specifiying the predictive cutoff. size_weight (default "linear") one of the strings "linear", "constant", "quadratic", "rbf" or numeric weight vector specifying a probablity for each potential set size from 1 to m. compute_predictive_model (default TRUE) boolean specifying whether to additionally compute SR (pred) and SR (diff) as well. prescreen_size (default NA) integer specifying the number of variables to screen down to before applying SR, if NA then no screening is applied. prescreen_type (default "correlation") one of the strings "correlation", "ols", "lasso", "deconfounding", "correlation_env", "deconfounding_env" specifying the type of screening. stab_test (default "exact") specifies which stability test to use. Either "exact" for a Bonferroni-corrected version of Chow's test, "mean_sres" a mean test based on resampling of the scaled residuals or "meanvar_sres" a mean and variance test based on resampling of the scaled residuals. pred_score (default "mse") specifies the prediction score. Either "mse" for the mean squared error, "mse_env" for the environment-wise best mean squared error, "aic" for the Akaike information criterion or "bic" for the Bayesian information criterion. topk (default 1) is a tuning parameter that can be used to increase the number of predictive sets. It should be an integer value, where higher values lead to more accepted sets based on the predictive cutoff. variable_importance (default "scaled coefficient") specifies the type of variable ranking. Either "weighted" for a weighted average of all selected subsets, "scaled_coefficient" for a ranking based on the scaled average regression parameter or "permutation" for a permutation based ranking.

verbose 0 for no output, 1 for text output and 2 for text and diagnostic plots.

seed fix the seed value at the beginning of the function.

Details

Performs a linear regression of a response Y on a set of predictors X while ensuring stability across different values of a stabilizing variable A.

Value

Object of class 'StabilizedRegression' consisting of the following elements

learner_list List of all fitted linear OLS regressions (fitted R6 'linear_regression' objects).

weighting Weighting of the individual regressions in SR.

weighting_pred Weighting of the individual regressions in SR (pred). Only computed if com-

pute_predictive_model is TRUE.

variable_importance

Variable importance measure for all predictors based on SR.

variable_importance_pred

Variable importance measure for all predictors based on SR (pred). Only computed if compute_predictive_model is TRUE.

variable_importance_diff

Variable importance measure for all predictors based on difference between SR and SR (pred). Only computed if compute_predictive_model is TRUE.

StabilizedRegression 11

Author(s)

Niklas Pfister

References

Pfister, N., E. Williams, R. Aebersold, J. Peters and P. B\"uhlmann (2019). Stabilizing Variable Selection and Regression. arXiv preprint arXiv:1911.01850.

Examples

```
## Example
set.seed(1)
X1 <- rnorm(200)
Y <- X1 + rnorm(200)
X2 <- 0.5 * X1 + Y + 0.2 * c(rnorm(100), rnorm(100)+2)

X <- cbind(X1, X2)
A <- as.factor(rep(c(0, 1), each=100))

fit_sr <- StabilizedRegression(X, Y, A, pars=list(B=NA))
fit_lm <- lm(Y ~ X)

print(paste("Coefficients of SR:", toString(coefficients(fit_sr))))
print(paste("Coefficients of SR (pred):", toString(coefficients(fit_sr, predictive_model=TRUE))))
print(paste("Coefficients of OLS:", toString(coefficients(fit_lm))))</pre>
```

Index

```
coef.StabilizedRegression, 2
learn_network, 2
linear_regressor, 4

plot.SRanalysis, 6
predict.StabilizedRegression, 6

SRanalysis, 7
StabilizedRegression, 3, 9
```