
Package ‘StereoMorph’
May 25, 2022

Date 2022-05-24

Title Stereo Camera Calibration and Reconstruction

Description Functions for the collection of 3D points and curves using a stereo camera setup.

Version 1.6.7

Depends R (>= 2.11.0)

Imports grDevices, graphics, stats, utils, bezier (>= 1.1), grid,
rjson, shiny (>= 0.13.0), Rcpp (>= 0.9.9), jpeg, tiff, png,
svgViewR (>= 1.0.1), MASS

LinkingTo Rcpp

Suggests rgl

Author Aaron Olsen, Annat Haber

Maintainer Aaron Olsen <aarolsen@gmail.com>

Repository CRAN

URL https://aaronolsen.github.io/software/stereomorph.html

License CC BY-SA 4.0

NeedsCompilation yes

Date/Publication 2022-05-25 15:50:06 UTC

R topics documented:
StereoMorph-package . 2
alignLandmarksToMidline . 4
avectors . 6
calibrateCameras . 7
digitizeImage . 9
digitizeImages . 10
distanceGridUnits . 12
distancePointToLine . 13
distancePointToPoint . 14
dltCalibrateCameras . 16
dltCoefficientRMSError . 21

1

https://aaronolsen.github.io/software/stereomorph.html

2 StereoMorph-package

dltCoefficients . 22
dltEpipolarDistance . 24
dltEpipolarLine . 26
dltInverse . 28
dltMatchCurvePoints . 30
dltNearestPointOnEpipolar . 33
dltReconstruct . 35
dltTestCalibration . 37
dltTransformationParameterRMSError . 41
drawCheckerboard . 42
extractFrames . 44
findCheckerboardCorners . 45
findOptimalPointAlignment . 49
gridPointsFit . 50
imagePlaneGridTransform . 52
imagePlaneGridTransformError . 54
landmarkListToMatrix . 54
landmarkMatrixToList . 55
measureCheckerboardSize . 56
orthogonalProjectionToLine . 59
pointsAtEvenSpacing . 61
quadraticPointsOnInterval . 63
readBezierControlPoints . 64
readCheckerboardsToArray . 65
readLandmarksToList . 67
readLandmarksToMatrix . 69
readShapes . 70
reconstructStereoSets . 72
reflectMissingLandmarks . 73
resampleGridImagePoints . 76
TPSToShapes . 78
transformPlanarCalibrationCoordinates . 79
unifyLandmarks . 80
writeLMToTPS . 82

Index 84

StereoMorph-package Stereo Camera Morphometrics

Description

StereoMorph provides functions for the collection of 3D points and curves using a stereo camera
setup. StereoMorph can also be used for collecting 2D shape data from photographs. Please see
StereoMorph tutorials for step-by-step tutorials on how to use StereoMorph for 2D or 3D shape
data collection.

https://aaronolsen.github.io/software/digitizing.html
https://aaronolsen.github.io/software/stereomorph.html

StereoMorph-package 3

Details

4 alignLandmarksToMidline

Package: StereoMorph
Type: Package
Version: 1.6.7
Date: 2022-05-24
License: CC BY-SA 4.0

Author(s)

Aaron Olsen, Annat Haber

Maintainer: Aaron Olsen <aarolsen@gmail.com>

See Also

svgViewR, bezier

alignLandmarksToMidline

Aligns bilateral landmarks to the midline plane

Description

This function aligns a set of bilateral landmarks to the midline plane. Midline landmarks and the
mean position of bilateral landmarks are both used to define the midline plane.

Usage

alignLandmarksToMidline(lm.matrix, left = '(_l[_]?|_left[_]?)([0-9]*$)',
right = '(_r[_]?|_right[_]?)([0-9]*$)',
left.remove = '\\2', right.remove = '\\2',
use = rep(TRUE, dim(lm.matrix)[1]), average = FALSE)

S3 method for class 'alignLandmarksToMidline'
summary(object, ...)

Arguments

lm.matrix a 2D or 3D matrix with landmark names as row names.

left a regular expression to identify left landmarks in the row names of lm.matrix.

right a regular expression to identify right landmarks in the row names of lm.matrix.

left.remove an expression for input to the gsub() function indicating which element of left
in parentheses should be removed to create a landmark name that is not side-
specific (see "Details").

https://cran.r-project.org/package=svgViewR
https://cran.r-project.org/package=bezier

alignLandmarksToMidline 5

right.remove an expression for input to the gsub() function indicating which element of
right in parentheses should be removed to create a landmark name that is not
side-specific (see "Details").

use a vector of TRUE or FALSE values of the same length as the number of landmarks
to specify which landmarks will be used in aligning to the midline. Default is
that all landmarks are used.

average Whether to average left and right landmarks after alignment. Can be left false if
landmarks previously reflected with average equal to TRUE (see reflectMissingLandmarks).

object a list of class "alignLandmarksToMidline" (output of this function).

... further arguments passed to or from other methods.

Details

Currently, the function only accepts left/right designations by matching a regular expression to the
landmark name. This is preferable in that it allows for easier match up between bilateral landmarks
(based on their common name without a side annotation). The default regular expression identifies
left landmarks by a name ending in "_L", "_l", "_left" or "_LEFT", optionally followed by numbers.
For example, "hamulus_left", "hamulus_L" and "zymgomatic_arch_l012" would all be identified as
landmarks on the left side. Similarly, "hamulus_right", "hamulus_R" and "zymgomatic_arch_r012"
would all be identified as landmarks on the right side. Landmarks not identified as left or right are
assumed to fall on the midline.

In order to find corresponding left and right landmarks, the function requires the left.remove and
right.remove arguments. The left.remove and right.remove arguments are passed to the base
function gsub() as the replacement argument. This is used to generate a landmark name that is not
side-specific. For example, "hamulus_left" and "zymgomatic_arch_l012" would become "hamulus"
and "zymgomatic_arch012". These will be reverted to their original names at return.

Once corresponding right and left landmarks have been identified, the function finds the mean
positions of all bilateral landmarks and the positions of all midline landmarks. These points are
used to define the midline. After alignment, the specimen will have the midline axis as the last
column (z in 3D, y in 2D), the longest non-midline axis as the first column (x in 3D), and the second
non-midline axis as y for 3D. No further rotation and reflection is done, therefore the specimen may
be facing any direction along each of the axes.

This function returns the aligned landmarks and an error vector, midline.error. This is a vector
of the squared z-coordinate of the midline landmarks (the distance between each midline land-
mark and the midline plane). If reflectMissingLandmarks was called on the landmarks prior to
alignLandmarksToMidline() with average equal to TRUE, then all of the midline points will fall
exactly along the midline. Thus, the error vector will consist entirely of zeros (or near-zero values).

Value

a list of class "alignLandmarksToMidline" with the following elements:

lm.matrix a 2D or 3D matrix of landmarks aligned to the midline.

midline.error a vector of the errors (distances) between each midline landmark and the midline
plane.

6 avectors

Note

This function was modified by A Olsen from the R function AMP() written by A Haber.

Author(s)

Annat Haber, Aaron Olsen

See Also

readLandmarksToMatrix

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

GET LANDMARKS
file <- paste0(fdir, "lm_3d_unify.txt")

LOAD FILES INTO A MATRIX
lm.matrix <- readLandmarksToMatrix(file=file, row.names=1)

ALIGN TO MIDLINE
align_landmarks <- alignLandmarksToMidline(lm.matrix=lm.matrix)

PRINT SUMMARY OF ERRORS
print(summary(align_landmarks))

avectors Computes the angle between two vectors

Description

This function returns the angle (in radians) between two vectors. The vectors can be of any dimen-
sion.

Usage

avectors(u, v)

Arguments

u a vector

v a vector

Value

the angle (in radians) between the two input vectors.

calibrateCameras 7

Author(s)

Aaron Olsen

Examples

THE ANGLE BETWEEN TWO 2D, ORTHOGONAL VECTORS
VALUE IS EQUAL TO asin(1/sqrt(2))
u <- c(0, 1)
v <- c(1, 0)
avectors(u, v)

THE ANGLE BETWEEN TWO 3D VECTORS
VALUE IS EQUAL TO asin(sqrt(2)/sqrt(3))
u <- c(1, 1, 1)
v <- c(0, 1, 0)
avectors(u, v)

calibrateCameras Finds the optimized DLT coefficients for a stereo camera setup

Description

This function uses a checkerboard at different positions and angles within a stereo camera setup to
estimate DLT calibration coefficients for use in stereo reconstruction. This function is a wrapper
for the function dltCalibrateCameras.

Usage

calibrateCameras(img.dir, sq.size, nx, ny, cal.file, corner.dir,
print.progress = TRUE, flip.view = FALSE, verify.dir = NULL,
error.dir = NULL, min.views = 'max', exec.dir = NULL,
undistort = FALSE, num.aspects.read = 'auto',
num.sample.est = 'auto', num.sample.sets = 'auto',

num.aspects.sample = 'auto', max.sample.optim = 30, nlm.calls.max = 20,
fit.min.break = 1, objective.min = 1, objective.min.break = 5,
with.circles = FALSE, sample.est = NULL, ...)

Arguments

img.dir folder containing images of the checkerboard pattern, separated into separate
folders by view.

sq.size character string indicating size of checkerboard squares (length along one di-
mension) including the unit of measure (e.g. ’6.35 mm’).

nx integer indicating the number of internal corners along one dimension of the
checkerboard.

ny integer indicating the number of internal corners along the other dimension of
the checkerboard.

8 calibrateCameras

cal.file file path to the output calibration file (if it does not already exist one will be
created).

corner.dir folder where the detected checkerboard corners will be saved (if it does not
already exist one will be created).

print.progress logical indicating whether function processes should be printed to the console.

flip.view logical indicating whether one camera view is upside-down relative to the other.

verify.dir folder where the images of the checkerboards with detected corners overlaid will
be written (if it does not already exist one will be created).

error.dir folder where the error diagnostic plots will be saved (if it does not already exist
one will be created).

min.views integer indicating the minimum views in which corners must be detected in order
to use in coefficient estimation. If set to ’max’ (default) this will be equal to the
number of input views.

exec.dir file path to folder containing external executables for reading video files (still
under development).

undistort logical indicating whether to estimate lens distortion correction coefficients (still
under development).

num.aspects.read

number (integer) of frames to be read from video input. Requires external exe-
cutables (still under development).

num.sample.est number (integer) of aspects from total that will be sampled calibration coeffi-
cient estimation.

num.sample.sets

number (integer) of unique sets of aspects to try.
num.aspects.sample

number (integer) of aspects to sample for each set.
max.sample.optim

maximum number (integer) of aspects to be used in identifying the best DLT
coefficient set (once already estimated).

nlm.calls.max maximum number (integer) of different sets of random starting parameters to
use during coefficient optimization. This parameter cannot exceed 576.

fit.min.break minimum error at which resampleGridImagePoints() will stop iterating to
find a better fit.

objective.min.break

minimum error at which optimization will stop estimating the position of addi-
tional checkerboards.

objective.min The expected mean reconstruction error when optimizing the calibration coef-
ficients (the minimum, or objective value returned by nlminb()). A value
between 0.2 and 1.2 should be reasonable.

with.circles logical indicating whether the checkerboard pattern includes concentric circles
for identifying the starting corner. Requires external executables (still under
development).

sample.est vector of explicitly defined aspects to use in coefficient estimation.

... further arguments to be passed to dltCalibrateCameras.

digitizeImage 9

Details

Please see StereoMorph tutorials for step-by-step tutorials on how to use StereoMorph for 2D or
3D shape data collection.

Value

a list of class "calibrateCameras" with the following elements:

cal.coeff a matrix of 11 optimized DLT calibration coefficients per camera view.
mean.reconstruct.rmse

the RMS error when coor.2d and the optimized calibration coefficients cal.coeff
are input to dltReconstruct.

coefficient.rmse

the RMS error when coor.2d and the optimized 3D coordinates coor.3d are
input to dltCoefficients.

Author(s)

Aaron Olsen

References

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

digitizeImages, reconstructStereoSets

digitizeImage Opens the StereoMorph Digitizing App

Description

This function has been replaced by digitizeImages.

Author(s)

Aaron Olsen

See Also

digitizeImages

https://aaronolsen.github.io/software/stereomorph.html
http://kwon3d.com/theory/dlt/dlt.html

10 digitizeImages

digitizeImages Opens the StereoMorph Digitizing App

Description

This function opens an application in the user’s default web browser for manually digitizing land-
marks and Bezier curves from photographs.

Usage

digitizeImages(image.file, shapes.file=NULL, landmarks.file=NULL,
control.points.file=NULL, curve.points.file=NULL,
cal.file=NULL, landmarks.ref=NULL, curves.ref=NULL, image.id=NULL,
landmark.color.blur = 'blue', landmark.color.focus = 'green',
curve.color.blur = 'purple', control.point.color.blur = 'purple',
control.point.color.focus = 'red', landmark.radius = 4,
control.point.radius = 4, marker.stroke.width = 2, app.dir=NULL)

Arguments

image.file file path to the image or images to be digitized. This can be a folder containing
one or more images or a vector of file paths of one or more images.

shapes.file file path or folder indicating where shape files should be saved. This is a new for-
mat that is currently only intended to be used when collecting 2D data. The other
input types (landmarks.file, control.points.file, curve.points.file)
will be phased out in future updates and replaced with this format.

landmarks.file same input as landmarks.file in digitizeImage. Included for backward
compatibility. This will eventually be phased out.

control.points.file

same input as control.points.file in digitizeImage. Included for back-
ward compatibility. This will eventually be phased out.

curve.points.file

same input as curve.points.file in digitizeImage. Included for backward
compatibility. This will eventually be phased out.

cal.file file path to calibration file created by calibrateCameras.

landmarks.ref landmarks to be digitized. This can either be a file path to a .txt file containing
the landmarks (listed in a single column, each on a separate line) or a vector of
landmark names.

curves.ref curves to be digitized. For each curve, the name of the curve, the starting point
and the ending point must be specified. curves.ref can either be a three-
column matrix (with the curve name in the first column, the starting point in
the second and the end point in the third) or a file path to a .txt file containing
a three-column curve reference matrix. If a file path, the file should have no
header and tab-separated row values.

digitizeImages 11

image.id image IDs to be saved with each image. These will be used to reference shape
data in the output of readShapes. If NULL, the filenames of the images will be
used (without the file extension).

landmark.color.blur

color of an unselected landmark. It might be necessary to change if the back-
ground color is close to the default. Colors must be valid SVG color names or
codes (e.g. "hotpink", "#4B0082", etc.). A web-search for "SVG color codes"
will indicate several possible options.

landmark.color.focus

color of a selected landmark. See landmark.color.blur.
curve.color.blur

color of digitized curves. A different color for a selected curve is not yet sup-
ported. See landmark.color.blur.

control.point.color.blur

color of an unselected control point. See landmark.color.blur.
control.point.color.focus

color of a selected control point. See landmark.color.blur.
landmark.radius

radius of digitized landmarks.
control.point.radius

radius of the Bezier control points.
marker.stroke.width

thickness of the lines used to draw the landmarks and control points.

app.dir changes the shiny app directory for debugging.

Details

This function opens a digitizing app in the user’s default browswer and allows for the digitization
of landmarks and Bezier curves from photographs. Although the app runs in a web browser, the
user does not have to be connected to the internet as the app runs on a local server. The R package
’shiny’ handles the communication between the browser and the R console. Safari, Chrome and
Opera all provide full compatibility with the apps’s features. Please see StereoMorph tutorials for
step-by-step tutorials on how to use StereoMorph for 2D or 3D shape data collection.

Value

NULL

Author(s)

Aaron Olsen

See Also

readShapes

https://aaronolsen.github.io/software/stereomorph.html

12 distanceGridUnits

distanceGridUnits Returns the distances between pairs of points on a square grid

Description

This function returns the distances in grid units between pairs of points on a square grid. This
function is used in testing the accuracy of a calibration by comparing theoretical distances among
grid points to measured distances.

Usage

distanceGridUnits(pairs, nx)

Arguments

pairs a two-column matrix specifying the pairs of points between which the distance
is to be found.

nx the number of points in the first dimension along which grid points are counted
(see "Details").

Details

This function returns the distances in grid units between pairs of points on a square grid. Thus,
adjoining points in the same row or column would be separated by a distance of one. The returned
distances can then be multiplied by the grid square size to obtain the distances between pairs of
points in real-world units (e.g. mm).

The input pairs is a two-column matrix specifying the pairs of points, with the first column cor-
responding to one point and the second column to the other. The numbers in pairs are indices
of grid points (not point coordinates themselves). The assumed numbering scheme for the grid
points is as follows: the points are first numbered across the first dimension (of length nx) and then
along a second dimension. For example, on a 5x4 grid points 1-5 would be across the first row,
6-10 across the second row, etc. For each row the point numbering starts in the same column. For
distanceGridUnits() the number of columns does not need to be specified since this can be found
from the point index in pairs. See "Examples" for an explanation of the numbering scheme.

Value

a vector of the distances between the specified pairs of grid points.

Author(s)

Aaron Olsen

See Also

dltTestCalibration

distancePointToLine 13

Examples

INDICES OF POINT PAIRS ON A GRID WITH 5 ROWS
pairs <- matrix(c(1,1, 5,10, 6,16, 1,20), nrow=4, ncol=2, byrow=TRUE)

FIND THE DISTANCE BETWEEN PAIRS OF POINTS IN GRID UNITS
NOTE LAST DISTANCE IS 5 BECAUSE IT IS A 3,4,5-TRIANGLE
distanceGridUnits(pairs, nx=5)

FOR ILLUSTRATION, HERE IS A GRID WITH 5 ROWS AND 4 COLUMNS
xy <- cbind(rep(0:4, 4), c(rep(0, 5), rep(1, 5), rep(2, 5), rep(3, 5)))

PLOT THESE POINTS
plot(xy)

PLOT LINE SEGMENTS CONNECTING THE PAIRS ABOVE
segments(x0=xy[pairs[, 1], 1], y0=xy[pairs[, 1], 2],

x1=xy[pairs[, 2], 1], y1=xy[pairs[, 2], 2],
col=c('blue', 'red', 'purple', 'green'))

distancePointToLine Finds the minimum distance(s) between point(s) and a line

Description

Finds the minimum distance between a point and a line or multiple points and a line in two or three
dimensions.

Usage

distancePointToLine(p, l1, l2 = NULL)

Arguments

p a vector of a single point or a matrix of multiple points
l1 a vector describing a point on a line or a list with line constants
l2 if l1 is a point, a second point on a line

Details

If p is a vector, the function returns the distance between a point and the line input. If p is a matrix,
the function returns the distance between each point in the matrix (defined by each row) and the
line input. If p is a vector, the length must be 2 or 3 (2D or 3D, respectively). If p is a matrix, the
number of columns must be 2 or 3 (2D or 3D, respectively).

The line input can be defined using one of three standard ways: two points on the line, ’m’ and ’b’
constants and direction numbers (a vector parallel to the line). If l1 is a vector, this is taken as one
point on the line and l2 must be a second point on the line. If l1 is a list, the named objects must
correspond to one of these three line definitions. Two points on the line are defined as l1$l1 and
l1$l2. ’m’ and ’b’ are defined as l1$m and l1$b. And the direction numbers ’abc’ are defined as
l1$a, l1$b and l1$c.

14 distancePointToPoint

Value

a vector of distance(s)

Author(s)

Aaron Olsen

See Also

orthogonalProjectionToLine

Examples

FIND THE DISTANCE BETWEEN A 2D POINT AND A LINE DEFINED BY A SLOPE AND Y-INTERCEPT
distancePointToLine(p=c(0, 2), l1=list(m=0, b=1))

FIND THE DISTANCE BETWEEN A 2D POINT AND A LINE DEFINED BY TWO POINTS ON THE LINE
distancePointToLine(p=c(0, 5), l1=list(l1=c(2, 4), l2=c(2, 1)))

FIND THE DISTANCE BETWEEN MULTIPLE 2D POINTS AND A LINE DEFINED BY A SLOPE AND Y-INTERCEPT
p <- matrix(c(0, 0, 1, 1, 2, 2), nrow=3, ncol=2, byrow=TRUE)
distancePointToLine(p=p, l1=list(m=0, b=1))

FIND THE DISTANCE BETWEEN MULTIPLE 2D POINTS AND A LINE DEFINED BY DIRECTION NUMBERS
p <- matrix(c(0, -1.5, 1, -2, 2, 2), nrow=3, ncol=2, byrow=TRUE)
distancePointToLine(p=p, l1=list(a=1, b=2, c=3))

FIND THE DISTANCE BETWEEN A 3D POINT AND A LINE DEFINED BY TWO POINTS ON THE LINE
HERE THE DISTANCE IS EQUAL TO sqrt(2)
distancePointToLine(p=c(1, 1, 1), l1=c(0, 0, 0), l2=c(1, 0, 0))

FIND THE DISTANCE BETWEEN MULTIPLE 3D POINTS AND A LINE DEFINED BY TWO POINTS ON THE LINE
p <- matrix(c(0, 0, 0, 1, 1, 1, 2, 2, 2), nrow=3, ncol=3, byrow=TRUE)
distancePointToLine(p=p, l1=list(l1=c(0, 0, 0), l2=c(1, 0, 0)))

distancePointToPoint Finds the distance between two points or sets of points

Description

Finds the distance betweeen two single points, the distances between one point and a set of points,
or the distances between two point sets. Points can be of any number of dimensions.

Usage

distancePointToPoint(p1, p2 = NULL)

distancePointToPoint 15

Arguments

p1 a vector of a single point or a matrix of one or multiple points

p2 a vector of a single point or a matrix of one or multiple points. If NULL, the func-
tion either returns the distance of p1 from the origin or the distances between
subsequent values of p1.

Details

If p1 is a single point and p2 is a single point then the function returns the distance between these
two points. If either p1 or p2 is a single point and the other is a matrix of multiple points then the
function returns a vector of the distances between the single point and each of the multiple points.
If both p1 and p2 are matrices of multiple points, then the function returns a vector of the distances
between the points in each corresponding row. If p1 and p2 are both matrices, the matrix dimensions
must match.

If p2 is NULL, then distancePointToPoint() returns the distance between consecutive points in
p1. If p1 is a vector, the function returns the absolute difference between consecutive values of
p1 (interpoint distances along a single dimension). If p1 is a matrix, then the function returns the
distance between the point in each row of p1 and its subsequent row. This can be used to return the
interpoint distances along a curve defined as a matrix of points.

Value

a vector of distance(s)

Author(s)

Aaron Olsen

See Also

distancePointToLine

Examples

FIND THE DISTANCE BETWEEN TWO, 2D POINTS
VALUE IS sqrt(2)
distancePointToPoint(p1=c(0, 0), p2=c(1, 1))

FIND THE DISTANCE BETWEEN A 2D POINT AND MULTIPLE 2D POINTS
p1 <- c(0, 0)
p2 <- matrix(c(1, 1, 2, 2, 3, 3), nrow=3, ncol=2, byrow=TRUE)
distancePointToPoint(p1=p1, p2=p2)

FIND THE DISTANCE BETWEEN TWO SETS OF 2D POINTS
p1 <- matrix(c(0, 0, 1, 1, 2, 2), nrow=3, ncol=2, byrow=TRUE)
p2 <- matrix(c(1, 1, 2, 2, 3, 3), nrow=3, ncol=2, byrow=TRUE)
distancePointToPoint(p1=p1, p2=p2)

FIND THE DISTANCE BETWEEN A 3D POINT AND MULTIPLE 3D POINTS

16 dltCalibrateCameras

p1 <- c(0, 0, 0)
p2 <- matrix(c(1, 1, 1, 2, 2, 2, 3, 3, 3), nrow=3, ncol=3, byrow=TRUE)
distancePointToPoint(p1=p1, p2=p2)

FIND THE DISTANCE BETWEEN CONSECUTIVE VALUES IN A VECTOR
distancePointToPoint(p1=c(1, 2, 4, 7))

FIND THE DISTANCE BETWEEN CONSECUTIVE 2D POINTS IN A MATRIX
HERE, WE FIND THE DISTANCE BETWEEN THE POINT c(0, 0) AND c(1, 1), WHICH IS sqrt(2)
distancePointToPoint(p1=matrix(c(0, 0, 1, 1), nrow=2, ncol=2, byrow=TRUE))

FIND THE DISTANCE BETWEEN CONSECUTIVE 2D POINTS IN A MATRIX, WITH MORE POINTS
HERE, WE ADD TWO MORE POINTS TO THE PREVIOUS EXAMPLE: c(2, 2) AND c(3, 3)
THE DISTANCE BETWEEN EACH CONSECUTIVE PAIR OF POINTS IS sqrt(2)
distancePointToPoint(p1=matrix(c(0, 0, 1, 1, 2, 2, 3, 3), nrow=4, ncol=2, byrow=TRUE))

FIND THE DISTANCE BETWEEN CONSECUTIVE 3D POINTS IN A MATRIX
distancePointToPoint(p1=matrix(c(0, 0, 0, 1, 1, 1), nrow=2, ncol=3, byrow=TRUE))

FIND THE DISTANCE BETWEEN CONSECUTIVE 4D POINTS IN A MATRIX
distancePointToPoint(p1=matrix(c(0, 0, 0, 0, 1, 1, 1, 1), nrow=2, ncol=4, byrow=TRUE))

dltCalibrateCameras Finds the optimized DLT coefficients for a stereo camera setup

Description

This function uses the corners from a grid positioned in several different orientations within a stereo
camera setup to estimate the DLT calibration coefficients that minimize reconstruction error.

Usage

dltCalibrateCameras(coor.2d, nx, grid.size, c.run = FALSE, reduce.grid.dim = 3,
fit.min.break = 1, nlm.iter.max.init = 100, objective.min.init = 10,

nlm.eval.max = 350, nlm.iter.max = 250, nlm.calls.max = 100,
min.views = 'max', objective.min = 1, grid.incl.min=2,
objective.min.break = NULL, start.param=NULL,

sx = NULL, sy = NULL, print.progress = FALSE, print.tab = '')

S3 method for class 'dltCalibrateCameras'
summary(object, ...)

Arguments

coor.2d a four-dimensional array of grid points. The first two dimensions correspond to
each matrix of grid points, the third corresponds to each grid position/orientation
and the fourth corresponds to each camera view. Can be read from file by the
function readCheckerboardsToArray.

dltCalibrateCameras 17

nx the number of points along the first dimension (e.g. this would be the number
of points in each row if points in coor.2d are listed first by row). The number
of points along the second dimension is calculated based on the total number of
points per view and orientation.

grid.size the size of the grid squares in real-world units (e.g. millimeters).

c.run a logical indicating whether a second optimization should be performed on the
calibration coefficients.

reduce.grid.dim

a numeric indicating the number of grid points along each dimension for each
grid after resampling. The total number of resampled points is reduce.grid.dim^2.
Resampling can be turned off by setting this to 0 or FALSE. The default is rec-
ommended. reduce.grid.dim must be greater than two.

fit.min.break passed to resampleGridImagePoints(). A minimum returned by nlminb()
(indicating goodness of fit in pixel coordinates) at which resampleGridImagePoints()
will stop iterating to find a better fit for each checkerboard grid. Ignored if
reduce.grid.dim is 0 or FALSE.

nlm.iter.max.init

The maximum number of iterations to be performed by nlminb() during initial
coefficient optimization, passed as a control parameter to nlminb(). These are
the number of iterations for an initial determination of whether the function is
likely to converge on the correct estimate.

objective.min.init

The objective used during the initial coefficient optimization, passed as a control
parameter to nlminb(), to determine whether the function is close to conver-
gence.

nlm.eval.max The maximum number of evaluations to be performed by nlminb() during pri-
mary coefficient optimization, passed as a control parameter to nlminb(). Keep-
ing this value as low as possible without excluding actual convergence speeds
performance of the function by preventing the function from stalling far from
the optimal values.

nlm.iter.max The maximum number of iterations to be performed by nlminb() during pri-
mary coefficient optimization, passed as a control parameter to nlminb(). Keep-
ing this value as low as possible without excluding actual convergence speeds
performance of the function by preventing the function from stalling far from
the optimal values.

nlm.calls.max The maximum number of different sets of random starting parameters to use
during coefficient optimization. This parameter cannot exceed 576.

min.views The minimum views in which corners must be detected in order to use in coef-
ficient estimation. If set to ’max’ (default) this will be equal to the number of
input views.

objective.min The expected mean reconstruction error when optimizing the calibration coef-
ficients (the minimum, or objective value returned by nlminb()). A value
between 0.7 and 3 should be reasonable.

grid.incl.min The minimum number of grids to include during coefficient optimization.

18 dltCalibrateCameras

objective.min.break

During coefficient optimization if the error (in pixels) always exceeds this value
the estimation will stop estimating the position of additional checkerboards.

start.param An set of fixed starting parameters to be used during coefficient optimization.
This parameter is intended primarily for debugging.

sx Used for de-bugging.

sy Used for de-bugging.

print.progress a logical indicating whether the progress of the function should be printed while
running. This includes the error in grid re-sampling, an iteration count during
optimization and other outputs relating to the optimization.

print.tab Tabs preceding lines printed to console.

object a list of class "dltCalibrateCameras" (the output of dltCalibrateCameras()).

... further arguments passed to or from other methods.

Details

Calibration is the most challenging step in stereo camera data collection. Most fundamentally, DLT
calibration requires a set of 3D coordinates and their corresponding 2D pixel coordinates in each
camera view in order to derive calibration coefficients (see dltCoefficients). These coefficients
can then be used to reconstruct any point in 3D given its 2D pixel coordinates in two or more
camera views. DLT calibration has traditionally been done using a "calibration object", typically a
3D box-shaped structure filled with markers at known 3D positions. Such objects require the use of
high precision machining in order to achieve an accurate calibration and the calibration points are
usually digitized manually.

The dltCalibrateCameras() function provides a camera calibration routine that is easier to im-
plement and potentially more accurate. This function uses the corners from a grid positioned in
several different orientations within the calibration space to estimate the DLT calibration coeffi-
cients that minimize reconstruction error. The easiest method for obtaining these corner points is
to print a checkerboard pattern (using drawCheckerboard), attach the pattern to flat, hard surface
and use findCheckerboardCorners to automatically extract the pixel coordinates of the internal
corners.

The grid pattern should be photographed in at least four different positions and orientations span-
ning the volume to be calibrated (the tutorial files loaded with StereoMorph include eight different
positions). Using only a couple of positions will result in uneven sampling of the calibration volume
causing larger errors in some regions relative to others. Additionally, using only a single orientation
of the checkerboard will produce higher errors along a particular dimension relative to the others.
Once the pixel coordinates of the grid points (e.g. the internal corners of the checkerboard pat-
tern) have been extracted from all of the calibration images, they should be read into an array using
readCheckerboardsToArray. This function allows for the point order to be reversed along rows,
columns or both. If one of the cameras views the pattern upside down relative to another camera or
if the pattern is in a different orientation, the grid points may be extracted in a different order. This
can be fixed using the row.reverse and col.reverse arguments in readCheckerboardsToArray.
It is essential that the grid points extracted from each camera view correspond to each other row-
by-row or else the calibration will not work.

dltCalibrateCameras() first calls resampleGridImagePoints to downsample the number of
grid points. reduce.grid.dim is the downsample number (the default is 3, meaning 3x3 or nine

dltCalibrateCameras 19

points per grid). Downsampling can be turned off by setting reduce.grid.dim to 0, although this is
not recommended as it will increase run-time substantially without increasing accuracy. A camera
perspective model is fit to the full point set such that the number of points input to the coefficient
optimization can be reduced (thereby reducing run-time) without losing any relevant information
(see resampleGridImagePoints). If print.progress is set to TRUE, the mean and maximum fit
error is printed for each input grid. As the fitting does not take into account lens distortion, high fit
errors may indicate large distortional effects.

Since each checkerboard grid has been photographed in an arbitrary position and orientation, the 3D
coordinates of the grid points are unknown. However, if the first grid is fixed, each additional grid
can be described by applying six transformation parameters relative to the first (three translational
and three rotational). Using the reduced grid point set, dltCalibrateCameras() uses nlminb()
to search for the six transformation parameters per grid that minimizes the RMS error when the
3D coordinates are input (with the corresponding 2D coordinates) to dltCoefficients. In effect,
dltCalibrateCameras() solves for the position of each grid in 3D space using the error from
dltCoefficients as an optimality criterion. Since the first grid is fixed, the optimization will
search for 6*(n-1) parameters, where n is the number of separate grid orientations. nlminb() calls
the function dltTransformationParameterRMSError.

In order to fully explore the parameter space, dltCalibrateCameras() calls nlminb() several
times with a different set of randomly generated starting parameters to estimate the transformation
parameters for each additional grid. The number of different sets of starting parameters is deter-
mined by nlm.calls.max. An initial optimization run is intended to quickly determine whether a
particular set of starting parameters is likely to lead to convergence. The number of iterations for
this initial optimization is determined by nlm.iter.max.init and the objective used in determin-
ing likely convergence is objective.min.init. If it is determined that the starting parameters are
likely to lead to convergence below objective.min, nlminb() is allowed to continue optimizing.
For each grid, the solution yielding the lowest error, or the first solution below the objective.min
threshold, is retained for the next grid optimization.

These optimal transformation parameters are then used to obtain the 3D coordinates of the original
grid points (not downsampled). Once these 3D coordinates are known, the 3D and 2D pixel co-
ordinates are input to dltCoefficients to obtain the 11 calibration coefficients per camera. For
this reason, the calibration coefficient RMS Error (coefficient.rmse) returned will differ slightly
from the reported final nlminb() minimum (t.min).

If c.run is set to TRUE, dltCalibrateCameras() performs a second optimization on the calibration
coefficients themselves. nlminb() is used, this time calling dltCoefficientRMSError, to find
the 11 calibration coefficients per view that minimizes the reconstruction RMS error. Note that
dltCoefficients cannot be used as with the previous optimization because the coefficients must
be an input. Running this second optimization seems to have little effect in increasing the accuracy
of the calibration but is included as this may be useful for some stereo setups.

Value

a list of class "dltCalibrateCameras" with the following elements:

cal.coeff a matrix of 11 optimized DLT calibration coefficients per camera view.
coor.3d the optimized 3D coordinates of the input grid points in coor.2d.
mean.reconstruct.rmse

the RMS error when coor.2d and the optimized calibration coefficients cal.coeff
are input to dltReconstruct.

20 dltCalibrateCameras

coefficient.rmse

the RMS error when coor.2d and the optimized 3D coordinates coor.3d are
input to dltCoefficients.

t.param.final the final transformation parameters reported by nlminb() from the first opti-
mization. 't.' refers to the transformation optimization.

t.min the minimum reported by nlminb() from the first optimization. This is the
mean RMS error across all camera views returned by dltCoefficients for the
downsampled grid points.

t.runtime the run-time (in seconds) for the first optimization.

if c.run is FALSE, the following are NA. Otherwise,

c.param.init the initial parameters for the second optimization. 'c.' refers to the coefficient
optimization.

c.param.final the final parameters reported by nlminb() from the second optimization.

c.min the minimum reported by nlminb() from the second optimization. This is the
mean RMS error across all camera views returned by dltReconstruct.

c.iter the number of iterations reported by nlminb() from the second optimization.

c.runtime the run-time (in seconds) for the second optimization.

Author(s)

Aaron Olsen

References

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltTestCalibration, dltCoefficients, readCheckerboardsToArray,

transformPlanarCalibrationCoordinates, dltTransformationParameterRMSError,

dltCoefficientRMSError

Examples

SET NUMBER OF INTERNAL CORNERS FOR CALIBRATION GRIDS
nx <- 21
ny <- 14

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CHECKERBOARD CORNERS FROM CALIBRATION IMAGE SET
THE TUTORIAL INCLUDES 8 CALIBRATION IMAGES FROM TWO CAMERA VIEWS
file <- matrix(c(paste0(fdir, "cal_a", 1:8, "_v1.txt"),

paste0(fdir, "cal_a", 1:8, "_v2.txt")), ncol=2)

http://kwon3d.com/theory/dlt/dlt.html

dltCoefficientRMSError 21

READ IN CHECKERBOARD CORNERS
NOTE THAT col.reverse IS USED TO MAKE POINTS CORRESPOND
coor.2d <- readCheckerboardsToArray(file=file, nx=nx, ny=ny, col.reverse=TRUE)

SET GRID SIZE (IN MM)
grid.size <- 6.347889

Not run:
CALIBRATE CAMERAS
TO REDUCE RUN-TIME, WE JUST USE CORNERS FROM TWO IMAGES (1 AND 5)
dlt_calibrate_cameras <- dltCalibrateCameras(coor.2d=coor.2d[, , c(1, 5),], nx=nx,

grid.size=grid.size, c.run=FALSE, print.progress=TRUE)

RUN CALIBRATION ON ALL IMAGES, ACCURACY IS GREATLY IMPROVED
dlt_calibrate_cameras <- dltCalibrateCameras(coor.2d=coor.2d, nx=nx,

grid.size=grid.size, c.run=FALSE, print.progress=TRUE)

PRINT SUMMARY
summary(dlt_calibrate_cameras)

End(Not run)

dltCoefficientRMSError

Returns the error during calibration coefficient optimization

Description

Returns the RMS error from dltReconstruct when optimizing the calibration coefficients. This
function is called internally by dltCalibrateCameras.

Usage

dltCoefficientRMSError(p, coor.2d)

Arguments

p a vector of the current, 11-parameter calibration coefficients.

coor.2d a four-dimensional array of grid points passed from dltCalibrateCameras.

Value

the mean RMS error from dltReconstruct across all views.

Author(s)

Aaron Olsen

22 dltCoefficients

See Also

transformPlanarCalibrationCoordinates, dltReconstruct, dltCalibrateCameras

dltCoefficients Computes DLT coefficients for a stereo camera setup

Description

This function takes 3D coordinates and their corresponding 2D coordinates in one or more cam-
era views and returns DLT calibration coefficients. The DLT coefficients can then be used in 3D
reconstruction and calculation of epipolar lines.

Usage

dltCoefficients(coor.3d, coor.2d)

Arguments

coor.3d a three-column matrix of 3D coordinates.
coor.2d an three-dimensional array of 2D pixel coordinates.

Details

This function takes 3D coordinates and their corresponding 2D coordinates in one or more camera
views and returns DLT calibration coefficients. Note that to find the calibration coefficient for a
particular camera view, only the pixel coordinates in that camera view and their corresponding
3D coordinates are used. Thus, it is possible to derive calibration coefficients for several cameras
without any overlap among the views in the points used to derive the calibration coefficients. Any
missing values (either in coor.3d or pixel coordinates missing in a particular view in coor.2d) can
be input as NA; they will be ignored.

The requirements for the structure of the coor.2d array are as follows. The first dimension of
coor.2d is the number of points used in calculating the DLT coefficients. The number of elements
in the first dimension of coor.2d must match the number of rows in coor.3d and these must be
corresponding points (though some may be NA). The second dimension of coor.2d should be two
as these are x,y-coordinates. The third dimension of coor.2d is the number of camera views. This
will correspond to the number of columns in the returned calibration coefficient matrix.

Value

a list of class "dltCoefficients" with the following elements:

cal.coeff the calibration coefficient matrix.
rmse the root-mean-square error for each camera view.

Note

This function was modified by A Olsen from the Matlab function dlt_reconstruct() written by
T Hedrick.

dltCoefficients 23

Author(s)

Aaron Olsen

References

Abdel-Aziz, Y.I., Karara, H.M. (1971) Direct linear transformation into object space coordinates in
close-range photogrammetry. Proc. Symp. on Close-Range Photogrammetry (University of Illinois
at Urbana-Champaign).

Hedrick, T.L. (2008) Software techniques for two- and three-dimensional kinematic measurements
of biological and biomimetic systems. Bioinspiration & Biomimetics, 3 (034001).

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltCalibrateCameras, findCheckerboardCorners

Examples

SET NUMBER OF INTERNAL CORNERS AND ROWS
nx <- 21
ny <- 14

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

GET FILE PATHS FOR PIXEL COORDINATES FROM CALIBRATION IMAGES 1 AND 5
file2d <- matrix(c(paste0(fdir, "cal_a", c(1, 5), "_v1.txt"),

paste0(fdir, "cal_a", c(1, 5), "_v2.txt")), ncol=2)

READ INTO ARRAY
THESE ARE THE 2D COORDINATES USED IN THE CALIBRATION
coor.2d <- readCheckerboardsToArray(file=file2d, nx=nx, ny=ny, col.reverse=TRUE)

REDUCE ARRAY DIMENSIONS TO THREE
THIS STACKS MULTIPLE VIEWS ON TOP OF EACH OTHER INTO THE SAME MATRIX
coor.2d <- apply(coor.2d, c(2, 4), matrix, byrow=FALSE)

GET FILE PATH FOR CORRESPONDING 3D COORDINATES
file3d <- paste0(fdir, "cal_3d_coor.txt")

READ 3D POINTS INTO MATRIX
coor.3d <- as.matrix(read.table(file=file3d))

FIND THE DLT COEFFICIENTS
dlt_coeffcients <- dltCoefficients(coor.3d=coor.3d, coor.2d=coor.2d)

PRINT THE SUMMARY
summary(dlt_coeffcients)

NOTE THAT EACH CAMERA VIEW IS CALIBRATED SEPARATELY
GIVES THE EXACT SAME RESULT

http://kwon3d.com/theory/dlt/dlt.html

24 dltEpipolarDistance

dltCoefficients(coor.3d=coor.3d, coor.2d=coor.2d[, , 1])

dltEpipolarDistance Finds the distance between a point and a self-epipolar line

Description

Given the same point in two camera views, this function finds the distance between the point in the
second camera view and a epipolar line in the second view, as determined from the point in the first
view. The option is also available to return the mean reciprocal epipolar distance.

Usage

dltEpipolarDistance(p1, p2, cal.coeff, reciprocal = FALSE)

Arguments

p1 an x,y vector or two-column matrix of a point or points in the camera view
corresponding to the first column of cal.coeff. This point will be used to
generate an epipolar line in the second view.

p2 an x,y vector or two-column matrix of a point or points in a second camera
view, corresponding to the second column of cal.coeff. The distance will be
measured from this point to the epipolar line of p1.

cal.coeff a two-column matrix of DLT calibration coefficients, where each column corre-
sponds to the views from which p1 and p2 were taken, respectively.

reciprocal a logical indicating whether epipolar distance should be calculated reciprocally
and then averaged.

Details

In a stereo camera setup, a point in one camera view must fall somewhere along a line in a second
camera view. This line is called its epipolar line. Due to error in manually selecting the same point
in two camera views and error in the calibration, the epipolar line of the point in the first view will
not intersect exactly with the same point in the second view. This distance between a point and the
epipolar line of the same point in another view is the epipolar distance (or error).

The epipolar distance can be calculated between the point in the second view and the epipolar line
of the point in the first view or between the point in the first view and the epipolar line of the point
in the second view; the choice is arbitrary. This function performs the former. If a user would like
to perform the latter, simply switch p1 with p2 and reverse the column order of cal.coeff (see
"Examples"). Another possibility is to perform both distance calculations and return an average
(mean reciprocal epipolar distance). This can be done by setting reciprocal to TRUE.

Although a stereo camera system may consist of more than two cameras, the coefficients of only
two cameras should be input to dltEpipolarDistance(). Only the coefficients of the two camera
views for which epipolar distances are being calculated are relevant. Currently, this function only
works with the 11-parameter DLT model.

dltEpipolarDistance 25

A few options for input of p1 and p2 are available. If a single point is input for both, the epipolar
distance is calculated for these two points. If a matrix of points is input for both (of the same
dimensions), the epipolar distance is calculated pair-wise - points in the same row are treated as the
same point. Lastly, if a single point is input as p1 and a matrix is input as p2, the epipolar distance
is calculated for p1 relative to all points in p2 (see "Examples").

Value

a vector of the epipolar distance(s).

Author(s)

Aaron Olsen

References

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltCalibrateCameras, dltEpipolarLine, dltNearestPointOnEpipolar,

dltMatchCurvePoints

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CALIBRATION COEFFICIENTS IN TWO CAMERA STEREO SETUP
cc_file <- paste0(fdir, "cal_coeffs.txt")

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=cc_file))

GET LANDMARKS IN FIRST CAMERA VIEW
lm_files <- paste0(fdir, c("lm_2d_a1_v1.txt", "lm_2d_a1_v2.txt"))

READ LANDMARKS INTO MATRIX
lm.array <- readLandmarksToArray(file=lm_files, row.names=1)

FIND EPIPOLAR DISTANCE BETWEEN TWO SINGLE LANDMARKS
EPIPOLAR DISTANCE (ERROR) IS AROUND 7 PIXELS
IDENTIFYING THE EXACT SAME POINT IN TWO VIEWS MANUALLY IS CHALLENGING...
dltEpipolarDistance(p1=lm.array[1, , 1], p2=lm.array[1, , 2], cal.coeff=cal.coeff)

FIND EPIPOLAR DISTANCE USING EPIPOLAR FROM SECOND VIEW INSTEAD
dltEpipolarDistance(p1=lm.array[1, , 2], p2=lm.array[1, , 1], cal.coeff=cal.coeff[, 2:1])

FIND MEAN RECIPROCAL EPIPOLAR DISTANCE BETWEEN TWO SINGLE LANDMARKS
THIS IS THE AVERAGE OF THE PREVIOUS TWO DISTANCES
dltEpipolarDistance(p1=lm.array[1, , 1], p2=lm.array[1, , 2], cal.coeff=cal.coeff,

http://kwon3d.com/theory/dlt/dlt.html

26 dltEpipolarLine

reciprocal=TRUE)

FIND EPIPOLAR DISTANCES BETWEEN ALL LANDMARKS
PROCEEDS PAIRWISE BECAUSE p1 AND p2 HAVE THE SAME DIMENSIONS
dltEpipolarDistance(p1=lm.array[, , 1], p2=lm.array[, , 2], cal.coeff=cal.coeff)

FIND EPIPOLAR DISTANCES BETWEEN FIRST LANDMARK AND ALL LANDMARKS
HERE THE EPIPOLAR DISTANCES ARE HIGH BECAUSE ONLY THE FIRST LANDMARK
CORRESPONDS
THE REMAINING POINTS ARE NOT THE SAME LANDMARK
dltEpipolarDistance(p1=lm.array[1, , 1], p2=lm.array[, , 2], cal.coeff=cal.coeff)

dltEpipolarLine Finds a epipolar or self-epipolar line

Description

This function takes a point in one camera view and returns either its epipolar line in another camera
view or its epipolar line in that same camera view (self-epipolar line).

Usage

dltEpipolarLine(p, cal.coeff1, cal.coeff2 = NULL, self = FALSE)

Arguments

p vector of x,y pixel coordinates for a point in an image.

cal.coeff1 DLT calibration coefficients corresponding to the camera view from which p
is taken or a two-column matrix of calibration coefficients in which the first
column corresonds to the camera view from which p is taken and the second
column corresponds to an additional camera view.

cal.coeff2 in the case that cal.coeff1 is a single column matrix, these are the DLT cal-
ibration coefficients corresponding to a camera view in a stereo camera setup
other than that from which p is taken.

self a logical indicating whether the epipolar line returned should be a self-epipolar
line.

Details

In a stereo camera setup, a point in one camera view must fall somewhere along a line in a second
camera view. This line is called its epipolar line. If a second point is taken anywhere along this
epipolar line in the second camera and its epipolar line is found in the first camera, the original
point must fall along this line. The epipolar line in the first camera view, along which the original
point falls, is called its self-epipolar line (Yakutieli et al. 2007). dltEpipolarLine() uses DLT
calibration coefficients (see dltCalibrateCameras) to find the epipolar or self-epipolar line for a
given point in a stereo camera setup.

dltEpipolarLine 27

Although a stereo camera system may consist of more than two cameras, the coefficients of only two
cameras should be input to dltEpipolarLine(). Only the coefficients of the two cameras between
which epipolar lines are being calculated are relevant. These two columns of coefficients can be
input as one matrix (to cal.coeff1) or as two separate, one-column matrices (to cal.coeff1 and
cal.coeff2).

Currently, dltEpipolarLine() only works with the 11-parameter DLT model.

Value

dltEpipolarLine() outputs the resulting epipolar line in two forms: slope-intercept coefficients
(m and b) and two points on the line (l1 and l2). These are stored in a list as follows:

m the slope of the epipolar line.

b the y-intercept of the epipolar line.

l1 one point on the epipolar line.

l2 a second point on the epipolar line.

Note

This function was modified by A Olsen from the Matlab function partialdlt() written by T
Hedrick. A Olsen added the self-epipolar functionality after Yekutieli et al. 2007.

Author(s)

Aaron Olsen

References

Abdel-Aziz, Y.I., Karara, H.M. (1971) Direct linear transformation into object space coordinates in
close-range photogrammetry. Proc. Symp. on Close-Range Photogrammetry (University of Illinois
at Urbana-Champaign).

Yekutieli, Y., Mitelman, R., Hochner, B. & Flash, T. (2007). Analyzing Octopus Movements Using
Three-Dimensional Reconstruction. Journal of Neurophysiology, 98, 1775–1790.

Hedrick, T.L. (2008) Software techniques for two- and three-dimensional kinematic measurements
of biological and biomimetic systems. Bioinspiration & Biomimetics, 3 (034001).

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltCalibrateCameras, dltEpipolarDistance, dltNearestPointOnEpipolar

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CALIBRATION COEFFICIENTS IN TWO CAMERA STEREO SETUP
cc_file <- paste0(fdir, "cal_coeffs.txt")

http://kwon3d.com/theory/dlt/dlt.html

28 dltInverse

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=cc_file))

GET LANDMARKS IN FIRST CAMERA VIEW
lm_file <- paste0(fdir, "lm_2d_a1_v1.txt")

READ LANDMARKS INTO MATRIX
lm.matrix <- readLandmarksToMatrix(file=lm_file, row.names=1)

FIND EPIPOLAR LINE IN SECOND CAMERA VIEW
epipolar <- dltEpipolarLine(p=lm.matrix['occipital_condyle',], cal.coeff1=cal.coeff)

FIND SELF-EPIPOLAR LINE (IN FIRST CAMERA VIEW)
self_epipolar <- dltEpipolarLine(p=lm.matrix['occipital_condyle',], cal.coeff1=cal.coeff,

self=TRUE)

CONFIRM THAT DISTANCE FROM ORIGINAL POINT TO SELF-EPIPOLAR LINE IS ZERO
distancePointToLine(p=lm.matrix['occipital_condyle',], l1=self_epipolar)

dltInverse Returns ideal pixel coordinates of 3D point(s) in a stereo camera setup

Description

This function takes 3D coordinates and the DLT calibration coefficients corresponding to one cam-
era view and returns the ideal pixel coordinates of the 3D points in that camera view.

Usage

dltInverse(cal.coeff, coor.3d)

Arguments

cal.coeff a single column matrix of DLT calibration coefficients for one camera view.

coor.3d a three-column matrix of 3D coordinates.

Details

When dltReconstruct is used to reconstruct points in 3D based on pixel coordinates from two or
more camera views, these 3D points can be projected back into any camera view at their "ideal"
pixel coordinates (the "inverse" of reconstruction). The "ideal" pixel coordinates represent the pixel
coordinates in each view if there were no error (i.e. all pixel coordinates in every view correspond
to the exact same point in 3D). In any real-world system there is some error and these ideal pixel
coordinates are compared to the original pixel coordinates used in the reconstruction to assess re-
construction error. dltInverse() is called by dltCoefficients and dltEpipolarLine.

Since dltInverse() only projects the 3D coordinates into a single camera view, only one column of
the DLT coefficients should be input. Currently, dltInverse() only works with the 11-parameter
DLT model.

dltInverse 29

Value

a two-column matrix of pixel coordinates of all points in coor.3d in the camera view corresponding
to cal.coeff.

Note

This function was modified by A Olsen from the Matlab function dlt_inverse() written by T
Hedrick.

Author(s)

Aaron Olsen

References

Abdel-Aziz, Y.I., Karara, H.M. (1971) Direct linear transformation into object space coordinates in
close-range photogrammetry. Proc. Symp. on Close-Range Photogrammetry (University of Illinois
at Urbana-Champaign).

Hedrick, T.L. (2008) Software techniques for two- and three-dimensional kinematic measurements
of biological and biomimetic systems. Bioinspiration & Biomimetics, 3 (034001).

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltCalibrateCameras, dltReconstruct

Examples

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CALIBRATION COEFFICIENTS IN TWO CAMERA STEREO SETUP
cc_file <- paste0(fdir, "cal_coeffs.txt")

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=cc_file))

READ LANDMARKS INTO MATRIX
lm.matrix <- readLandmarksToMatrix(file=paste0(fdir, "lm_3d_a1.txt"), row.names=1)

GET IDEAL 2D COORDINATES OF 3D POINTS IN FIRST CAMERA VIEW
dltInverse(cal.coeff[, 1], lm.matrix)

GET IDEAL 2D COORDINATES OF 3D POINTS IN SECOND CAMERA VIEW
dltInverse(cal.coeff[, 2], lm.matrix)

http://kwon3d.com/theory/dlt/dlt.html

30 dltMatchCurvePoints

dltMatchCurvePoints Matches curve points between two camera views

Description

This function uses DLT calibration coefficients to find corresponding points along a curve viewed
from two different cameras in stereo camera setup.

Usage

dltMatchCurvePoints(lm.list, cal.coeff, min.direct.tangency = 25,
min.fill.tangency = 0, epi.err.weight = 1,
rec.err.weight = 0)

S3 method for class 'dltMatchCurvePoints'
summary(object, print.tab = '', ...)

Arguments

lm.list a list of curve points from two camera views (see readLandmarksToList).
lm.list can include landmarks; these will be returned unchanged.

cal.coeff a two-column matrix of DLT calibration coefficients, where each column corre-
sponds to the views from which points in lm.list were taken.

min.direct.tangency

Threshold (in degrees) to determine which points will be matched during initial
(direct) matching. Regions of the curve that have a tangent less than this value
relative to the epipolar line will be skipped.

min.fill.tangency

Threshold (in degrees) to determine which points will be matched during second
step (fill) of matching. Regions of the curve that have a tangent less than this
value relative to the epipolar line will be skipped.

epi.err.weight Weight of epipolar error in determining matching points during second step of
matching. This weight is taken relative to rec.err.weight.

rec.err.weight Weight of reconstruction error in determining matching points during second
step of matching. This weight is taken relative to epi.err.weight.

object a list of class "dltMatchCurvePoints" (the output of dltMatchCurvePoints()).

print.tab Tabs preceding lines printed to console.

... Further arguments passed to or from other methods.

Details

Point reconstruction with a stereo camera setup requires pixel coordinates of the same point in two
or more camera views. Curves can also be reconstructed in a stereo camera setup if reconstructed
as a series of single points. This, however, poses an additional challenge: that of identifying the
same point on a curve viewed from two different perspectives. A point half-way along the curve in

dltMatchCurvePoints 31

one view will not necessarily correspond to a point half-way along the same curve in another view.
dltMatchCurvePoints() solves this challenge by using epipolar geometry informed by the DLT
calibration coefficients (Yekutieli et al. 2007).

In a stereo camera setup, a point in one camera view must fall somewhere along a line in a second
camera view. This line is called its epipolar line. If the same curve has been digitized in two camera
views, the epipolar line of a point on the first curve should intersect the curve in the second camera
view. The point at which the epipolar line intersects the curve in the second view represents the
corresponding point on the second curve. dltMatchCurvePoints() iterates through all the points
on one curve and uses epipolar geometry to identify the corresponding point on a second curve.
The corresponding point is identified as a point on the epipolar line that is closest to the curve in the
second view (rather than finding the intersection, per se). For more details on the use of epipolar
geometry to solve for corresponding points see Yekutieli et al. (2007).

Two different types of curve point input to dltMatchCurvePoints() are possible. The first type is
a list with two elements (list[[1]] and list[[2]]), containing the curve points of the first and
second camera view, respectively. The second type is a list of the same form as the landmark list
described in readLandmarksToList. The main elements of the landmark list are the landmarks
and curves (list[['landmark1']], list[['curve1']], etc.). Each main element then has two
elements (e.g. list[['curve1']][[1]], list[['curve1']][[2]]) corresponding to the first and
second camera views, respectively. The curve points themselves should be densely sampled pixel
coordinates (e.g. single pixel spacing) in order to improve matching accuracy.

dltMatchCurvePoints() returns the landmark list as the element match.lm.list in the same
format as the input, except that all curve points will be corresponding points. Note that list in-
put is used, rather than a matrix, because the number of curve points may differ between the two
views. Once the corresponding curve points are identified, however, the number of curve points
in each view will be equal. Landmarks and curves containing less than three points are ignored
and returned just as input. In this way, all landmarks and curve points can be passed through
dltMatchCurvePoints() without having to be processed separately.

Although a stereo camera system may consist of more than two cameras, the coefficients of only
two cameras should be input to dltMatchCurvePoints(). Only the coefficients of the two camera
views for which corresponding curve points are being identified are relevant. Currently, this func-
tion can only match curve points between two camera views using the 11-parameter DLT model.

The curve points chosen as the reference are used to generate epipolar lines in a second camera
view. The results will differ slightly depending on which view is chosen as a reference. By default,
dltMatchCurvePoints() uses the curve with the maximum number of points as a reference. Users
can specify which view is to be used as reference through ref.view. Setting ref.view to "min"
will use the curve with the minimum number of points as a reference. Setting ref.view to 1 or 2
will use the first view or second view as a reference, respectively.

As dltMatchCurvePoints() steps through each point on the reference curve, it searches for the
closest point on the epipolar line to the second curve. Rather than search for the closest point among
all of the second curve points, dltMatchCurvePoints() only searches over a sliding window of
points. window.size is the number of curve points considered at each iteration in identifying the
corresponding point. A lower window.size will decrease the run-time but will potentially cause the
function to miss corresponding points. If curve.pt.dist values are low, the current window.size
is probably appropriate. window.size can be increased if curve.pt.dist values are high (over
several pixels).

When the epipolar line is nearly parallel to the curve in the non-reference view, several points are
equally likely to be the corresponding point and determining the actual corresponding point is im-

32 dltMatchCurvePoints

possible without additional information. The angle between the epipolar line and the points on
the non-reference curve is referred to here as the tangency angle. When the tangency angle for
points on the non-reference curve is less than min.tangency.angle, the current reference point
is skipped. Additionally, when the points near a point on the non-reference curve are also very
close to the epipolar line, a wrong match is more likely. Within the window of candidate points,
the distance from each point to the epipolar line is calculated. The slope of these distances away
from the point closest to the epipolar line (the minimum distance) is referred to here as the adjacent
point distance slope. When the adjacent point distance slope is lower, the confidence that the mini-
mum distance point is the correct match decreases. When this adjacent point distance slope is less
than min.dist.adj.slope, the current reference point is skipped. The min.tangency.angle and
min.dist.adj.slope are similar criteria, however the min.dist.adj.slope might provide more
robust results with more irregular curves. Users might need to increase one or both of these values
to obtain satisfactory results.

When reference points are skipped, these are filled in at the end with straight lines extending be-
tween defined points to either side of the skipped regions. Straight lines are used because these
regions are likely to be nearly linear, owing to their minimal deviation from the epipolar line.

In addition to returning match.lm.list, dltMatchCurvePoints() also returns two vectors (or
lists of vectors, depending on the format of lm.list) that can be used to assess the accuracy of
the curve point matching. epipolar.dist is the epipolar distance between the epipolar line of
the reference point and the corresponding point in the non-reference view. The first and last point
are assumed to correspond, so there will be some epipolar error for these points. The remaining
points are chosen on the epipolar line of the reference point, so their epipolar error will be zero.
Future implementations may allow users to specify that corresponding points be on the curve in the
second view and not necessarily on the epipolar line, in which case epipolar.dist will become
more relevant. curve.pt.dist is the distance between the epipolar line and the nearest point on
the curve in the second view for each curve point. If the exact same curve has been digitized in the
two views, curve.pt.dist should be low (within a pixel or less).

Value

a list of class "dltMatchCurvePoints" with the following elements:

match.lm.list a landmark list of matched curve points (and landmarks if also input).

epipolar.dist a list or vector of the epipolar distance between the epipolar line of the reference
points and the corresponding non-reference point. In current implementation,
all values will be zero except the start and end points.

curve.pt.dist a list or vector of the distances from the chosen corresponding points and the
nearest point on the non-reference curve.

Note

This function was written by A Olsen based on the methodology described in Yekutieli et al. 2007.

Author(s)

Aaron Olsen

dltNearestPointOnEpipolar 33

References

Yekutieli, Y., Mitelman, R., Hochner, B. and Flash, T. (2007). Analyzing Octopus Movements
Using Three-Dimensional Reconstruction. Journal of Neurophysiology, 98, 1775–1790.

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

readLandmarksToList, dltEpipolarLine, dltEpipolarDistance, dltNearestPointOnEpipolar

Examples

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO LANDMARK DATA
file <- paste0(fdir, "lm_2d_a2_v", 1:2, ".txt")

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=paste0(fdir, "cal_coeffs.txt")))

READ LANDMARKS INTO LIST
lm.list <- readLandmarksToList(file=file, row.names=1)

MATCH CURVE POINTS FOR ONE CURVE
FIRST TYPE OF LANDMARK INPUT
RETURNS LIST OF MATCHING POINTS WITHOUT CURVE NAME
dlt_match <- dltMatchCurvePoints(lm.list$pterygoid_crest_R, cal.coeff)

PRINT SUMMARY
summary(dlt_match)

SET A DIFFERENT REFERENCE VIEW
SECOND VIEW HAS 80 FEWER POINTS
dlt_match <- dltMatchCurvePoints(lm.list$pterygoid_crest_R, cal.coeff, ref.view=2)

MATCH CURVE POINTS FOR ALL CURVES IN LIST
SECOND TYPE OF LANDMARK INPUT
RETURNS LIST OF ALL LANDMARKS AND MATCHED CURVE POINTS WITH CURVE NAMES
dlt_match <- dltMatchCurvePoints(lm.list, cal.coeff)

dltNearestPointOnEpipolar

Returns the closest point on a epipolar line to a point or points

Description

Given the same point in two camera views, this function finds the nearest point on the epipolar line
of the point in the first view to a point or points in the second view.

http://kwon3d.com/theory/dlt/dlt.html

34 dltNearestPointOnEpipolar

Usage

dltNearestPointOnEpipolar(p1, p2, cal.coeff)

Arguments

p1 vector of x,y pixel coordinates for a point in the camera view corresponding to
the first column of cal.coeff. This point will be used to generate an epipolar
line in the second view.

p2 an x,y vector or two-column matrix of a point or points in a second camera
view, corresponding to the second column of cal.coeff. The nearest point on
the epipolar line will be an orthogonal projection from a point in p2.

cal.coeff a two-column matrix of DLT calibration coefficients, where each column corre-
sponds to the views from which p1 and p2 were taken, respectively.

Details

In a stereo camera setup, a point in one camera view must fall somewhere along a line in a second
camera view. This line is called its epipolar line. Due to error in manually selecting the same
point in two camera views and error in the calibration, the epipolar line of the point in the first
view will not intersect exactly with the same point in the second view. The nearest point on the
epipolar line is a point at a minimum distance from the point in the second view. This is equivalent
to the orthogonal projection (orthogonalProjectionToLine) of the point in the second view onto
the epipolar line of the point in the first view. The length of this line is the epipolar distance
(dltEpipolarDistance).

dltNearestPointOnEpipolar() first finds the epipolar line of p1, a point in the first camera view,
and then finds the point on this epipolar line nearest to point(s) p2 in the second camera view. If p2
is a single point, dltNearestPointOnEpipolar() finds the point on the epipolar line closest to p2.
If p2 is a matrix of points, the point in p2 closest to the epipolar line is first identified and then the
point on the epipolar line closest to this point is determined.

Value

a list with the following elements:

matching.pt an x,y vector of the point on the epipolar line of p1 closest to point(s) p2.

min.idx the index in p2 of the nearest point to the epipolar line of p1. If p2 is a single
point (vector), min.idx will be 1.

p2.dist the epipolar distance between matching.pt and the point in p2 at the min.idx.

Author(s)

Aaron Olsen

References

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

http://kwon3d.com/theory/dlt/dlt.html

dltReconstruct 35

See Also

dltCalibrateCameras, dltEpipolarDistance, dltEpipolarLine, dltMatchCurvePoints

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CALIBRATION COEFFICIENTS IN TWO CAMERA STEREO SETUP
cc_file <- paste0(fdir, "cal_coeffs.txt")

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=cc_file))

GET LANDMARKS IN FIRST CAMERA VIEW
lm_files <- paste0(fdir, c("lm_2d_a1_v1.txt", "lm_2d_a1_v2.txt"))

READ LANDMARKS INTO MATRIX
lm.array <- readLandmarksToArray(file=lm_files, row.names=1)

FIND THE NEAREST POINT ON THE EPIPOLAR LINE OF P1
dltNearestPointOnEpipolar(p1=lm.array[3, , 1], p2=lm.array[3, , 2], cal.coeff=cal.coeff)

FIND THE NEAREST POINT ON THE EPIPOLAR LINE OF P1
THIS TIME USING ALL LANDMARKS IN THAT VIEW
FUNCTION IDENTIFIES THE CORRECT LANDMARK IN THE SECOND VIEW AS THE SAME LANDMARK
dltNearestPointOnEpipolar(p1=lm.array[3, , 1], p2=lm.array[, , 2], cal.coeff=cal.coeff)

dltReconstruct Reconstructs the 3D position of points in two or more camera views

Description

This function takes 2D pixel coordinates of a point or points from two more camera views and uses
DLT coefficients to reconstruct their position in 3D.

Usage

dltReconstruct(cal.coeff, coor.2d, min.views = 2)

S3 method for class 'dltReconstruct'
summary(object, ...)

Arguments

cal.coeff a matrix of DLT calibration coefficients. The columns correspond to each cam-
era view and the column order should match the camera view order of the land-
marks in coor.2d.

36 dltReconstruct

coor.2d 2D pixel coordinates from two or more camera views. Format can be either a
landmark matrix, list or array.

min.views the minimum number of views required for a point to be reconstructed in 3D.

object a list of class "dltReconstruct" (the output of dltReconstruct()).

... further arguments passed to or from other methods.

Details

This function uses DLT coefficients (calculated using dltCalibrateCameras, for example) to re-
construct the 3D position of points, based on their 2D position in two or more camera views.
2D pixel coordinates can be input as a landmark matrix (readLandmarksToMatrix), as a list
(readLandmarksToList) or as an array (readLandmarksToArray).

A minimum of two views is required for 3D reconstruction although additional camera views can
be used, potentially improving reconstruction accuracy. Points that are present in fewer views than
specified by min.views will be assigned NA values in the returned 3D matrix (coor.3d).

After 3D reconstruction, dltReconstruct() performs the inverse operation, taking the recon-
structed, 3D coordinates and solving for the 2D position of the points in each camera view. These
inverse 2D coordinates are compared with the original coordinates and their difference is returned
as the root-mean-square (RMS) reconstruction error (list$rmse). This error is similar to the epipo-
lar distance (dltEpipolarDistance). The summary() function can be used to view the error by
landmark.

Currently, dltReconstruct() only works with the 11-parameter DLT model.

Value

a list of class "dltReconstruct" with the following elements:

coor.3d a 2D or 3D landmark matrix.

rmse the root-mean-square reconstruction error (in pixels).

Note

This function was modified by A Olsen from the Matlab function dlt_reconstruct() written by
T Hedrick.

Author(s)

Aaron Olsen

References

Abdel-Aziz, Y.I., Karara, H.M. (1971) Direct linear transformation into object space coordinates in
close-range photogrammetry. Proc. Symp. on Close-Range Photogrammetry (University of Illinois
at Urbana-Champaign).

Hedrick, T.L. (2008) Software techniques for two- and three-dimensional kinematic measurements
of biological and biomimetic systems. Bioinspiration & Biomimetics, 3 (034001).

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

http://kwon3d.com/theory/dlt/dlt.html

dltTestCalibration 37

See Also

dltCalibrateCameras, readLandmarksToMatrix, readLandmarksToList,

readLandmarksToArray, dltEpipolarDistance

Examples

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CALIBRATION COEFFICIENTS IN TWO CAMERA STEREO SETUP
cc_file <- paste0(fdir, "cal_coeffs.txt")

LOAD COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=cc_file))

GET LANDMARKS IN FIRST CAMERA VIEW
lm_files <- paste0(fdir, c("lm_2d_a1_v1.txt", "lm_2d_a1_v2.txt"))

READ LANDMARKS INTO MATRIX
lm.matrix <- readLandmarksToMatrix(file=lm_files, row.names=1)

RECONSTRUCT LANDMARKS IN 3D (MATRIX INPUT)
dlt_recon <- dltReconstruct(cal.coeff=cal.coeff, coor.2d=lm.matrix)

OTHER POSSIBLE LANDMARK FORMAT INPUTS
READ LANDMARKS INTO LIST
lm.list <- readLandmarksToList(file=lm_files, row.names=1)

RECONSTRUCT LANDMARKS IN 3D (LIST INPUT)
dlt_recon <- dltReconstruct(cal.coeff=cal.coeff, coor.2d=lm.list)

READ LANDMARKS INTO ARRAY
lm.array <- readLandmarksToArray(file=lm_files, row.names=1)

RECONSTRUCT LANDMARKS IN 3D (ARRAY INPUT)
dlt_recon <- dltReconstruct(cal.coeff=cal.coeff, coor.2d=lm.array)

dltTestCalibration Tests the accuracy of a stereo camera calibration

Description

This function uses a set of grid points, ideally other than those used in stereo camera calibration,
to test calibration accuracy. Results of both distance-based and position-based accuracy tests are
returned.

38 dltTestCalibration

Usage

dltTestCalibration(cal.coeff, coor.2d, nx, sq.size,
reciprocal = TRUE, align.princomp = FALSE)

S3 method for class 'dltTestCalibration'
summary(object, print.tab = '', ...)

Arguments

cal.coeff a matrix of DLT calibration coefficients. The columns correspond to each cam-
era view and the column order should match the camera view order in the fourth
dimension of the coor.2d array.

coor.2d a four-dimensional array of grid points. The first two dimensions correspond to
each matrix of grid points, the third corresponds to each grid position/orientation
and the fourth corresponds to each camera view. These can be read in from file
by readCheckerboardsToArray.

nx the number of points along the first dimension (e.g. this would be the number
of points in each row if points in coor.2d are listed first by row). The number
of points along the second dimension is calculated based on the total number of
points per view and orientation.

sq.size the size of the grid squares in real-world units (e.g. millimeters).

reciprocal a logical indicating whether epipolar distance should be calculated reciprocally
and then averaged.

align.princomp a logical indicating whether checkerboard corners should be aligned along prin-
cipal coordinate axes prior to error testing (serves to describe error along axes
that may be more physically meaningful than the initial, arbitrary coordinate
system).

object a list of class "dltTestCalibration" (the output of dltTestCalibration()).

print.tab Tabs preceding lines printed to console.

... further arguments passed to or from other methods.

Details

Although the RMS errors reported by dltCalibrateCameras can be used to assess the accuracy of
a stereo camera setup, these represent how well the DLT parameters fit the calibration point set and
not the reconstruction accuracy per se. It has been argued that in order to obtain a true estimation of
reconstruction accuracy, an independent assessment criterion is required (Challis & Kerwin 1992).
With the StereoMorph package, this is best accomplished by photographing a grid not used in the
calibration and of a different square size (to test for proper scaling). These images are taken and
the internal corners extracted just as in the calibration step (see dltCalibrateCameras), again
ensuring that the test images fully sample the calibration volume and that the extracted point orders
correspond between the two views. The input format of coor.2d to dltTestCalibration() is the
same format as the coor.2d input to dltCalibrateCameras.

dltTestCalibration() measures the calibration accuracy using two approaches: a distance-based
approach and a position-based approach. For the distance-based approach (e.g. Tashman & Anderst

dltTestCalibration 39

2003; Brainerd et al. 2010), random pairs of grid points are chosen (without resampling), recon-
structed and the distance between the reconstructed points is compared with the actual distance.
The deviations from the true distance (interpoint distance error or IPD error) for each pair of points
are returned in the ipd.error vector. dltTestCalibration() also measures IPD error of only ad-
jacent points, returned in the vector adj.pair.ipd.error. With a sufficient number of grid points,
adjacent points are close enough that one can test how IPD error varies as a function of the dis-
tance from the approximate center of the calibrated volume (adj.pair.centroid.dist) or along
a particular dimension (adj.pair.mean.pos).

One challenge in interpreting the IPD error, however, is that each deviation represents error in the x,
y and z position of two points. This makes it difficult to assess the accuracy of a particular point or
along a particular dimension. Since we do not know the 3D coordinates of a test grid placed at an
arbitrary orientation in the calibration volume, we must find the best fit 3D position in order to assess
positional accuracy. For the position-based approach, dltTestCalibration() takes an ideal grid
of the same square size and dimensions and optimally aligns it with the reconstructed test points
using findOptimalPointAlignment. The reconstructed test points can then be compared with
their corresponding reference points. These errors are returned in the matrix aitr.error (aligned
ideal to reconstructed point position). This approach has the disadvantage that best fit alignment
will tend to align the reference grid where the error is highest so as to minimize differences. This
can decrease error where it is in actuality relatively high and vice versa.

Value

a list of class "dltTestCalibration" with the following elements:

num.grids the number of test calibration grids used in accuracy assessment.

epipolar.error the epipolar error (distance) for every test calibration point. This is the reciprocal
epipolar distance if reciprocal is TRUE. See dltEpipolarDistance.

epipolar.rmse the root-mean-square error of epipolar.error.

ipd.error a vector of the deviations from the true distance between random pairs of points
(without resampling).

pair.dist a vector of the true distances between the random pairs of points in ipd.error.

ipd.rmse the root-mean-square error of ipd.error.
adj.pair.ipd.error

a vector of the deviations from the true distance between random pairs of adja-
cent points (without resampling).

adj.pair.mean.pos

a three-column matrix of the mean position (midpoint) of the adjacent pairs of
points in adj.pair.ipd.error.

adj.pair.centroid.dist

a vector of the distances from each point in adj.pair.mean.pos to the centroid
of all adj.pair.mean.pos.

aitr.error a three-column matrix of the x, y and z position errors for the reconstructed test
calibration points relative to optimally aligned ideal grid points.

aitr.dist.error

a vector of the distances between the reconstructed test calibration points and
the optimally aligned ideal grid points. Note that ideally this distance should be
zero so all values in this vector are positive.

40 dltTestCalibration

aitr.dist.rmse the RMS error (or deviation) of aitr.dist.error.

aitr.rmse a vector of the RMS error (or deviation) of aitr.error along each dimension.
This is very similar to the standard deviation of aitr.error along each dimen-
sion.

aitr.pos a three-column matrix of the ideal grid points after best fit alignment to the
reconstructed grid points.

aitr.centroid.dist

a vector of the distances between each AITR point and the centroid of all AITR
points.

Author(s)

Aaron Olsen

References

Challis, J.H. and Kerwin, D.G. (1992). Accuracy assessment and control point configuration when
using the DLT for photogrammetry. Journal of Biomechanics, 25 (9), 1053–1058.

Tashman, S. and Anderst, W. (2003). In Vivo Measurement of Dynamic Joint Motion Using High
Speed Biplane Radiography and CT: Application to Canine ACL Deficiency. Transactions of the
ASME, 125, 238–245.

Brainerd, E.L., Baier, D.B., Gatesy, S.M., Hedrick, T.L., Metzger, K.A., Gilbert, S.L and Crisco,
J.J. (2010). X-ray reconstruction of moving morphology (XROMM): Precision, accuracy and appli-
cations in comparative biomechanics research. Journal of Experimental Zoology, 313A, 262–279.

For a general overview of DLT: http://kwon3d.com/theory/dlt/dlt.html

See Also

dltCalibrateCameras, dltCoefficients, readCheckerboardsToArray, dltEpipolarDistance,
findCheckerboardCorners

Examples

SET NUMBER OF INTERNAL ROWS AND COLUMNS
nx <- 21
ny <- 14

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CHECKERBOARD CORNERS FROM TEST CALIBRATION IMAGE SET
file <- matrix(c(paste0(fdir, "test_cal_a", 1:11, "_v1.txt"),

paste0(fdir, "test_cal_a", 1:11, "_v2.txt")), ncol=2)

READ IN CHECKERBOARD CORNERS
coor.2d <- readCheckerboardsToArray(file=file, nx=nx, ny=ny, col.reverse=FALSE)

SET GRID SIZE OF TEST CHECKERBOARDS (IN MM)
sq.size <- 4.2218

http://kwon3d.com/theory/dlt/dlt.html

dltTransformationParameterRMSError 41

LOAD CALIBRATION COEFFICIENTS
cal.coeff <- as.matrix(read.table(file=paste0(fdir, "cal_coeffs.txt")))

TEST CALIBRATION ACCURACY
USE ONLY A SUBSET (FIVE) OF TEST CALIBRATION IMAGES
IN THE TUTORIAL POINTS, UNITS NOT IN PIXELS ARE MILLIMETERS
dlt_test <- dltTestCalibration(cal.coeff=cal.coeff, coor.2d=coor.2d[, , 1:5,], nx=nx,

sq.size=sq.size)

RUN TEST ON ALL TEST CALIBRATION IMAGES
Not run:
dlt_test <- dltTestCalibration(cal.coeff=cal.coeff, coor.2d=coor.2d, nx=nx,

sq.size=sq.size)

End(Not run)

PRINT SUMMARY
summary(dlt_test)

PLOT A HISTOGRAM OF THE INTERPOINT DISTANCE ERROR
hist(dlt_test$ipd.error)

PLOT ADJACENT POINT DISTANCE ERROR AS A FUNCTION OF POSITION ALONG THE Y-AXIS
dev.new()
plot(dlt_test$adj.pair.ipd.error, abs(dlt_test$adj.pair.mean.pos[, 2,]))

PLOT POSITION-BASED ERROR AS A FUNCTION OF POSITION ALONG THE X-AXIS
dev.new()
plot(dlt_test$aitr.pos[, 1,], abs(dlt_test$aitr.error[, 1,]))

dltTransformationParameterRMSError

Returns the error during transformation parameter optimization

Description

Returns the RMS error from dltCoefficients after applying a given set of transformation param-
eters to grid points in stereo camera calibration. This function is called internally by the function
dltCalibrateCameras to estimate the position and orientation of a set of calibration grid points
that minimizes calibration error.

Usage

dltTransformationParameterRMSError(p, coor.2d, nx, ny, sx, sy = NULL,
p.fixed = NULL)

42 drawCheckerboard

Arguments

p a vector of six transformation parameters per grid. The first three being rota-
tional parameters (rotation about the z, y and x axes, respectively) and the sec-
ond three being translational parameters (translation along the x, y and z axes,
respectively). For more than one grid, these six values are concatenated as a
vector.

coor.2d a four-dimensional array of grid points passed from dltCalibrateCameras.

nx the number of points along the first dimension (e.g. this would be the number of
points in each row if points are listed first by row).

ny the number of points along the second dimension (e.g. this would be the number
of points in each column if points are listed first by row).

sx a scaling factor along the first dimension.

sy a scaling factor along the second dimension. If the grid blocks are squares, this
can be left as NULL and only sx will be used.

p.fixed a set of transformation parameters to be appended to the beginning of p that will
are fixed (constant) during the optimization step.

Value

the mean RMS error from dltCoefficients across all views.

Author(s)

Aaron Olsen

See Also

transformPlanarCalibrationCoordinates, dltCoefficients, dltCalibrateCameras

drawCheckerboard Creates a checkerboard image

Description

Creates a checkerboard image of specified dimensions and saves to an input file path. The dimen-
sions of the checkerboard are specified by the number of internal corners (the number of squares
minus one).

Usage

drawCheckerboard(nx, ny, square.size, file = NULL,
margin.x = c(round(square.size/2), round(square.size/2)),
margin.y = c(round(square.size/2), round(square.size/2)),
filename = NULL, ...)

drawCheckerboard 43

Arguments

nx the number of internal corners in the horizontal direction (the number of squares
in each row minus one).

ny the number of internal corners in the vertical direction (the number of squares
in each column minus one).

square.size the square size in pixels.

file the file path and name to which the image should be saved. The filename must
be a valid image filename. Acceptable extensions are: jpg, jpeg, bmp, png and
tiff.

margin.x the margin in pixels on the left and right sides of the checkerboard pattern.

margin.y the margin in pixels on the top and bottom of the checkerboard pattern.

filename Duplicate with file. Included for backward compatibility with previous ver-
sion.

... further arguments to be passed to the image function corresponding to the ex-
tension in filename (e.g. compression, quality, etc.).

Details

This function requires the grid package. The image type is determined automatically from the
filename and the corresponding image writing function is called.

Value

returns null device

Author(s)

Aaron Olsen

See Also

readCheckerboardsToArray

Examples

NUMBER OF INTERNAL CORNERS IN THE HORIZONTAL DIMENSION
NUMBER OF ROWS OF SQUARES MINUS ONE
nx <- 21

NUMBER OF INTERNAL CORNERS IN THE VERTICAL DIMENSION
NUMBER OF COLUMNS OF SQUARES MINUS ONE
ny <- 14

SQUARE SIZE IN PIXELS
square.size <- 200

WHERE TO SAVE THE FILE
filename <- paste0("checkerboard_", nx, "_", ny, "_", square.size, ".jpeg")

44 extractFrames

Not run:
DRAW CHECKERBOARD
FILE WILL BE CREATED IN CURRENT WORKING DIRECTORY
drawCheckerboard(nx=nx, ny=ny, square.size=square.size, filename=filename)

End(Not run)

extractFrames Extracts frames from video

Description

Extracts frames from a video saving them as a series of images

Usage

extractFrames(file = NULL, save.to = NULL, frames = NULL, names = NULL,
ext = 'jpeg', qscale = 2, frame.start = 0, video.i = NULL,
warn.min = 100)

Arguments

file Video file from which frames are to be extracted.
save.to Where to save the extracted frames.
frames The frames to be extracted, starting with 0.
names Names to be given to the extracted frames. If NULL the function will automat-

ically name them with the corresponding frame number, preceded by enough
zeros to maintain a constant filename width.

ext The image type/extension to be added to each extract frame.
qscale Integer indicating the image quality of the extracted frames. This is an input

parameter passed direclty to ffmpeg.
frame.start The time (in msec) corresponding to the frame immediately before the first

frame change.
video.i Video metadata passed to the function. This parameter is only intended for

internal use.
warn.min The minimum number of extracted frames for which the user is prompted and

has to respond ’y’ prior to frame extraction. This is intended to prevent the user
from mistakenly extracting thousands of frames.

Details

In order to use this function you must separately install the ffmpeg video codec library. For in-
structions please refer to the ’Extracting video frames’ section of the most recent StereoMorph user
guide here. This function can be used interactively with prompts by calling extractFrames(). The
user will then be prompted for all necessary input parameters. This is useful because the function
will report the number of frames in the video before prompting which frames the user would like to
extract.

https://aaronolsen.github.io/software/stereomorph.html
https://aaronolsen.github.io/software/stereomorph.html

findCheckerboardCorners 45

Value

NULL

Author(s)

Aaron Olsen

Examples

Not run:
Use extractFrames() with interactive prompts
extractFrames()

Extract the first 20 frames from a video
extractFrames(file='Example_video.mov', save.to='Frames', frames=0:20)

End(Not run)

findCheckerboardCorners

Finds internal corners of a checkerboard pattern

Description

This function finds the internal corners of a checkerboard pattern in an image.

Usage

findCheckerboardCorners(image.file, nx, ny, corner.file=NULL, verify.file=NULL,
perim.min = 'auto', perim.max = 'auto', dilations.min = 0,

dilations.max = 7, sub.pix.win = NULL, sub.pix.win.min = NULL,
quad.fit.max=4, poly.cont.min=-0.3, poly.cont.max=0.3,
quad.approx.thresh = 'auto', flip = FALSE,
print.progress=TRUE, verbose=FALSE, debug = FALSE)

Arguments

image.file File path(s) to image(s) or to folder(s) containing image(s) (and only images).
The image(s) should be a JPEG and include a checkerboard pattern. Can be a
vector or matrix. Many different inputs accepted, see "Examples".

nx The number of internal corners in the checkerboard along one dimension. Note
that this is not the number of squares (see "Details").

ny The number of internal corners in the checkerboard along a second dimension.

corner.file File path(s) to text file(s) or to folder(s) where the corners should be saved. Can
be a vector or matrix. If NULL, corners are not saved to a text file. Many different
inputs accepted, see "Examples".

46 findCheckerboardCorners

verify.file File path(s) to JPEG image(s) or to folder(s) where verification images should
be saved. Can be a vector or matrix. If NULL, verification images are not created.
Many different inputs accepted, see "Examples".

perim.min The minimum expected perimeter of a black square in the checkerboard pattern
(in pixels).

perim.max The maximum expected perimeter of a black square in the checkerboard pattern
(in pixels).

dilations.min The initial number of dilations to perform on the image. See "Details".

dilations.max The maximum number of dilations to perform on the image. If equal to dilations.min,
the function will only perform one dilation. See "details".

sub.pix.win The window size to use in determining the corner positions to subpixel resolu-
tion. If NULL, this is determined automatically based on the size of the found
corners.

sub.pix.win.min

Only relevant if sub.pix.win is NULL. This sets the minimum window size that
can be set by default.

quad.fit.max Fit threshold used to identify quadrangles.

poly.cont.min The minimum allowed aspect ratio of the polygon contours, used as a threshold
in identifying quadrangles.

poly.cont.max The maximum allowed aspect ratio of the polygon contours, used as a threshold
in identifying quadrangles.

quad.approx.thresh

A threshold for the perimeter of black squares in which method to use to ap-
proximate the shape as a quadrangle.

flip Logical whether the order of the corners should be flipped.

print.progress Logical indicating whether the function progress should be printed to the con-
sole. See verbose.

verbose Logical indicating whether more detailed progress reports to the console. If
verbose is FALSE, only the image name and whether the corners were found
successfully are printed. If verbose is TRUE, the outcome of the corner search
at the conclusion of each dilation is also printed.

debug Logical indicating whether images should be created at each of several steps in
the corner search. These will be written to the same location as the images writ-
ten to verify.file. If debug is TRUE, verify.file must be defined. Addition-
ally, dilations.min and dilations.max should be identical since debugging
images are created at each dilation and will be overwritten if a range of dilations
is input.

Details

This function automatically detects checkerboard corners in an image and returns the pixel coordi-
nates of the internal corners (where the corners of the black squares contact other black squares) to
subpixel resolution. The function uses several C++ functions for image processing written by the
author and compiled with the StereoMorph package but hidden until documentation can be written
for more general use. Currently the function only works with JPEG images (.jpg or .jpeg); this is

findCheckerboardCorners 47

the most common digital camera image format output. For large images (10-20 MB), the function
can take from 5-15 seconds per image.

image.file input to the function can be of several different forms. First, it can be file paths to
particular images or file paths to a folder or folders containing images. Secondly, it can be in a
vector or matrix format. The format of image.file will dictate the structure of the value returned
by the function. If a single image file is input, a two-colum matrix of corners (where the two
columns correspond to the x, y pixel coordinates) is returned. If the input is a vector of file paths
or folders containing images, a three-dimensional array is returned; the first two dimensions are the
rows and columns of each corner matrix and the third dimension is the order of the corresponding
image files in image.file. If the input is a matrix of file paths or folders containing images, a four-
dimensional array is returned; the first two dimensions are the rows and columns of each corner
matrix and the third and fourth dimensions are the positions of the corresponding image files in
the image.file matrix. If image.file is a folder or folders containing images, the folders cannot
contain any other files.

The inputs corner.file and verify.file are optional but if they are non-NULL, they should be
of the same format as image.file. If image.file is a folder or folders containing images, folders
can also be input for corner.file and verify.file. In this case, the function will automatically
name the corner files and verify image files with the same names as the images and as text files
and JPEG files, respectively. The corners are saved to a text file as a two column matrix without a
header or row names.

For every input image, the function begins by reading in the image (using readJPEG() of the ’jpeg’
package). For large images this is one of the most time-consuming steps. The image is con-
verted to grayscale using the internal function rgbToGray(). The image is thresholded to create
a binary image (black and white) based on an adaptive threshold. The threshold is created us-
ing the internal function meanBlurImage() and the image thresholded with the internal function
thresholdImageMatrix(). Morphological closing is performed to reduce noise using the internal
functions dilateImage() and erodeImage().

The function then proceeds to dilate the image (expand white areas and consolidate black areas)
using a 3x3 square kernel for the range specified by dilations.min and dilations.max. This
separates the black squares from each other so that their perimeters can be detected as separate
contours. For each dilation, all edge points are identified (black pixels with a neighboring white
pixel and vice versa) using the internal function findBoundaryPoints(). Contours (connected
edge points) are identified by the internal function generateQuads(), retaining only contours that
are quadrangles. The midpoints between adjoining corners of all the quads are found using the
internal function intCornersFromQuads(); among these will be the full set of internal corners.

If the initial set of internal corners exceeds the expectation, the internal corners are filtered, fitting
a line to the internal corner set and removing the points at the furthest difference from the line
of best fit until the number of corners matches the expectation. The filtered internal corner set is
then ordered using the internal function orderCorners() so that first corner is the top left most
corner in the pattern and the sequence of internal corners proceeds along nx first and ny second.
Lastly, the function finds the internal corner positions to subpixel resolution (using the internal
function findCornerSubPix()) by sampling a window around the approximate location of the
internal corners (of dimensions determined by sub.pix.win) to find a point optimally positioned at
the intersection of diagonally opposing white and black squares. If determined automatically, this
sampling window will usually be 23x23 pixels. It is the sampling of this large image region that
allows the function to return the corner position to subpixel resolution.

If verify.file is non-NULL, the internal corners are overlayed on the input image to verify that the

48 findCheckerboardCorners

correct corners have been found and in the correct order. The first corner is circled in red, a green
line interconnects all the intermediate corners in sequence and the last corner is circled in blue (the
order of colors then being RGB).

Value

An array of the pixel coordinates of internal corners to subpixel resolution in an array of two (one
checkerboard input), three (if image.file is a vector) or four dimensions (if image.file is a
matrix). For images in which the expected number of internal corners were not found, an NA matrix
is returned for those particular images. The corners are returned along the nx dimension first and
the ny dimension second.

Author(s)

Aaron Olsen

References

This function was written based on the methodology described in ’Learning OpenCV’ for the auto-
mated detection of internal checkerboard corners (Bradski and Kaehler 2008).

See Also

readCheckerboardsToArray, measureCheckerboardSize

Examples

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

FIND 5 X 3 INTERNAL CORNERS IN A SINGLE IMAGE
corners <- findCheckerboardCorners(image.file=paste0(fdir,

"Checkerboards/RUlna.JPG"), perim.min=180, nx=5, ny=3)

FIND 5 X 3 INTERNAL CORNERS IN ALL IMAGES IN A FOLDER (HERE 3)
corners <- findCheckerboardCorners(image.file=paste0(fdir,

"Checkerboards"), perim.min=180, nx=5, ny=3)

WHICH DIMENSIONS ARE ASSIGNED TO NX AND NY IS ARBITRARY BUT REVERSING
THESE WILL CHANGE THE SEQUENCE IN WHICH THE CORNERS ARE RETURNED
corners <- findCheckerboardCorners(image.file=paste0(fdir,

"Checkerboards/RUlna.JPG"), perim.min=180, nx=3, ny=5)

findOptimalPointAlignment 49

findOptimalPointAlignment

Optimally aligns one point set to another

Description

This function translates and rotates one point set, optimally aligning it with another point set.

Usage

findOptimalPointAlignment(m1, m2, sign = NULL)

Arguments

m1 a point set matrix

m2 a second point set matrix of the same dimensions as m1

sign Used for debugging.

Details

This function optimally aligns point set m2 with point set m1. m1 and m2 must contain the exact same
landmarks or points in the same order. Points present in m2 but not m1 should be NA in m1. They do
not need to be NA in m2; all translations and rotations will be applied to all points in m2 even though
only shared points will be used in the alignment.

The function first centers the centroid m2 about the centroid of m1. The function svd() is then used
to find the 3D rotation matrix that optimally aligns m2 to m1 based on common points. The positions
of points in m2 relative to one another are unchanged. Thus, optimal rotation is constrained to
already translated point sets. Depending on the point sets, a better alignment may be possible by
allowing translation and rotation to be optimized simultaneously.

This function is called by unifyLandmarks to align landmark sets and by dltTestCalibration to
test accuracy in reconstructed calibration grids.

Value

m2 after alignment.

Note

Modified from unifyVD() by Annat Haber.

Author(s)

Annat Haber, Aaron Olsen

50 gridPointsFit

References

Rohlf, F.J. (1990) "Chapter 10. Rotational fit (Procrustes) Methods." Proceedings of the Michigan
Morphometrics Workshop. Ed. F. James Rohlf and Fred L. Bookstein. The University of Michigan
Museum of Zoology, 1990. 227–236. Info page at lib.umich.edu

See Also

unifyLandmarks

Examples

MAKE MATRIX OF 3D POINTS
m1 <- matrix(c(0,0,0, 1,3,2, 4,2,1, 5,5,3, 1,4,2, 3,6,4), nrow=6, ncol=3)

COPY TO M2
m2 <- m1

MAKE MISSING POINT IN M1
ALTHOUGH NOT USED IN THE ALIGNMENT THE CORRESPONDING POINT
IN M2 IS STILL RETURNED AFTER ALIGNMENT
m1[3,] <- NA

CENTER M2 ABOUT CE
m2 <- m2 %*% rotationMatrixZYX_SM(pi/6, -pi/3, pi/8)

TRANSLATE M2
m2 <- m2 + matrix(c(2,3,4), nrow=6, ncol=3, byrow=TRUE)

ALIGN M2 TO M1
m3 <- findOptimalPointAlignment(m1, m2)

NOTE THAT RETURNED MATRIX IS IDENTICAL TO M1
OF COURSE REAL WORLD DATA WILL HAVE SOME ERROR
m1
m3

gridPointsFit Fits regularly spaced points to a sample line or grid

Description

This function is used to fit a model of points at a regular interval to a sample of points in one
dimension. The function is used by measureCheckerboardSize to estimate the solution to the
inter-point distance of points along a line or in a grid.

Usage

gridPointsFit(p, nx, ny=NULL)

http://deepblue.lib.umich.edu/handle/2027.42/49535

gridPointsFit 51

Arguments

p The parameters defining the regular point distribution. When nx is NULL, p is of
length 2. When nx is non-NULL, p is of length 3.

nx The number of points to be created at regular spacing along one dimension.

ny The number of points to be created at regular spacing along a second dimension.

Details

This function is used to fit a model of points at a regular interval to a sample of points in one
dimension. The function is used by measureCheckerboardSize to estimate the solution to the
inter-point distance of points along a line or in a grid. To fit a model to points along lines and grids
in two dimensions, each dimension is fit separately. A best fit estimate of the true interval between
points can then be calculated from the optimized parameters. See the examples below for how to
use gridPointsFit() to estimate the inter-point intervals of line and grid points.

Value

a vector of length nx*ny.

Author(s)

Aaron Olsen

See Also

measureCheckerboardSize

Examples

ESTIMATE LINE INTER-POINT INTERVAL
GENERATE POINTS AT A REGULAR INTERVAL WITH NORMAL, RANDOM VARIATION
pts <- cbind((1:500) + rnorm(500, sd=1), (1:500) + rnorm(500, sd=1))

FIND THE MEAN SUCCESSIVE POINT-TO-DISTANCE
NOTE THAT THIS CONSISTENTLY OVERESTIMATES THE TRUE INTERVAL
mean(sqrt(rowSums((pts[2:nrow(pts),] - pts[1:(nrow(pts)-1),])^2)))

FIT A REGULARLY SPACED POINTS MODEL TO EACH DIMENSION OF THE POINTS MATRIX
fit_x <- nlminb(start=c(pts[1, 1], pts[2, 1]-pts[1, 1]),

objective=gridPointsFitError, nx=nrow(pts), points=pts[, 1])
fit_y <- nlminb(start=c(pts[1, 2], pts[2, 2]-pts[1, 2]),

objective=gridPointsFitError, nx=nrow(pts), points=pts[, 2])

FIND THE BEST FIT INTER-POINT DISTANCE
MORE ACCURATELY RECOVERS TRUE INTERVAL
sqrt(fit_x$par[2]^2 + fit_y$par[2]^2)

ESTIMATE REGULAR GRID SQUARE SIZE

52 imagePlaneGridTransform

GENERATE A REGULAR GRID WITH NORMAL, RANDOM VARIATION
corners <- cbind(

rep(1:20, 20) + rnorm(20^2, sd=0.1),
c(t(matrix(1:20, nrow=20, ncol=20))) + rnorm(20^2, sd=0.1))

FIT A REGULARLY SPACED POINTS MODEL TO EACH DIMENSION OF THE POINTS MATRIX
fit_x <- nlminb(

start=c(corners[1, 1], corners[2, 1]-corners[1, 1], 0),
objective=gridPointsFitError, points=corners[, 1], nx=20, ny=20)

fit_y <- nlminb(
start=c(corners[1, 2], corners[2, 2]-corners[1, 2], 0),
objective=gridPointsFitError, points=corners[, 2], nx=20, ny=20)

FIND THE BEST FIT INTER-POINT DISTANCE (SQUARE SIZE)
sqrt(fit_x$par[2]^2 + fit_y$par[2]^2)

imagePlaneGridTransform

Performs image perspective transformations to a grid

Description

This function takes parameters describing a 3D planar grid projected onto a 2D image plane and
returns a grid of specified dimensions. Users will probably not call this function directly. Rather, it
is used by resampleGridImagePoints to produce grid points with the same transformations as an
imaged grid but with fewer points.

Usage

imagePlaneGridTransform(p, nx, ny)

Arguments

p a vector of 12 grid parameters. The first eight values are the x,y-coordinates of
the four grid corners (x1, y1, x2, y2, etc.) and the last four values are transfor-
mation parameters for slope and interpoint spacing.

nx the number of points along the first dimension. Note that although the grid can
have a different number of rows than columns, the grid units themselves should
be square (of uniform size in both dimensions).

ny the number of points along the second dimension.

Details

When taking a photo of planar grid points (such as the internal corners of a checkerboard pattern)
arbitrarily oriented in 3D space, the distribution of grid points in a 2D photograph will reflect several
transformations. The grid may be translated to any position within the image plane and rotated by
any angle. Additionally, if the grid plane is not parallel to the image plane, perspective effects will

imagePlaneGridTransform 53

cause points further away to appear closer together. When arbitrary 3D position and perspective
effects are combined, the transformation of a planar grid can be quite extreme (see example).

imagePlaneGridTransform() takes 12 parameters describing these effects and applies them to a
grid of the specified dimensions, returning the transformed grid points. The first eight parameters
are the x,y-coordinates of the four grid corners (x1, y1, x2, y2, etc.). The ninth and tenth parame-
ters describe how interpoint spacing changes from row-to-row and column-to-column, respectively.
This is the a parameter in the function quadraticPointsOnInterval. A value of zero indicates
uniform spacing between consecutive points across all rows while values less or greater than zero
indicates points that become closer together or further apart from one row or column to the next. The
eleventh and twelfth parameters are analogous to the ninth and tenth parameters but describe how
spacing changes between rows and columns instead of between points. These last two parameters
are also the a parameter in the function quadraticPointsOnInterval.

Currently, imagePlaneGridTransform() does not currently account for lens distortion (e.g. barrel,
pincushion, etc.). If distortion is significant, users should undistort the photographs prior to using
imagePlaneGridTransform(). It is hoped that future versions will include additional parameters
to account for lens distortion.

Users will probably not call imagePlaneGridTransform() directly. In this package, this function
is used by resampleGridImagePoints to both fit transformation parameters to a matrix of imaged
grid points and to produce a transformed grid consisting of fewer points. In this way, fewer points
(but representing the same amount of information) can be used in more computationally intensive
steps.

Value

a matrix of transformed grid points.

Author(s)

Aaron Olsen

See Also

resampleGridImagePoints, quadraticPointsOnInterval, imagePlaneGridTransformError

Examples

SET GRID PARAMETERS
THE FIRST 8 NUMBERS ARE CORNERS
THE LAST 4 NUMBERS ARE TRANSFORMATION PARAMETERS
p <- c(3656, 379, 707, 264, 383, 1034, 3984, 1164, 63.772, -25.211, -0.818, -3.339)

CREATE TRANSFORMED GRID
grid <- imagePlaneGridTransform(p=p, nx=21, ny=14)

PLOT GRID
plot(grid)

MARK CORNERS OF GRID FROM p
points(matrix(p[1:8], nrow=4, ncol=2, byrow=TRUE), col='red', lwd=2, cex=1.5)

54 landmarkListToMatrix

imagePlaneGridTransformError

Returns imagePlaneGridTransform error

Description

Returns the mean error between a matrix of grid points and a matrix of transformed grid points
(produced by imagePlaneGridTransform). This function is called internally by the function
resampleGridImagePoints in evaluating the goodness of fit between imaged grid points and grid
points produced by an image perspective model.

Usage

imagePlaneGridTransformError(p, nx, ny, grid)

Arguments

p a vector of 12 grid parameters (see imagePlaneGridTransform).

nx the number of points along the first dimension.

ny the number of points along the second dimension.

grid a matrix of grid points to be compared against the model grid points.

Value

the mean error.

Author(s)

Aaron Olsen

See Also

imagePlaneGridTransform, resampleGridImagePoints

landmarkListToMatrix Converts a landmark list to a landmark matrix

Description

Converts a landmark list to a landmark matrix. The landmark matrix is identical to the matrix that
would be returned if the landmark files were sent directly to readLandmarksToMatrix.

Usage

landmarkListToMatrix(lm.list)

landmarkMatrixToList 55

Arguments

lm.list a landmark list. See readLandmarksToList.

Value

a landmark matrix.

Author(s)

Aaron Olsen

See Also

readLandmarksToList, readLandmarksToMatrix

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILES TO LOAD - TWO DIFFERENT 3D POINT SETS
file <- paste0(fdir, "lm_3d_even_a", 1:2, ".txt")

READ LANDMARKS INTO A LIST
lm.list <- readLandmarksToList(file=file, row.names=1)

CONVERT LANDMARK LIST TO LANDMARK MATRIX
lm.matrix <- landmarkListToMatrix(lm.list)

lm.matrix

landmarkMatrixToList Converts a landmark matrix to a landmark list

Description

Converts a landmark matrix to a landmark list.

Usage

landmarkMatrixToList(lm.matrix, semilandmark.pattern='[0-9]+$', k=ncol(lm.matrix))

Arguments

lm.matrix a landmark matrix. See readLandmarksToMatrix.
semilandmark.pattern

a regular expression pattern passed to sub() for identifying and grouping curve
points. The default is landmark names ending in one or more numbers. To
disable grouping, set to code”.

k the number of dimensions of the landmark data.

56 measureCheckerboardSize

Value

a landmark list.

Author(s)

Aaron Olsen

See Also

landmarkListToMatrix, readLandmarksToList, readLandmarksToMatrix

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILES TO LOAD - TWO DIFFERENT 3D POINT SETS
file <- paste0(fdir, "lm_2d_a1_v", 1:2, ".txt")

READ LANDMARKS INTO A LIST
lm.matrix <- readLandmarksToMatrix(file=file, row.names=1)

CONVERT LANDMARK LIST TO LANDMARK MATRIX
lm.list <- landmarkMatrixToList(lm.matrix, k=2)

CAN BE CONVERTED BACK INTO MATRIX
RECOVERING THE SAME MATRIX AS THE ORIGINAL
lm.matrix <- landmarkListToMatrix(lm.list)

measureCheckerboardSize

Estimates checkerboard square size

Description

This function estimates the square size of a checkerboard, optionally scaling this to real-world units
(e.g. millimeters).

Usage

measureCheckerboardSize(corner.file, nx, ruler.file=NULL, ruler.pt.size=NULL)

S3 method for class 'measureCheckerboardSize'
summary(object, ...)

measureCheckerboardSize 57

Arguments

corner.file a file path to text file containing a matrix of internal corners from a checkerboard
pattern (a point grid) or the matrix itself. The text file must not have row names
or a header.

nx the number of internal corners in the first dimension along which the checker-
board points are ordered.

ruler.file a file path to a text file containing a matrix of evenly spaced points digitized
along a ruler (or comparable standard) or the matrix itself. The text file must
have row names but no header or column names.

ruler.pt.size the size of the spacing between points in the ruler.file matrix in real world
units. This can be numeric or alphanumeric including the unit (see "Details").

object a list of class "measureCheckerboardSize".

... further arguments passed to other methods.

Details

corner.file can be a file path to a text file containing a matrix of internal corners from a checker-
board pattern (ie points in a regular grid pattern) or the matrix itself. These can be automatically
detected from a JPEG image using the function findCheckerboardCorners. The function first fits
a camera perspective model to the corner points to robustly compare the opposing side lengths of
the grid (see resampleGridImagePoints). These are returned as side.lengths and are displayed
when calling the summary method. Opposing sides that differ greatly in length indicate that the
grid was not completely flat relative to the image plane when it was photographed.

measureCheckerboardSize() then estimates the checkerboard or grid square size by fitting a sim-
ple grid model to the points (see gridPointsFit). The best fitting parameters are used to estimate
the square size. Model fitting is more robust to noise in the grid point coordinates than taking the
mean inter-point distance, for instance. The model goodness of fit can be assessed by the returned
elements dist.corner.fit.mean and dist.corner.fit.sd.

ruler.file can be a file path to a text file containing a matrix of points at equal intervals along
a ruler or the matrix itself. These ruler points can be digitized from an image using the function
digitizeImage. If ruler.file is NULL, then only the checkerboard square size (in the input units)
is returned. All other return values are NULL. If ruler.file is non-NULL, the distance between
consecutive ruler points (the ruler point interval) is estimated by fitting a model of points at a regular
interval along a line (see gridPointsFit). The goodness of fit for the ruler point model can be
assessed by the returned elements dist.ruler.fit.mean and dist.ruler.fit.sd. The estimated
ruler point interval is used to scale the checkerboard square size to the units of ruler.pt.size.

ruler.pt.size can be numeric or alphanumeric (including the units). For example, '1', '1 mm'
and '1.0 mm' are all possible inputs to ruler.pt.size. The units are automatically extracted and
only used in the summary function to help interpret the function results. measureCheckerboardSize()
also returns the estimated real-world size of a pixel. This represents the resolution of the camera at
the surface of the checkerboard pattern.

Value

a list of class "measureCheckerboardSize" with the following elements:

58 measureCheckerboardSize

side.lengths the lengths of the four sides of the grid estimated by camera perspective model
fitting.

dist.corner.fit.mean

the mean difference between the corner points corner.file and those gener-
ated assuming the best-fit simple grid model.

dist.corner.fit.sd

the standard deviation in the difference between the corner points corner.file
and those generated assuming the best-fit model.

square.size.px the best-fit estimate of the checkerboard square size in pixels.
square.size.rwu

the best-fit estimate of the checkerboard square size in real-world units. NULL if
ruler.file is NULL.

dist.ruler.fit.mean

the mean difference between the ruler.file matrix and those generated as-
suming the best-fit model. NULL if ruler.file is NULL.

dist.ruler.fit.sd

the standard deviation in the difference between the ruler.file matrix and
those generated assuming the best-fit model. NULL if ruler.file is NULL.

ruler.size.px the best-fit estimate of the distance between consecutive points on the ruler (in
pixels) in the plane of the imaged grid. NULL if ruler.file is NULL.

rwu.per.px the real-world size of a pixel in the image (the length of one side of the pixel) in
the plane of the imaged grid. NULL if ruler.file is NULL.

unit if ruler.pt.size includes a unit, the unit. NULL if ruler.file is NULL.

Author(s)

Aaron Olsen

See Also

drawCheckerboard, resampleGridImagePoints, gridPointsFit, digitizeImage

Examples

GET THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILE PATH TO CHECKERBOARD POINTS FILE
corner_file <- paste0(fdir, "checker_21_14_200(9).txt")

NUMBER OF INTERNAL CORNERS IN THE HORIZONTAL DIMENSION
nx <- 21

NUMBER OF INTERNAL CORNERS IN THE VERTICAL DIMENSION
ny <- 14

SET FILE PATH TO RULER POINTS FILE
ruler_file <- paste0(fdir, "ruler_21_14_200(9).txt")

orthogonalProjectionToLine 59

ESTIMATE SQUARE SIZE
square_size <- measureCheckerboardSize(corner.file=corner_file, nx=nx)

PRINT SUMMARY
summary(square_size)

ESTIMATE SQUARE SIZE AND SCALE WITH RULER POINTS
square_size_scale <- measureCheckerboardSize(corner.file=corner_file, nx=nx,

ruler.file=ruler_file, ruler.pt.size='1 mm')

PRINT SUMMARY
summary(square_size_scale)

Not run:

INPUT MATRICES DIRECTLY
READ POINTS INTO MATRICES
corner_pts <- as.matrix(read.table(corner_file))
ruler_pts <- as.matrix(read.table(ruler_file, row.names=1))

ESTIMATE SQUARE SIZE AND SCALE WITH RULER POINTS
square_size_scale <- measureCheckerboardSize(corner.file=corner_pts, nx=nx,

ruler.file=ruler_pts, ruler.pt.size='1 mm')

End(Not run)

orthogonalProjectionToLine

Finds the orthogonal projection of a point onto a line

Description

Given a 2D or 3D input point p and a 2D or 3D line, this function finds a point on the line at a
minimum distance from point p. This is equivalent to the orthogonal projection of point p onto the
line.

Usage

orthogonalProjectionToLine(p, l1 = NULL, l2 = NULL)

Arguments

p a vector of a single point or a matrix of multiple points

l1 a vector describing a point on a line or a list with line constants

l2 if l1 is a point, a second point on a line

60 orthogonalProjectionToLine

Details

If p is a vector, the function returns a point as a vector of the same dimension. If p is a matrix, each
row is treated as a point and the orthogonal projection is returned for each. These points are returned
as a matrix (of the same dimension), each row being the orthogonal projection of the corresponding
row in p.

The line input can be defined using one of three standard ways: two points on the line, ’m’ and ’b’
constants (slope and y-intercept) and direction numbers ’abc’ (a vector parallel to a line through the
origin). If l1 is a vector, this is taken as one point on the line and l2 must be a second point on the
line. If l1 is a list, the named objects must correspond to one of these three line definitions. Two
points on the line are defined as l1$l1 and l1$l2. ’m’ and ’b’ are defined as l1$m and l1$b. And
the direction numbers ’abc’ are defined as l1$a, l1$b and l1$c.

Value

a vector if p is a vector and a matrix if p is a matrix. The returned vector or matrix will be of the
same dimensions as p.

Author(s)

Aaron Olsen

References

http://paulbourke.net/geometry/pointlineplane/

See Also

distancePointToLine

Examples

POINT INPUT: 2D VECTOR
LINE INPUT: l1, l2
LINE THROUGH THE ORIGIN WITH SLOPE OF ONE
orthogonalProjectionToLine(p=c(0, 5), l1=c(0, 0), l2=c(3, 3))

POINT INPUT: 2D VECTOR
LINE INPUT: LIST WITH l1, l2
orthogonalProjectionToLine(p=c(0, 5), l1=list(l1=c(0, 0), l2=c(3, 3)))

POINT INPUT: 2D VECTOR
LINE INPUT: LIST WITH m, b
LINE WITH Y-INTERCEPT AT ONE AND SLOPE OF ONE
orthogonalProjectionToLine(p=c(0, 5), l1=list(m=1, b=0))

POINT INPUT: 2D VECTOR
LINE INPUT: LIST WITH VECTOR PARALLEL TO LINE THROUGH THE ORIGIN
LINE THROUGH THE ORIGIN WITH SLOPE OF ONE
orthogonalProjectionToLine(p=c(0, 5), l1=list(a=1, b=-1, c=0))

http://paulbourke.net/geometry/pointlineplane/

pointsAtEvenSpacing 61

POINT INPUT: 2D VECTOR
LINE INPUT: SAME AS PREVIOUS BUT WITH Z-AXIS COMPONENT
orthogonalProjectionToLine(p=c(0, 5), l1=list(a=1, b=-1, c=1))

POINT INPUT: 3D VECTOR
LINE INPUT: l1, l2
orthogonalProjectionToLine(p=c(0, 5, 0), l1=list(l1=c(0, 0, 0), l2=c(3, 3, 3)))

POINT INPUT: 2D MATRIX
LINE INPUT: l1, l2
p <- matrix(c(0,5, 0,10), nrow=2, byrow=TRUE)
orthogonalProjectionToLine(p=p, l1=list(l1=c(0, 0), l2=c(3, 3)))

POINT INPUT: 3D MATRIX
LINE INPUT: l1, l2
p <- matrix(c(0,5,0, 0,10,0), nrow=2, byrow=TRUE)
orthogonalProjectionToLine(p=p, l1=list(l1=c(0, 0, 0), l2=c(3, 3, 3)))

pointsAtEvenSpacing Generates evenly spaced points from point matrix

Description

This function takes a matrix of points, calculates the cumulative distance from start to end and then
uses the cumulative distance and intermediate points to generate evenly spaced points between the
start and end points. Linear interpolation is used between neighboring points, so the returned points
will either coincide with the input points or fall on straight lines between consecutive points.

Usage

pointsAtEvenSpacing(x, n)

Arguments

x a matrix or landmark list of points of any number of dimensions. If input is a
list, only the first element is used.

n the number of points to generate, including the start and end points.

Details

The function first removes all NA values. Then, the cumulative distance is calculated from the first
to last point. The last value is taken as the total length of the line or curve, defined by matrix x. This
total length is divided by n-1 to find a uniform segment length that will separate n evenly spaced
points, including the first and last non-NA values in x.

The function iterates through x, finding the point that is at a distance equal to or just less than the
segment length from the previous point. If the selected point is at a distance less than the segment
length from the previous point, a point is chosen on the line between this point and the next to

62 pointsAtEvenSpacing

complete the full segment length. In this way, returned points will either coincide with the input
points or fall on straight lines between consecutive points.

In the simplest implementation, pointsAtEvenSpacing() can be used for linear interpolation (see
first example below). Define the start and end points in x as a two-row matrix and then select the
number of points to include on the line.

If x represents densely sampled points on a curve (see the second example below) and if the curve
can be approximated by straight lines between consecutive points, then pointsAtEvenSpacing()
will provide comparable results to other methods, such as function fitting. This is especially useful
for curves not easily fit by a mathematical function.

Value

a matrix of n points. The start and end points correspond to the first and last non-NA values in x.

Author(s)

Aaron Olsen

See Also

imagePlaneGridTransform, resampleGridImagePoints, imagePlaneGridTransformError

Examples

LINEAR INTERPOLATION
CREATE A MATRIX OF TWO POINTS
two_points <- matrix(c(0, 10, 0, 10), nrow=2, ncol=2)

GENERATE 20 POINTS ALONG THE LINE
pts_aes <- pointsAtEvenSpacing(x=two_points, n=20)

PLOT THE LINE
plot(two_points, type='l')

AND THE POINTS ALONG THE LINE
points(pts_aes, col='red')

POINTS ALONG A CURVE
GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

GET 3D LANDMARK AND CURVE POINT FILE AND READ INTO A MATRIX
lm.matrix <- readLandmarksToMatrix(paste0(fdir, "lm_3d_a2.txt"), row.names=1)

PLOT THE LANDMARKS AND CURVE POINTS
pts <- na.omit(lm.matrix)
r <- abs(apply(pts, 2, 'max') - apply(pts, 2, 'min'))

Not run:
PLOT USING THE RGL PACKAGE

quadraticPointsOnInterval 63

plot3d(pts, aspect=c(r[1]/r[3], r[2]/r[3], 1), size=0.5)

End(Not run)

CONVERT LANDMARKS TO LIST FORMAT TO EASILY ACCESS CURVE POINTS
lm.list <- landmarkMatrixToList(lm.matrix)

CREATE 10 EVENLY SPACED POINTS ALONG ONE CURVE
lm.list$pterygoid_crest_R <- pointsAtEvenSpacing(x=lm.list$pterygoid_crest_R, n=10)

CREATE 15 ALONG ANOTHER
lm.list$tomium_R <- pointsAtEvenSpacing(x=lm.list$tomium_R, n=15)

CONVERT BACK TO MATRIX
lm.matrix <- landmarkListToMatrix(lm.list)

Not run:
PLOT NEW EVENLY SPACED POINTS WITH PREVIOUS POINTS
plot3d(lm.matrix, add=T, size=4, col='red')

End(Not run)

quadraticPointsOnInterval

Generates points along an interval with quadratic parameterization

Description

Generates a specified number of points on an interval, applying a quadratic function to interpoint
spacing. This function is called internally by imagePlaneGridTransform.

Usage

quadraticPointsOnInterval(t1, t2, n, a)

Arguments

t1 the starting value of the returned points.

t2 the final value of the returned points.

n the number of points.

a a quadratic parameter describing how interpoint spacing changes over the inter-
val.

Details

The parameter a describes how strong of a skew to place on the interpoint distances over the interval
specified by t1 and t2. When a=0, the points are spaced uniformly across the interval. When a>0
or a<0, points become further apart or closer together along the interval, respectively, at the rate of
a quadratic function (see "Examples").

64 readBezierControlPoints

Value

a vector of points.

Author(s)

Aaron Olsen

See Also

imagePlaneGridTransform, resampleGridImagePoints, imagePlaneGridTransformError

Examples

GENERATE EVENLY SPACED POINTS ON INTERVAL
q0 <- quadraticPointsOnInterval(t1=0, t2=1, n=10, a=0)

MAKE POINTS PROGRESSIVELY FURTHER APART ALONG INTERVAL
qgt0 <- quadraticPointsOnInterval(t1=0, t2=1, n=10, a=1)

MAKE POINTS PROGRESSIVELY CLOSER TOGETHER ALONG INTERVAL
qlt0 <- quadraticPointsOnInterval(t1=0, t2=1, n=10, a=-1)

PLOT POINTS ON THREE SEPARATE LINES
plot(q0, rep(0, 10))
points(qgt0, rep(0.5, 10), col='green')
points(qlt0, rep(-0.5, 10), col='blue')

readBezierControlPoints

Reads a file of Bezier control points

Description

Reads Bezier control points from a file or files into a list grouped first by curve name and then by the
index of the file from which they were read. A separate function from the standard read functions
is necessary since the number of control points may differ for each Bezier curve or spline and, thus,
the number of values may differ by row.

Usage

readBezierControlPoints(file, ndim = 2, ...)

Arguments

file file(s) to be read.

ndim the number of dimensions of the Bezier curve points

... further arguments to be passed to readLines().

readCheckerboardsToArray 65

Details

The rows of each file must start with the name of the curve or spline followed by the control
points, all separated by tabs. The control points are listed first by dimension and then by point
(x1\ty1\tx2\ty2 etc.). For example, three Bezier points starting with [100, 200] would be on one
line as follows, with \t replaced by tabs.

tomium_R\t100\t200\t300\t100\t400\t300

Each Bezier curve or spline is first grouped into a list by curve name (e.g. list$tomium_R) and
then by the index of the file from which it was read (e.g. list$tomium_R[[1]] from the first file).
The control points are made into a matrix where the number of columns corresponds to ndim. The
Bezier list structure is similar to the landmark list structure created by readLandmarksToList and
can be used to generate points along a Bezier curve or spline. See the R package bezier for more
details.

Value

a list of Bezier control points grouped by name and file number.

Author(s)

Aaron Olsen

See Also

readLandmarksToArray, readCheckerboardsToArray, readLandmarksToList,

readLandmarksToMatrix

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

FILE TO READ
file <- paste0(fdir, "bezier_control_points_a2_v", 1:2, ".txt")

FILE TO READ
bcp <- readBezierControlPoints(file=file)

readCheckerboardsToArray

Reads file(s) containing grid points into an array

Description

This function reads grid point matrices into an array from a matrix files allowing for point order
reversals along rows, columns, or both.

https://cran.r-project.org/package=bezier

66 readCheckerboardsToArray

Usage

readCheckerboardsToArray(file, nx, ny, col.reverse = FALSE, row.reverse = FALSE,
na.omit=FALSE, ...)

Arguments

file a matrix of file paths to be read into an array. Each file path should correspond
to a file containing a single landmark matrix.

nx the number of internal corners in the first dimension along which grid points are
ordered.

ny the number of internal corners in the second dimension along which grid points
are ordered.

col.reverse a logical indicating whether the column order of grid points should be reversed.
Can be either single value, a vector or a matrix.

row.reverse a logical indicating whether the row order of grid points should be reversed. Can
be either single value, a vector or a matrix.

na.omit whether landmarks with NA values in any file should be omitted.

... further arguments to be passed to readLandmarksToArray().

Details

When using planar grid points to find an optimal stereo calibration, ensuring that the grid point
coordinates are listed in the same order from different camera views is challenging. When cameras
are viewing the same points from different orientations (e.g. one camera is upside-down relative to
another) and when the checkerboard itself is in different orientations, columns and/or rows in one
grid point matrix could be flipped relative to another camera view.

readCheckerboardsToArray() enables correction for this by allowing users to specify whether the
rows, columns or both should be reversed after the points are read from a file. If the checkerboard
changes orientation within a single camera view it could be necessary to specify row and/or column
reversals individually for each file. col.reverse and row.reverse can both be either a single log-
ical, a vector of logicals or a matrix of logicals. This allows col.reverse and row.reverse to be
specified for all files in a vector or matrix or for each file separately. Vector inputs of col.reverse
and row.reverse with a matrix input of file will be applied to each column of file (see last
example below).

Row reversal means that point order is reversed along the second dimension (the order along the
first dimension is kept intact). Column reversal means that point order is reversed along the first
dimension (the order along the second dimension is kept intact). Setting both col.reverse and
row.reverse to TRUE is equivalent to reversing the order of points from start to end (row and col-
umn structures have no effect). These operations are perhaps best understood through the examples
below. For an example of the grid point ordering scheme, also see distanceGridUnits.

Value

an array of three or four dimensions.

readLandmarksToList 67

Author(s)

Aaron Olsen

See Also

readLandmarksToArray, readLandmarksToList, readLandmarksToMatrix

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET NUMBER OF ROWS AND COLUMNS
THESE ARE THE NUMBER OF INTERNAL CORNERS, NOT THE NUMBER OF SQUARES
nx <- 4
ny <- 3

SET FILE PATHS
file <- matrix(c(paste0(fdir, "rcta_a", 1:3, "_v1.txt"),

paste0(fdir, "rcta_a", 1:3, "_v2.txt")), ncol=2)

READ MATRIX OF FILES
REVERSE COLUMNS IN FIRST COLUMN OF FILE MATRIX
REVERSE ROWS IN ALL FILES
readCheckerboardsToArray(file, nx, ny, col.reverse=c(TRUE, FALSE), row.reverse=TRUE)

readLandmarksToList Reads landmark file(s) into a list

Description

Reads landmarks from one or more files into a list. This function is useful when dealing with curves
(semilandmarks) since curve points can be grouped by curve name for other operations.

Usage

readLandmarksToList(file, semilandmark.pattern = "[0-9]+$", ...)

Arguments

file a single landmark file or vector of landmark files to be read. Each file should
contain a single landmark matrix with row names.

semilandmark.pattern

a regular expression pattern passed to sub() for identifying and grouping curve
points. The default is landmark names ending in one or more numbers.

... further arguments to be passed to read.table().

68 readLandmarksToList

Details

This function will read a landmark matrix from one or more files and use the row names in each
matrix to match corresponding landmarks into list elements, ordered first by the landmark name
and then numbered by the index of the file (in file) from which the landmark was read. Landmark
lists are the required input format for dltMatchCurvePoints. Landmark lists are also one of three
possible input formats for dltReconstruct and allow for curve points to be easily pulled out of a
landmark set for curve fitting.

semilandmark.pattern is a regular expression passed to sub() to identify semilandmarks (curve
points). By default, the regular expression "[0-9]+$" identifies row names that end in more than
one digit (e.g. ’tomium_R004’) as curve points. sub() removes the part of the string identi-
fied by semilandmark.pattern in order to group all curve points under one curve name (e.g.
’tomium_R004’ would be grouped under ’tomium_R’). Curve grouping can be turned off by set-
ting semilandmark.pattern to "". Once grouped, curve points are sorted only by the numeric
portion of their row name (identified by semilandmark.pattern using regexpr). Preceding zeros
are not necessary. For example, after sorting, the order of the following curve points would be:
tomium_R1, tomium_R02, tomium_R9, tomium_R10. Note that if these were sorted simply by
row name, the order would be: tomium_R02, tomium_R1, tomium_R10, tomium_R9. Landmarks
missing from one or more files are given the value NULL.

The landmark files are read by read.file() and should thus conform to all requirements of
read.file(). Arguments for read.file() can be passed through readLandmarksToList() (e.g.
header, row.names, etc.).

Value

a landmark list.

Author(s)

Aaron Olsen

See Also

readLandmarksToArray, readLandmarksToMatrix, readCheckerboardsToArray,

dltMatchCurvePoints

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILES TO LOAD - TWO DIFFERENT 3D POINT SETS
file <- paste0(fdir, "lm_3d_even_a", 1:2, ".txt")

READ LANDMARKS INTO A LIST
lm.list <- readLandmarksToList(file=file, row.names=1)

CURVE POINTS
CURVE POINTS ARE ABSENT FROM FIRST POINT SET
lm.list[['tomium_R']]

readLandmarksToMatrix 69

LANDMARKS PRESENT IN BOTH POINT SETS
lm.list[['quadrate_jugal_R']]

LANDMARK MISSING FROM SECOND POINT SET
lm.list[['foramen_magnum_inf']]

readLandmarksToMatrix Reads a landmark file or files into a matrix

Description

Reads landmarks from one or more files into a matrix. A single file or vector of files can be input.
If more than one file is input, each matrix will be appended to the previous one with matching
landmarks in the same row.

Usage

readLandmarksToMatrix(file, na.omit = FALSE, ...)

Arguments

file a single landmark file or vector of landmark files to be read. Each file should
contain a single landmark matrix.

na.omit whether landmarks with NA values in any file should be omitted.

... further arguments to be passed to read.table().

Details

This function will read a landmark matrix from one or more files and use the row names in each
matrix to match corresponding landmarks into a single matrix, filling in missing landmarks with
NA. The rows correspond to landmarks and the columns correspond to the number of landmark
dimensions (2 for 2D landmarks, 3 for 3D landmarks, etc.). Each landmark matrix is appended as
new columns onto the existing matrix. So, if three, 2D landmark files are input the resulting matrix
would have six columns.

The landmark files are read by read.file() and should thus conform to all requirements of
read.file(). Arguments for read.file() can be passed through readLandmarksToList() (e.g.
header, row.names, etc.). All landmark matrices must have row names.

Value

a landmark matrix

Author(s)

Aaron Olsen

70 readShapes

See Also

readLandmarksToList, readLandmarksToArray, readCheckerboardsToArray

Examples

GET FILE DIRECTORY FOR PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET FILES TO LOAD
file <- paste0(fdir, "lm_2d_a3_v", 1:2, "_wna.txt")

LOAD FILES INTO A MATRIX
readLandmarksToMatrix(file=file, row.names=1)

LOAD FILES INTO A MATRIX OMITTING NAS
readLandmarksToMatrix(file=file, row.names=1, na.omit=TRUE)

readShapes Reads a StereoMorph shape file

Description

This function reads digitized shape and scaling data from a StereoMorph shape file or files into a
list structure.

Usage

readShapes(file, fields=NULL)

Arguments

file A shape file, a vector of shape files or a folder containing shape files to be read.

fields Objects to be returned from the shape file. If NULL, all objects in the file will be
returned.

Details

The digitizeImage function makes it possible to save shape and scaling data into a single shape
file. This shape file has an XML-like format that allows the readShapes() function to read multiple
object types (including vectors, matrices and lists) into a list structure using a generalized routine.
All these objects are saved to a list as several elements. The particular elements in the output list
will depend on which objects are present in the file. If the object is not present in the file, a call to
that object will return NULL. The contents will also differ if multiple files are input. For instance, if
one file is input landmarks.pixel will be a matrix but if multiple files are input it will be an array.

The output of print() on the entire output list is formatted for readability given the potentially
large matrices contained within the list.

readShapes 71

Value

a list of class "shapes" containing any number of the following elements:

image.name A vector of image names.

image.id A vector of image IDs.

scaling A vector of the scaling (real-world units per pixel) of the image.

scaling.units A vector of the units of scaling.

ruler.pixel A vector of the interval of the digitized ruler points in pixels.

ruler.interval A vector of the interval of the digitized ruler points in real-world units.

checkerboard.nx

A vector of the number of internal corners of a checkerboard pattern along one
dimension.

checkerboard.ny

A vector of the number of internal corners of a checkerboard pattern along the
other dimension.

square.pixel A vector of the best-fit checkerboard square size in pixels.

square.size A vector of the best-fit checkerboard square size in real-world units.

landmarks.pixel

A matrix or array of landmark coordinates in pixels.

landmarks.scaled

A matrix or array of scaled landmark coordinates.

ruler.points A matrix or array of ruler points in pixels.

checker.pixel A matrix or array of checkerboard points in pixels.

curves.control A list of Bezier curve control points in pixels.

curves.pixel A list of Bezier curve points in pixels.

curves.scaled A list of scaled Bezier curve points.

If any of the above objects are absent from the shape file they will be NULL.

Author(s)

Aaron Olsen

See Also

digitizeImage

72 reconstructStereoSets

reconstructStereoSets 3D reconstruction of landmark and curves from stereo coordinates

Description

This function reconstructs and unifies landmarks and curves from multiple stereo sets. This function
is a wrapper integrating dltReconstruct, dltMatchCurvePoints, and unifyLandmarks.

Usage

reconstructStereoSets(shapes.2d, shapes.3d, cal.file, set.names = NULL,
min.common = 3, unify = TRUE, reconstruct.curves = TRUE,
even.spacing = NULL, print.progress = TRUE, verbose = FALSE,
update.only = FALSE, min.direct.tangency = 25, min.fill.tangency = 10,
epi.err.weight = 0, rec.err.weight = 1, curves.as.landmarks = FALSE,
curve.name.width = 5)

Arguments

shapes.2d file path to a folder containing 2D (digitized) shape files, separated by view into
different folders.

shapes.3d file path to a folder where the 3D shape files will be saved (if it does not already
exist one will be created).

cal.file file path to calibration file created by calibrateCameras.

set.names vector of object or specimen names to be processed by the function. If NULL
(default) all the files in shapes.2d will be processed.

min.common integer indicating the minimum number of common points required for unifica-
tion of landmark sets.

unify logical indicating whether to unify different aspects of the same object or spec-
imen. If sets are to be unified, the filenames should end in ’_a#’ (e.g. ’_a1’,
’_a2’, etc.) to indicate different aspects of the same object.

reconstruct.curves

logical indicating whether to reconstruct curves.

even.spacing specifies the number of evenly spaced points to be on each curve. This can
be an integer (if the number of points for all curve(s) is the same), a list (in
which the names of the list elements correspond to the curve names), or a .txt
file containing a two column matrix of curve names and the number of points on
each curve, separated by tabs and without quotes.

print.progress logical indicating whether function processes should be printed to the console.

verbose logical indicating whether print.progress should be detailed.

update.only logical indicating whether function should only reconstruct sets for which the
2D data has been modified. If TRUE the function will not process all files in
shapes.2d, only those which have been modified since the last function call.

reflectMissingLandmarks 73

min.direct.tangency

input parameter passed to dltMatchCurvePoints (see that function’s documen-
tation for details).

min.fill.tangency

input parameter passed to dltMatchCurvePoints (see that function’s documen-
tation for details).

epi.err.weight input parameter passed to dltMatchCurvePoints (see that function’s documen-
tation for details).

rec.err.weight input parameter passed to dltMatchCurvePoints (see that function’s documen-
tation for details).

curves.as.landmarks

logical indicating whether curve points should be saved as landmarks (will be
added to any existing landmarks).

curve.name.width

integer indicating the width of numbers added to the curve name in generating
curve-to-landmark names. If curves.as.landmarks is TRUE, curve landmarks
will be created by adding numbers to the end of the curve name. For example, a
curve.name.width value of 5 would be ’curve_name00001’.

Details

Please see StereoMorph tutorials for step-by-step tutorials on how to use StereoMorph for 2D or
3D shape data collection.

Value

NULL

Author(s)

Aaron Olsen

See Also

calibrateCameras, digitizeImages

reflectMissingLandmarks

Reflects missing landmarks across the plane of symmetry

Description

This function reflects missing bilateral landmarks across the plane of symmetry, optionally averag-
ing left and right landmarks.

https://aaronolsen.github.io/software/stereomorph.html

74 reflectMissingLandmarks

Usage

reflectMissingLandmarks(lm.matrix, left = '(_l|_left)([_]?[0-9]*$)',
right = '(_r|_right)([_]?[0-9]*$)',
left.remove = '\\2', right.remove = '\\2',
left.replace = '_R\\2', right.replace = '_L\\2',
average = FALSE)

S3 method for class 'reflectMissingLandmarks'
summary(object, ...)

Arguments

lm.matrix a 2D or 3D matrix with landmark names as row names.

left a regular expression to identify left landmarks in the row names of lm.matrix.

right a regular expression to identify right landmarks in the row names of lm.matrix.

left.remove an expression for input to the gsub() function indicating which element of left
in parentheses should be removed to create a landmark name that is not side-
specific (see "Details").

right.remove an expression for input to the gsub() function indicating which element of
right in parentheses should be removed to create a landmark name that is not
side-specific (see "Details").

left.replace an expression for input to the gsub() function indicating a replacement string
for left that will turn a left landmark name into a right landmark name (see
"Details").

right.replace an expression for input to the gsub() function indicating a replacement string
for right that will turn a right landmark name into a left landmark name (see
"Details").

average a logical indicating whether bilateral landmarks should be averaged.

object a list of class "reflectMissingLandmarks" (output of this function).

... further arguments passed to or from other methods.

Details

Currently, the function only accepts left/right designations by matching a regular expression to the
row names of lm.matrix. This is preferable since it allows for easier match up between bilat-
eral landmarks. The default regular expression identifies left landmarks by a name ending in "_L",
"_l", "_left" or "_LEFT", optionally followed by numbers. For example, "hamulus_left", "hamu-
lus_L" and "zymgomatic_arch_l012" would all be identified as landmarks on the left side. Similarly,
"hamulus_right", "hamulus_R" and "zymgomatic_arch_r012" would all be identified as landmarks
on the right side. Landmarks not identified as left or right are assumed to fall on the midline.

In order to find corresponding left and right landmarks, the function requires the left.remove and
right.remove arguments. The left.remove and right.remove arguments are passed to the base
function gsub() as the replacement argument. This is used to generate a landmark name that is not
side-specific. For example, "hamulus_left" and "zymgomatic_arch_l012" would become "hamulus"
and "zymgomatic_arch012". These will be reverted to their original names at return.

reflectMissingLandmarks 75

If only a left or right landmark is present in lm.matrix, reflectMissingLandmarks() will cre-
ate new a new row in lm.matrix for the missing, contralateral landmark. Thus, the output ma-
trix could be longer than the input matrix. The arguments left.replace and right.replace
are used to create these new rownames by converting landmark names from left to right or vice
versa. By default, the function replaces the existing side designation with "_L" and "_R". For
instance, "hamulus_left" and "zymgomatic_arch_L012" would become "hamulus_R" and "zymgo-
matic_arch_R012", respectively. None of the names of existing landmarks will be modified. Users
wanting a different left/right scheme can either change the left.replace and right.replace ar-
guments or make sure that all the bilateral landmarks in lm.matrix are represented by both a left
and right landmark (missing values being NA). In this case, left.replace and right.replace will
be ignored and no new landmark names will be created.

Once corresponding right and left landmarks have been identified, the plane of object symmetry is
found as described by Klingenberg et al. (2002). This includes creating two landmark sets, reflect-
ing one set across the xy-plane, swapping left and right landmark names in one set and performing
Procrustes alignment on the two sets. The user then has the option of averaging across the plane
of symmetry. This will cause all bilateral landmarks to be mirror images across the midline plane
and midline landmarks to lie directly in the midline plane. The input orientation of lm.matrix is
maintained. So if average is FALSE, landmarks that were not missing will be unchanged at output
(the new landmarks having been filled in around them). If average is TRUE, the positions of the
non-missing landmarks will have changed due to averaging but will only be shifted slightly from
the original position.

reflectMissingLandmarks() returns an alignment error vector. This is the error (distance) be-
tween a left or right landmark and its contralateral landmark (if present) when reflected across the
midline plane. This is equivalent to the Procrustes alignment error.

Users with landmark names in alternative formats might find it easier to simply add ’_L’ and ’_R’
to the end of left and right landmark names, respectively, rather than re-specifying the regular
expression arguments.

Value

a list of class "reflectMissingLandmarks" with the following elements:

lm.matrix a 2D or 3D matrix of landmarks with missing landmarks reflected. This matrix
could be longer than the input landmark matrix.

align.error a vector of the error (distance) between between a left or right landmark and its
contralateral landmark (if present) when reflected across the plane of symmetry.

Note

This function was modified by A Olsen from the R function OSymm() written by A Haber.

Author(s)

Annat Haber, Aaron Olsen

References

Klingenberg, C.P., Barluengua, M., Meyer, A. (2002) Shape analysis of symmetric structures:
Quantifying variation among individuals and asymmetry. Evolution, 56 (10), 1909–1920.

76 resampleGridImagePoints

See Also

readLandmarksToMatrix, alignLandmarksToMidline

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

GET LANDMARKS
file <- paste0(fdir, "lm_3d_unify.txt")

LOAD FILES INTO A MATRIX
lm.matrix <- readLandmarksToMatrix(file=file, row.names=1)

ALIGN TO MIDLINE
reflect_missing <- reflectMissingLandmarks(lm.matrix=lm.matrix, average=TRUE)

PRINT SUMMARY OF ERRORS
print(summary(reflect_missing))

resampleGridImagePoints

Resamples imaged grid points

Description

This function fits a 12-parameter image perspective model to imaged grid points and uses the model
parameters to produce a grid with the same transformations but consisting of fewer points, effec-
tively "resampling" the number of grid points. In this way, fewer points (but representing the same
amount of information) can be used in more computationally intensive steps such as camera cali-
bration. This function is called by dltCalibrateCameras.

Usage

resampleGridImagePoints(pts, nx, rx, ry, fit.min.break=1,
print.progress = FALSE)

Arguments

pts a matrix of grid points from an image, such as the internal corners of a checker-
board image.

nx the number of points along the first dimension (e.g. this would be the number of
points in each row if points in pts are listed first by row).

rx the re-sampled number of points along the first dimension (corresponding to nx).

ry the re-sampled number of points along the second dimension (e.g. if nx is the
number of points per row, this is the new number of points per column).

resampleGridImagePoints 77

fit.min.break a minimum returned by nlminb() at which resampleGridImagePoints() will
stop iterating to find a better fit.

print.progress whether the model fit error should be printed. Error is in the same units as pts.

Value

a list with the following elements:

pts a matrix of resampled grid points.

error the error (in the same units as pts) between the input pts and the model fit grid
points of the same dimensions.

Author(s)

Aaron Olsen

See Also

imagePlaneGridTransform, readCheckerboardsToArray, imagePlaneGridTransformError,

dltCalibrateCameras

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

GET GRID POINTS
file <- paste0(fdir, "cal_a1_v2.txt")

SET NUMBER OF GRID ROWS AND COLUMNS
nx <- 21
ny <- 14

READ THE GRID POINTS INTO A MATRIX
OUTPUT OF FUNCTION IS AN ARRAY SO WE TAKE THE FIRST ENTRY TO GET MATRIX
coor.2d <- as.matrix(read.table(file))

RESAMPLE THE GRID WITH THE SAME NUMBER OF POINTS AS IN ORIGINAL
coor_2d_same <- resampleGridImagePoints(pts=coor.2d, nx=nx, rx=21, ry=14,
print.progress=TRUE)

RESAMPLE THE GRID WITH A REDUCED NUMBER OF POINTS (4 X 4)
coor_2d_red <- resampleGridImagePoints(pts=coor.2d, nx=nx, rx=4, ry=4,
fit.min.break=1, print.progress=TRUE)

PLOT THE ORIGINAL IMAGED POINTS
plot(coor.2d)

PLOT THE MODELED GRID POINTS WITHIN THE ORIGINAL POINTS
THE MODEL GOODNESS-OF-FIT CAN BE EVALUATED VISUALLY
points(coor_2d_same$pts, col='red', cex=0.75)

78 TPSToShapes

PLOT THE REDUCED NUMBER OF GRID POINTS
points(coor_2d_red$pts, col='green', lwd=2, cex=1.25)

PLOT A HISTOGRAM OF THE FIT ERROR
HERE UNITS ARE PIXELS - MOST POINTS ARE FIT WITHIN 2 PIXELS
hist(coor_2d_same$error)

TPSToShapes Converts TPS file to shape file

Description

Converts shape data in the TPS format into the StereoMorph shape file format, primarily for use
with the StereoMorph digitizing application

Usage

TPSToShapes(tps.file, shapes.file, image.file, landmark.names,
spec.names = c("IMAGE"), scaling.units = NULL, flip.y = TRUE)

Arguments

tps.file A TPS file.

shapes.file A folder where the shape files will be saved. If the TPS file contains landmark
sets for more than one specimen, the landmarks for each specimen will be writ-
ten to a separate shape file.

image.file A folder containing images corresponding to each of the specimens in the TPS
file. The image filenames must match the text in the spec.names field within
the TPS file.

landmark.names The names corresponding to the landmarks in the TPS file, in the same order in
which they are listed in the TPS file. This can be either a vector of landmark
names or a ’.txt’ file with each of the landmark names listed on a separate line.

spec.names The label in the TPS file indicating the specimen name.

scaling.units The scaling units for the TPS landmarks (e.g ’cm’, ’mm’).

flip.y A logical indicating whether the y-coordinates of the TPS landmarks should be
flipped.

Details

TPS is a common file format used in morphometrics. This function reads landmarks from a TPS
file and converts these into the StereoMorph shape file format. This function is intended for users
who have previously collected shape data in the TPS format that they would like to import into
StereoMorph. The resulting shape files can be opened with the StereoMorph digitizing application
(see digitizeImages).

transformPlanarCalibrationCoordinates 79

In most cases, flip.y should be TRUE (the default). The StereoMorph digitizing application follows
the opposite convention from TPS with regard to which part of the image corresponds to the 0
y-coordinate (i.e. top versus bottom). By flipping the y-coordinates the landmarks are properly
rendered on top of the image in the digitizing application. Flipping is performed using the height
of the corresponding image. For this reason it is necessary to include the image.file parameter to
determine the height of the corresponding image.

Value

NULL

Author(s)

Aaron Olsen

See Also

readShapes, writeLMToTPS

Examples

Not run:
Convert TPS file to a series of StereoMorph shape files
TPSToShapes(tps.file='tps_file.TPS', shapes.file='Shapes', image.file='Images',

landmark.names='landmarks.txt', scaling.units='mm')

End(Not run)

transformPlanarCalibrationCoordinates

Performs rotational and translational transformations to a planar grid

Description

This function rotates and translates a planar grid or grids according to specified transformation
parameters. This function is called by dltCalibrateCameras, to find the optimal transformation
parameters for a set of arbitrarily oriented grid points that minimizes DLT calibration error. This
function is also called by dltTestCalibration to generate an ideal grid for accuracy testing.

Usage

transformPlanarCalibrationCoordinates(tpar, nx, ny, sx, sy = NULL)

80 unifyLandmarks

Arguments

tpar a vector of six transformation parameters per grid. The first three being rota-
tional parameters (rotation about the z, y and x axes, respectively) and the sec-
ond three being translational parameters (translation along the x, y and z axes,
respectively). For more than one grid, these six values are concatenated as a
vector.

nx the number of points along the first dimension (e.g. this would be the number of
points in each row if points are listed first by row).

ny the number of points along the second dimension (e.g. this would be the number
of points in each column if points are listed first by row).

sx a scaling factor along the first dimension.

sy a scaling factor along the second dimension. If the grid blocks are squares, this
can be left as NULL and only sx will be used.

Value

a matrix of transformed 3D grid coordinates

Author(s)

Aaron Olsen

See Also

dltCalibrateCameras, dltTransformationParameterRMSError, dltTestCalibration

unifyLandmarks Optimally align a set of partial landmark sets

Description

This function aligns two or more landmark sets using shared points. Corresponding landmarks are
identified by matching row names. The function selects a sequence of alignments that minimizes
the step-wise alignment error.

Usage

unifyLandmarks(lm.array, min.common = dim(lm.array)[2], return.on.error = FALSE)

S3 method for class 'unifyLandmarks'
summary(object, print.tab = '', verbose = TRUE, ...)

unifyLandmarks 81

Arguments

lm.array an array of 2D or 3D landmark matrices. These can be read in from a file or files
using readLandmarksToArray.

min.common a minimum number of landmarks to use in the alignment. Must be greater than
dim(lm.array)[2].

return.on.error

Logical whether to return NULL if there are an insufficient common points for
unification.

object a list of class "unifyLandmarks" (the output of unifyLandmarks()).

print.tab Tabs preceding lines printed to console.

verbose Logical whether to print full error report.

... further arguments passed to or from other methods.

Details

The input lm.array should be an array of 2D or 3D landmark matrices with row names, such as
created by readLandmarksToArray. The first two dimensions of lm.array correspond to the rows
and columns of each matrix, respectively. The last dimension of lm.array corresponds to each
separate landmark matrix.

unifyLandmarks() first aligns all pair combinations of landmark sets that share the minimum
number of points specified by min.common. The two sets that align with the lowest root-mean-
square (RMS) error are aligned and the mean positions of all points saved. If there are additional
landmark sets, unifyLandmarks() aligns each of these with the combined matrix, again identifying
the set that aligns with the least RMS error. The alignment with the least error is saved as the new
combined landmark matrix. This is repeated for each remaining landmark set, sequentially aligning
remaining landmark sets to the combined landmark matrix.

To align two 2D landmark sets, the sets must share at least two landmarks and to align two 3D
landmark sets, the sets must share at least three landmarks. These are the default minimum num-
ber of points for alignment. A greater number of common points can be specified using the
min.common parameter. Additionally, in the 3D case, these landmarks must not be collinear. If
lm.array contains more than two landmark matrices, it is not necessarily required that each land-
mark set share these minimum number of points with every other landmark set. For example, it
may be that two landmark sets do not each separately share the minimum number of landmarks
required for alignment with a third landmark set. But if these two landmark sets are combined, they
may then share the required number of landmarks with the third set. During each alignment step,
unifyLandmarks() skips pairs of matrices that do not share the required number of landmarks.
As long as there is some combination of alignments that provide a sufficient number of shared
landmarks, all landmark sets can be combined into a single matrix.

If an array consisting of only one landmark matrix is input, the matrix is returned without an align-
ment operation.

Value

a list of class "unifyLandmarks" with the following elements:

lm.matrix a 2D or 3D landmark matrix.

82 writeLMToTPS

unify.seq a vector of the order in which landmark sets were aligned.

unify.error a matrix of the alignment error for each shared landmark for each alignment (the
number of sets minus one).

unify.rmse a vector of the root-mean-square error of each alignment (the number of sets
minus one).

Note

This function was modified by A Olsen from the R function unifyVD() written by A Haber.

Author(s)

Annat Haber, Aaron Olsen

References

Rohlf, F.J. (1990) "Chapter 10. Rotational fit (Procrustes) Methods." Proceedings of the Michigan
Morphometrics Workshop. Ed. F. James Rohlf and Fred L. Bookstein. The University of Michigan
Museum of Zoology, 1990. 227–236. Info page at lib.umich.edu

See Also

findOptimalPointAlignment

Examples

FIND THE FILE DIRECTORY FOR EXTRA R PACKAGE FILES
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

SET LANDMARK FILES
file <- paste0(fdir, "lm_3d_even_a", 1:3, ".txt")

READ LANDMARKS INTO ARRAY
lm.array <- readLandmarksToArray(file, row.names=1)

UNIFY LANDMARKS
unify_lm <- unifyLandmarks(lm.array)

PRINT UNIFICATION SUMMARY
print(summary(unify_lm))

writeLMToTPS Writes landmarks as TPS file

Description

Reads landmarks from a StereoMorph shape file and writes them in the TPS file format

http://deepblue.lib.umich.edu/handle/2027.42/49535

writeLMToTPS 83

Usage

writeLMToTPS(shapes.file, tps.file, in.pixels = TRUE,
flip.y = TRUE, flip.x = FALSE)

Arguments

shapes.file A single shape file or folder containing multiple shape files. If this is a folder
containing multiple files then all of the landmarks from each file will be written
into a single TPS file as separate specimens.

tps.file A TPS file where landmarks will be saved.
in.pixels A logical indicating whether function should write pixel or scaled landmark

coordinates to the TPS file.
flip.y A logical indicating whether to flip the y-coordinates of the landmarks. This

may be necessary depending on how another program renders the image.
flip.x A logical indicating whether to flip the x-coordinates of the landmarks. This

may be necessary depending on how another program renders the image.

Details

TPS is a common file format used in morphometrics. This function converts landmarks from the
StereoMorph shape file format into the TPS format. This is intended for users who would like to
input landmark data collected using StereoMorph into a program that reads TPS files.

Value

NULL

Author(s)

Aaron Olsen

Examples

Not run:
Get the path to package example files
fdir <- paste0(path.package("StereoMorph"), "/extdata/")

Write 2D landmark pixel coordinates from a single shape file to TPS
writeLMToTPS(paste0(fdir, 'Shapes_2D/mug_003.txt'), 'Mug_2D.tps')

Write 3D landmark coordinates from a single shape file to TPS
writeLMToTPS(paste0(fdir, 'Shapes_3D/bubo_virginianus_FMNH488595.txt'), 'Owl_3D.tps')

Write 2D landmark pixel coordinates from multiple shape file to TPS
writeLMToTPS(paste0(fdir, 'Shapes_2D'), 'Shapes_2D.tps')

Write 3D landmark coordinates from multiple shape file to TPS
writeLMToTPS(paste0(fdir, 'Shapes_3D'), 'Shapes_3D.tps', in.pixels=FALSE)

End(Not run)

Index

∗ DLT
calibrateCameras, 7
dltCalibrateCameras, 16
dltCoefficientRMSError, 21
dltCoefficients, 22
dltEpipolarDistance, 24
dltEpipolarLine, 26
dltInverse, 28
dltMatchCurvePoints, 30
dltNearestPointOnEpipolar, 33
dltReconstruct, 35
dltTestCalibration, 37
dltTransformationParameterRMSError,

41
reconstructStereoSets, 72

∗ calibration
calibrateCameras, 7
dltCalibrateCameras, 16
dltTestCalibration, 37
findCheckerboardCorners, 45
measureCheckerboardSize, 56

∗ digitizing
digitizeImages, 10

∗ epipolar functions
dltEpipolarDistance, 24
dltEpipolarLine, 26
dltNearestPointOnEpipolar, 33

∗ grid functions
distanceGridUnits, 12
drawCheckerboard, 42
findCheckerboardCorners, 45
measureCheckerboardSize, 56
transformPlanarCalibrationCoordinates,

79
∗ landmark alignment

unifyLandmarks, 80
∗ landmarks

readLandmarksToList, 67
readLandmarksToMatrix, 69

∗ lines
distancePointToLine, 13
orthogonalProjectionToLine, 59

∗ package
StereoMorph-package, 2

∗ read functions
readBezierControlPoints, 64
readCheckerboardsToArray, 65
readLandmarksToList, 67
readLandmarksToMatrix, 69

alignLandmarksToMidline, 4, 76
alignShapesToMidline

(StereoMorph-package), 2
avectors, 6

btShapes (StereoMorph-package), 2

calibrateCameras, 7, 10, 72, 73
check_system_command_SM

(StereoMorph-package), 2
checkCornerOrder (StereoMorph-package),

2
cprod_SM (StereoMorph-package), 2
createErrorPlots (StereoMorph-package),

2

digitizeImage, 9, 10, 57, 58, 70, 71
digitizeImages, 9, 10, 73, 78
dilateImage (StereoMorph-package), 2
distanceGridUnits, 12, 66
distancePointToLine, 13, 15, 60
distancePointToPlane

(StereoMorph-package), 2
distancePointToPoint, 14
distortionError (StereoMorph-package), 2
dltCalibrateCameras, 8, 16, 21–23, 25–27,

29, 35–38, 40–42, 76, 77, 79, 80
dltCCEstimateStartParams

(StereoMorph-package), 2

84

INDEX 85

dltCoefficientRMSError, 19, 20, 21
dltCoefficients, 9, 18–20, 22, 28, 40–42
dltEpipolarDistance, 24, 27, 33–37, 39, 40
dltEpipolarLine, 25, 26, 28, 33, 35
dltInverse, 28
dltMatchCurvePoints, 25, 30, 35, 68, 72, 73
dltNearestPointOnEpipolar, 25, 27, 33, 33
dltReconstruct, 9, 19–22, 28, 29, 35, 68, 72
dltTestCalibration, 12, 20, 37, 49, 79, 80
dltTransformationParameterRMSError, 19,

20, 41, 80
drawCheckerboard, 18, 42, 58
drawRectangle (StereoMorph-package), 2
drawShapes (StereoMorph-package), 2

epipolarBezier (StereoMorph-package), 2
equalizeImageHist

(StereoMorph-package), 2
erodeImage (StereoMorph-package), 2
estimateDistortion

(StereoMorph-package), 2
estimateDLTCoefficients

(StereoMorph-package), 2
estimateUndistortion

(StereoMorph-package), 2
extractFrames, 44

findBoundaryPoints
(StereoMorph-package), 2

findCheckerboardCorners, 18, 23, 40, 45,
57

findCornerSubPix (StereoMorph-package),
2

findEpipolarTangencyAngles
(StereoMorph-package), 2

findHomography (StereoMorph-package), 2
findInterpointDistanceError

(StereoMorph-package), 2
findOptimalPointAlignment, 39, 49, 82

generateQuads (StereoMorph-package), 2
gridPointsFit, 50, 57, 58
gridPointsFitError

(StereoMorph-package), 2

imagePlaneGridTransform, 52, 54, 62–64,
77

imagePlaneGridTransformError, 53, 54, 62,
64, 77

intCornersFromQuads
(StereoMorph-package), 2

inverseGridTransform
(StereoMorph-package), 2

landmarkListToMatrix, 54, 56
landmarkMatrixToList, 55
list2XML4R (StereoMorph-package), 2
listToJSONStr (StereoMorph-package), 2

matchCurvePoints (StereoMorph-package),
2

meanBlurImage (StereoMorph-package), 2
measureCheckerboardSize, 48, 50, 51, 56

orderCorners (StereoMorph-package), 2
orthogonalProjectionToLine, 14, 34, 59

pointsAtEvenSpacing, 61
polyArea (StereoMorph-package), 2
print.calibrateCameras

(calibrateCameras), 7
print.shapes (readShapes), 70
print.summary.alignLandmarksToMidline

(alignLandmarksToMidline), 4
print.summary.dltCalibrateCameras

(dltCalibrateCameras), 16
print.summary.dltCoefficients

(dltCoefficients), 22
print.summary.dltMatchCurvePoints

(dltMatchCurvePoints), 30
print.summary.dltReconstruct

(dltReconstruct), 35
print.summary.dltTestCalibration

(dltTestCalibration), 37
print.summary.measureCheckerboardSize

(measureCheckerboardSize), 56
print.summary.reflectMissingLandmarks

(reflectMissingLandmarks), 73
print.summary.unifyLandmarks

(unifyLandmarks), 80
print_processing_times

(StereoMorph-package), 2
process_digitize_images_input

(StereoMorph-package), 2

quadraticPointsOnInterval, 53, 63

read_video_info (StereoMorph-package), 2
readBezierControlPoints, 64

86 INDEX

readCheckerboardsToArray, 16, 18, 20, 38,
40, 43, 48, 65, 65, 68, 70, 77

readLandmarksToArray, 36, 37, 65, 67, 68,
70, 81

readLandmarksToArray
(StereoMorph-package), 2

readLandmarksToList, 30, 31, 33, 36, 37, 55,
56, 65, 67, 67, 70

readLandmarksToMatrix, 6, 36, 37, 54–56,
65, 67, 68, 69, 76

readShapes, 11, 70, 79
readTPS (StereoMorph-package), 2
readXML4R (StereoMorph-package), 2
readXMLLines (StereoMorph-package), 2
reconstructStereoSets, 9, 72
reflectMissingLandmarks, 5, 73
reflectMissingShapes

(StereoMorph-package), 2
removeOutlierCorners

(StereoMorph-package), 2
resampleGridImagePoints, 18, 19, 52–54,

57, 58, 62, 64, 76
rgbToGray (StereoMorph-package), 2
rotationMatrixZYX_SM

(StereoMorph-package), 2

StereoMorph (StereoMorph-package), 2
StereoMorph-package, 2
StereoMorph_dilateImage

(StereoMorph-package), 2
StereoMorph_drawRectangle

(StereoMorph-package), 2
StereoMorph_equalizeImageHist

(StereoMorph-package), 2
StereoMorph_erodeImage

(StereoMorph-package), 2
StereoMorph_findBoundaryPoints

(StereoMorph-package), 2
StereoMorph_findCornerSubPix

(StereoMorph-package), 2
StereoMorph_generateQuads

(StereoMorph-package), 2
StereoMorph_intCornersFromQuads

(StereoMorph-package), 2
StereoMorph_meanBlurImage

(StereoMorph-package), 2
StereoMorph_orderCorners

(StereoMorph-package), 2

StereoMorph_rgbToGray
(StereoMorph-package), 2

StereoMorph_thresholdImageMatrix
(StereoMorph-package), 2

summary.alignLandmarksToMidline
(alignLandmarksToMidline), 4

summary.dltCalibrateCameras
(dltCalibrateCameras), 16

summary.dltCoefficients
(dltCoefficients), 22

summary.dltMatchCurvePoints
(dltMatchCurvePoints), 30

summary.dltReconstruct
(dltReconstruct), 35

summary.dltTestCalibration
(dltTestCalibration), 37

summary.measureCheckerboardSize
(measureCheckerboardSize), 56

summary.reflectMissingLandmarks
(reflectMissingLandmarks), 73

summary.unifyLandmarks
(unifyLandmarks), 80

testCalibration (StereoMorph-package), 2
thresholdImageMatrix

(StereoMorph-package), 2
tMatrixDC_SM (StereoMorph-package), 2
TPSToShapes, 78
transformPlanarCalibrationCoordinates,

20, 22, 42, 79

undistort (StereoMorph-package), 2
undistortionError

(StereoMorph-package), 2
undistortShapes (StereoMorph-package), 2
unifyLandmarks, 49, 50, 72, 80
uvector_SM (StereoMorph-package), 2

writeLMToTPS, 79, 82

XML4R2list (StereoMorph-package), 2
XML4R2listLines (StereoMorph-package), 2

	StereoMorph-package
	alignLandmarksToMidline
	avectors
	calibrateCameras
	digitizeImage
	digitizeImages
	distanceGridUnits
	distancePointToLine
	distancePointToPoint
	dltCalibrateCameras
	dltCoefficientRMSError
	dltCoefficients
	dltEpipolarDistance
	dltEpipolarLine
	dltInverse
	dltMatchCurvePoints
	dltNearestPointOnEpipolar
	dltReconstruct
	dltTestCalibration
	dltTransformationParameterRMSError
	drawCheckerboard
	extractFrames
	findCheckerboardCorners
	findOptimalPointAlignment
	gridPointsFit
	imagePlaneGridTransform
	imagePlaneGridTransformError
	landmarkListToMatrix
	landmarkMatrixToList
	measureCheckerboardSize
	orthogonalProjectionToLine
	pointsAtEvenSpacing
	quadraticPointsOnInterval
	readBezierControlPoints
	readCheckerboardsToArray
	readLandmarksToList
	readLandmarksToMatrix
	readShapes
	reconstructStereoSets
	reflectMissingLandmarks
	resampleGridImagePoints
	TPSToShapes
	transformPlanarCalibrationCoordinates
	unifyLandmarks
	writeLMToTPS
	Index

