Package 'TDA'

March 30, 2022

Type Package

Title Statistical Tools for Topological Data Analysis
Version 1.8.7
Date 2022-03-29
Author Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, David L. Millman, Vincent Rouvreau.

Maintainer Jisu Kim jisu.kim@inria.fr

Copyright See inst/COPYRIGHTS

Description Tools for the statistical analysis of persistent homology and for density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries 'GUDHI' https://project.inria.fr/gudhi/software/, 'Dionysus' https://www.mrzv.org/software/dionysus/, and 'PHAT' <https:
//bitbucket.org/phat-code/phat/>. This package also implements the methods in Fasy et al. (2014) <doi:10.1214/14-
AOS1252> and Chazal et al. (2014) doi:10.1145/2582112.2582128 for analyzing the statistical significance of persistent homology features.

Depends R ($>=$ 3.1.0)
Repository CRAN
License GPL-3
Imports FNN, Rcpp (>= 0.11.0), igraph, parallel, scales
Suggests testhat, lintr
Encoding UTF-8
LinkingTo BH (>= 1.78.0-0), Rcpp, RcppEigen
SystemRequirements C++14, gmp, GNU make
NeedsCompilation yes
Date/Publication 2022-03-29 22:00:02 UTC

R topics documented:

TDA-package 2
alphaComplexDiag 4
alphaComplexFiltration 7
alphaShapeDiag 8
alphaShapeFiltration 11
bootstrapBand 12
bootstrapDiagram 14
bottleneck 17
circleUnif 18
clusterTree 19
distFct 21
dtm 23
filtrationDiag 25
funFiltration 27
gridDiag 28
gridFiltration 31
hausdInterval 34
kde 35
kernelDist 36
knnDE 38
landscape 39
maxPersistence 40
multipBootstrap 43
plot.clusterTree 45
plot.diagram 46
plot.maxPersistence 48
ripsDiag 49
ripsFiltration 52
silhouette 54
sphereUnif 56
summary.diagram 57
torusUnif 58
wasserstein 59
Index 61
TDA-package Statistical Tools for Topological Data Analysis

Description

Tools for Topological Data Analysis. In particular it provides functions for the statistical analysis of persistent homology and for density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT.

Details

Package:	TDA
Type:	Package
Version:	1.8 .7
Date:	$2022-03-29$
License:	GPL-3

Author(s)

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, David L. Millman, and Vincent Rouvreau

Maintainer: Jisu Kim jisu.kim@inria.fr

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology: Confidence Sets for Persistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.
Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.
Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persistence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)
Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Subsampling Methods for Persistent Homology." (arXiv:1406.1901)
Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/.
Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www . mrzv.org/software/dionysus/.

Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology". https://bitbucket.org/phat-code/phat/.

```
alphaComplexDiag Alpha Complex Persistence Diagram
```


Description

The function alphaComplexDiag computes the persistence diagram of the alpha complex filtration built on top of a point cloud.

Usage

alphaComplexDiag(
X, maxdimension = NCOL(X) - 1, library = "GUDHI",
location $=$ FALSE, printProgress $=$ FALSE)

Arguments

X
maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for connected components, 1 for connected components and loops, 2 for connected components, loops, voids, etc.)
library either a string or a vector of length two. When a vector is given, the first element specifies which library to compute the Alpha Complex filtration, and the second element specifies which library to compute the persistence diagram. If a string is used, then the same library is used. For computing the Alpha Complex filtration, the user can use the library "GUDHI", and is also the default value. For computing the persistence diagram, the user can choose either the library "GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI".
location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram, location of birth point and death point of each homological feature is returned. Additionaly if library="Dionysus", location of representative cycles of each homological feature is also returned. The default value is FALSE.
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaComplexDiag constructs the Alpha Complex filtration, using the C++ library GUDHI. Then for computing the persistence diagram from the Alpha Complex filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT. See refereneces.

Value

The function alphaComplexDiag returns a list with the following elements:
diagram an object of class diagram, a P by 3 matrix, where P is the number of points in the resulting persistence diagram. The first column stores the dimension of each feature (0 for components, 1 for loops, 2 for voids, etc). Second and third columns are Birth and Death of the features.
birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram: a P by d matrix, where P is the number of points in the resulting persistence diagram. Each row represents the location of the grid point completing the simplex that gives birth to an homological feature.
deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram: a P by d matrix, where P is the number of points in the resulting persistence diagram. Each row represents the location of the grid point completing the simplex that kills an homological feature.
cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence diagram: a list of length P, where P is the number of points in the resulting persistence diagram. Each element is a P_{i} by $h_{i}+1$ by d array for h_{i} dimensional homological feature. It represents location of $h_{i}+1$ vertices of P_{i} simplices, where P_{i} simplices constitutes the h_{i} dimensional homological feature.

Author(s)

Jisu Kim and Vincent Rouvreau

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.
Rouvreau V (2015). "Alpha complex." In GUDHI User and Reference Manual. GUDHI Editorial Board. https://gudhi.inria.fr/doc/latest/group__alpha__complex.html

Edelsbrunner H, Kirkpatrick G, Seidel R (1983). "On the shape of a set of points in the plane." IEEE Trans. Inform. Theory.
Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/

See Also

summary.diagram, plot.diagram, alphaShapeDiag, gridDiag, ripsDiag

Examples

```
# input data generated from a circle
X <- circleUnif(n = 30)
# persistence diagram of alpha complex
DiagAlphaCmplx <- alphaComplexDiag(
    X = X, library = c("GUDHI", "Dionysus"), location = TRUE,
    printProgress = TRUE)
# plot
par(mfrow = c(1, 2))
plot(DiagAlphaCmplx[["diagram"]])
one <- which(DiagAlphaCmplx[["diagram"]][, 1] == 1)
one <- one[which.max(
    DiagAlphaCmplx[["diagram"]][one, 3] - DiagAlphaCmplx[["diagram"]][one, 2])]
plot(X, col = 2, main = "Representative loop of data points")
for (i in seq(along = one)) {
    for (j in seq_len(dim(DiagAlphaCmplx[["cycleLocation"]][[one[i]]])[1])) {
        lines(
            DiagAlphaCmplx[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,
            col = i)
    }
}
par(mfrow = c(1, 1))
```


Description

The function alphaComplexFiltration computes the alpha complex filtration built on top of a point cloud.

Usage

alphaComplexFiltration(
X, library = "GUDHI", printProgress = FALSE)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number of points stored in X and d is the dimension of the space.
library a string specifying which library to compute the Alpha Complex filtration. The user can use the library "GUDHI", and is also the default value.
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaComplexFiltration constructs the alpha complex filtration, using the C++ library GUDHI. See refereneces.

Value

The function alphaComplexFiltration returns a list with the following elements:
cmplx a list representing the complex. Its i-th element represents the vertices of i-th simplex.
values a vector representing the filtration values. Its i-th element represents the filtration value of i-th simplex.
increasing a logical variable indicating if the filtration values are in increasing order (TRUE) or in decreasing order (FALSE).
coordinates a matrix representing the coordinates of vertices. Its i-th row represents the coordinate of i-th vertex.

Author(s)

Jisu Kim and Vincent Rouvreau

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.
Rouvreau V (2015). "Alpha complex." In GUDHI User and Reference Manual. GUDHI Editorial Board. https://gudhi.inria.fr/doc/latest/group__alpha__complex.html
Edelsbrunner H, Kirkpatrick G, Seidel R (1983). "On the shape of a set of points in the plane." IEEE Trans. Inform. Theory.
Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/

See Also

alphaComplexDiag, filtrationDiag

Examples

```
# input data generated from a circle
X <- circleUnif(n = 10)
# alpha complex filtration
FltAlphaComplex <- alphaComplexFiltration(X = X, printProgress = TRUE)
# plot alpha complex filtration
lim <- rep(c(-1, 1), 2)
plot(NULL, type = "n", xlim = lim[1:2], ylim = lim[3:4],
    main = "Alpha Complex Filtration Plot")
for (idx in seq(along = FltAlphaComplex[["cmplx"]])) {
    polygon(FltAlphaComplex[["coordinates"]][FltAlphaComplex[["cmplx"]][[idx]], , drop = FALSE],
        col = "pink", border = NA, xlim = lim[1:2], ylim = lim[3:4])
}
for (idx in seq(along = FltAlphaComplex[["cmplx"]])) {
    polygon(FltAlphaComplex[["coordinates"]][FltAlphaComplex[["cmplx"]][[idx]], , drop = FALSE],
        col = NULL, xlim = lim[1:2], ylim = lim[3:4])
}
points(FltAlphaComplex[["coordinates"]], pch = 16)
```

```
alphaShapeDiag Persistence Diagram of Alpha Shape in 3d
```


Description

The function alphaShapeDiag computes the persistence diagram of the alpha shape filtration built on top of a point cloud in 3 dimension.

Usage

alphaShapeDiag(
X, maxdimension $=$ NCOL (X) -1 , library = "GUDHI", location = FALSE, printProgress = FALSE)

Arguments

X
an n by d matrix of coordinates, used by the function FUN, where n is the number of points stored in X and d is the dimension of the space. Currently d should be 3.
maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for connected components, 1 for connected components and loops, 2 for connected components, loops, voids, etc.)
library either a string or a vector of length two. When a vector is given, the first element specifies which library to compute the Alpha Shape filtration, and the second element specifies which library to compute the persistence diagram. If a string is used, then the same library is used. For computing the Alpha Shape filtration, the user can use the library "GUDHI", and is also the default value. For computing the persistence diagram, the user can choose either the library "GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI".
location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram, location of birth point and death point of each homological feature is returned. Additionaly if library="Dionysus", location of representative cycles of each homological feature is also returned. The default value is FALSE.
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaShapeDiag constructs the Alpha Shape filtration, using the C++ library GUDHI. Then for computing the persistence diagram from the Alpha Shape filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT. See refereneces.

Value

The function alphaShapeDiag returns a list with the following elements:

$$
\begin{array}{ll}
\text { diagram } & \begin{array}{l}
\text { an object of class diagram, a } P \text { by } 3 \text { matrix, where } P \text { is the number of points } \\
\text { in the resulting persistence diagram. The first column stores the dimension of } \\
\text { each feature (0 for components, } 1 \text { for loops, } 2 \text { for voids, etc). Second and third } \\
\text { columns are Birth and Death of the features. }
\end{array} \\
\text { birthLocation } & \begin{array}{l}
\text { only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the } \\
\text { persistence diagram: a } P \text { by } d \text { matrix, where } P \text { is the number of points in the } \\
\text { resulting persistence diagram. Each row represents the location of the grid point } \\
\text { completing the simplex that gives birth to an homological feature. }
\end{array} \\
\text { deathLocation } & \begin{array}{l}
\text { only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the } \\
\text { persistence diagram: a } P \text { by } d \text { matrix, where } P \text { is the number of points in the } \\
\text { resulting persistence diagram. Each row represents the location of the grid point } \\
\text { completing the simplex that kills an homological feature. }
\end{array} \\
\text { cycleLocation } & \begin{array}{l}
\text { only if location=TRUE and if "Dionysus" is used for computing the persistence } \\
\text { diagram: a list of length } P, \text { where } P \text { is the number of points in the resulting }
\end{array} \\
& \begin{array}{l}
\text { persistence diagram. Each element is a } P_{i} \text { by } h_{i}+1 \text { by } d \text { array for } h_{i} \text { dimensional } \\
\text { homological feature. It represents location of } h_{i}+1 \text { vertices of } P_{i} \text { simplices, } \\
\text { where } P_{i} \text { simplices constitutes the } h_{i} \text { dimensional homological feature. }
\end{array}
\end{array}
$$

Author(s)

Jisu Kim and Vincent Rouvreau

References

Fischer K (2005). "Introduction to Alpha Shapes."
Edelsbrunner H, Mucke EP (1994). "Three-dimensional Alpha Shapes." ACM Trans. Graph.
Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/

Morozov D (2008). "Homological Illusions of Persistence and Stability."
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

```
summary.diagram, plot.diagram, alphaComplexDiag, gridDiag, ripsDiag
```


Examples

```
# input data generated from cylinder
n <- 30
X <- cbind(circleUnif(n = n), runif(n = n, min = -0.1, max = 0.1))
# persistence diagram of alpha shape
DiagAlphaShape <- alphaShapeDiag(
    X = X, maxdimension = 1, library = c("GUDHI", "Dionysus"), location = TRUE,
    printProgress = TRUE)
# plot diagram and first two dimension of data
par(mfrow = c(1, 2))
plot(DiagAlphaShape[["diagram"]])
plot(X[, 1:2], col = 2, main = "Representative loop of alpha shape filtration")
one <- which(DiagAlphaShape[["diagram"]][, 1] == 1)
one <- one[which.max(
    DiagAlphaShape[["diagram"]][one, 3] - DiagAlphaShape[["diagram"]][one, 2])]
for (i in seq(along = one)) {
    for (j in seq_len(dim(DiagAlphaShape[["cycleLocation"]][[one[i]]])[1])) {
        lines(
            DiagAlphaShape[["cycleLocation"]][[one[i]]][j, , 1:2], pch = 19,
            cex = 1, col = i)
    }
}
par(mfrow = c(1, 1))
```

alphaShapeFiltration Alpha Shape Filtration in 3d

Description

The function alphaShapeFiltration computes the alpha shape filtration built on top of a point cloud in 3 dimension.

Usage

alphaShapeFiltration(
X, library = "GUDHI", printProgress = FALSE)

Arguments

$\mathrm{X} \quad$ an n by d matrix of coordinates, used by the function FUN, where n is the number of points stored in X and d is the dimension of the space. Currently d should be 3.
library a string specifying which library to compute the Alpha Shape filtration. The user can use the library "GUDHI", and is also the default value.
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaShapeFiltration constructs the alpha shape filtration, using the C++ library GUDHI. See refereneces.

Value

The function alphaShapeFiltration returns a list with the following elements:
cmplx a list representing the complex. Its i-th element represents the vertices of i-th simplex.
values a vector representing the filtration values. Its i-th element represents the filtration value of i-th simplex.
increasing a logical variable indicating if the filtration values are in increasing order (TRUE) or in decreasing order (FALSE).
coordinates a matrix representing the coordinates of vertices. Its i-th row represents the coordinate of i-th vertex.

Author(s)

Jisu Kim and Vincent Rouvreau

References

Fischer K (2005). "Introduction to Alpha Shapes."
Edelsbrunner H, Mucke EP (1994). "Three-dimensional Alpha Shapes." ACM Trans. Graph.
Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/
Morozov D (2008). "Homological Illusions of Persistence and Stability."
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

alphaShapeDiag, filtrationDiag

Examples

\# input data generated from sphere
X <- $\operatorname{sphereUnif}(\mathrm{n}=20, \mathrm{~d}=2$)
\# alpha shape filtration
FltAlphaShape <- alphaShapeFiltration(X = X, printProgress = TRUE)
bootstrapBand Bootstrap Confidence Band

Description

The function bootstrapBand computes a uniform symmetric confidence band around a function of the data X, evaluated on a Grid, using the bootstrap algorithm. See Details and References.

Usage

bootstrapBand(
X, FUN, Grid, $\mathrm{B}=30$, alpha $=0.05$, parallel $=$ FALSE, printProgress $=$ FALSE, weight $=$ NULL, ...)

Arguments

$\mathrm{X} \quad$ an n by d matrix of coordinates of points used by the function FUN, where n is the number of points and d is the dimension.
FUN a function whose inputs are an n by d matrix of coordinates X, an m by d matrix of coordinates Grid and returns a numeric vector of length m. For example see distFct, kde, and dtm which compute the distance function, the kernel density estimator and the distance to measure over a grid of points, using the input X.
Grid an m by d matrix of coordinates, where m is the number of points in the grid, at which FUN is evaluated.

B	the number of bootstrap iterations.
alpha	bootstrapBand returns a (1-alpha) confidence band. The default value is 0.05.
parallel	logical: if TRUE the bootstrap iterations are parallelized, using the library parallel. The default value is FALSE.
printProgress	if TRUE, a progress bar is printed. The default value is FALSE. either NULL, a number, or a vector of length n. If it is NULL, weight is not used. If it is a number, then same weight is applied to each points of X. If it is a vector, weight represents weights of each points of X. The default value is NULL.
\ldots	additional parameters for the function FUN.

Details

First, the input function FUN is evaluated on the Grid using the original data X. Then, for B times, the bootstrap algorithm subsamples n points of X (with replacement), evaluates the function FUN on the Grid using the subsample, and computes the ℓ_{∞} distance between the original function and the bootstrapped one. The result is a sequence of B values. The ($1-\mathrm{alpha}$) confidence band is constructed by taking the ($1-\mathrm{alpha}$) quantile of these values.

Value

The function bootstrapBand returns a list with the following elements:
width number: (1-alpha) quantile of the values computed by the bootstrap algorithm. It corresponds to half of the width of the unfiorm confidence band; that is, width is the distance of the upper and lower limits of the band from the function evaluated using the original dataset X.
fun a numeric vector of length m, storing the values of the input function FUN, evaluated on the Grid using the original data X.
band an m by 2 matrix that stores the values of the lower limit of the confidence band (first column) and upper limit of the confidence band (second column), evaluated over the Grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Wasserman L (2004). "All of statistics: a concise course in statistical inference." Springer.
Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology: Confidence Sets for Persistence Diagrams." (arXiv:1303.7117). Annals of Statistics.
Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm

Examples

```
# Generate data from mixture of 2 normals.
n <- 2000
X <- c(rnorm(n / 2), rnorm(n / 2, mean = 3, sd = 1.2))
# Construct a grid of points over which we evaluate the function
by <- 0.02
Grid <- seq(-3, 6, by = by)
## bandwidth for kernel density estimator
h <- 0.3
## Bootstrap confidence band
band <- bootstrapBand(X, kde, Grid, B = 80, parallel = FALSE, alpha = 0.05,
    h = h)
plot(Grid, band[["fun"]], type = "l", lwd = 2,
    ylim = c(0, max(band[["band"]])), main = "kde with 0.95 confidence band")
lines(Grid, pmax(band[["band"]][, 1], 0), col = 2, lwd = 2)
lines(Grid, band[["band"]][, 2], col = 2, lwd = 2)
```

bootstrapDiagram Bootstrapped Confidence Set for a Persistence Diagram, using the Bottleneck Distance (or the Wasserstein distance).

Description

The function bootstrapDiagram computes a (1-alpha) confidence set for the Persistence Diagram of a filtration of sublevel sets (or superlevel sets) of a function evaluated over a grid of points. The function returns the (1-alpha) quantile of B bottleneck distances (or Wasserstein distances), computed in B iterations of the bootstrap algorithm.

Usage

bootstrapDiagram(
X, FUN, lim, by, maxdimension = length(lim) / 2 - 1,
sublevel $=$ TRUE, library $=$ "GUDHI", $\mathrm{B}=30$, alpha $=0.05$,
distance = "bottleneck", dimension = min(1, maxdimension),
$\mathrm{p}=1$, parallel = FALSE, printProgress = FALSE, weight = NULL,
...)

Arguments

X
an n by d matrix of coordinates, used by the function FUN, where n is the number of points stored in X and d is the dimension of the space.

FUN a function whose inputs are 1) an n by d matrix of coordinates $X, 2$) an m by d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns a numeric vector of length m. For example see distFct, kde, and dtm which compute the distance function, the kernel density estimator and the distance to

lim	a 2 by d matrix, where each column specifies the range of each dimension of the grid, over which the function FUN is evaluated.
by	either a number or a vector of length d specifying space between points of the grid in each dimension. If a number is given, then same space is used in each dimension.
maxdimension	a number that indicates the maximum dimension to compute persistent homology to. The default value is $d-1$, which is (dimension of embedding space 1).
sublevel	a logical variable indicating if the Persistence Diagram should be computed for sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value is TRUE.
library	a string specifying which library to compute the persistence diagram. The user can choose either the library "GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI".
B	the number of bootstrap iterations. The default value is 30 .
alpha	The function bootstrapDiagram returns a (1-alpha) quantile. The default value is 0.05 .
distance	a string specifying the distance to be used for persistence diagrams: either "bottleneck" or "wasserstein". The default value is "bottleneck".
dimension	dimension is an integer or a vector specifying the dimension of the features used to compute the bottleneck distance. 0 for connected components, 1 for loops, 2 for voids, and so on. The default value is 1 if maxdimension ≥ 1, and else 0 .
p	if distance == "wasserstein", then p is an integer specifying the power to be used in the computation of the Wasserstein distance. The default value is 1.
parallel	logical: if TRUE the bootstrap iterations are parallelized, using the library parallel. The default value is FALSE.
printProgress	if TRUE a progress bar is printed. The default value is FALSE.
weight	either NULL, a number, or a vector of length n. If it is NULL, weight is not used. If it is a number, then same weight is applied to each points of X. If it is a vector, weight represents weights of each points of X. The default value is NULL. additional parameters for the function FUN.

Details

The function bootstrapDiagram uses gridDiag to compute the persistence diagram of the input function using the entire sample. Then the bootstrap algorithm, for B times, computes the bottleneck distance between the original persistence diagram and the one computed using a subsample. Finally the (1-alpha) quantile of these B values is returned. See (Chazal, Fasy, Lecci, Michel, Rinaldo, and Wasserman, 2014) for discussion of the method.

Value

The function bootstrapDiagram returns the (1-alpha) quantile of the values computed by the bootstrap algorithm.

Note

The function bootstrapDiagram uses the C++ library Dionysus for the computation of bottleneck and Wasserstein distances. See references.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

Wasserman L (2004), "All of statistics: a concise course in statistical inference." Springer.
Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www. mrzv.org/software/dionysus/

See Also

bottleneck, bootstrapBand, distFct, kde, kernelDist, dtm, summary.diagram, plot.diagram

Examples

```
## confidence set for the Kernel Density Diagram
# input data
n <- 400
XX <- circleUnif(n)
## Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05
h <- . }3\mathrm{ #bandwidth for the function kde
#Kernel Density Diagram of the superlevel sets
Diag <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,
    printProgress = TRUE, h = h)
# confidence set
B <- 10 ## the number of bootstrap iterations should be higher!
    ## this is just an example
alpha <- 0.05
```

```
    cc <- bootstrapDiagram(XX, kde, lim = lim, by = by, sublevel = FALSE, B = B,
        alpha = alpha, dimension = 1, printProgress = TRUE, h = h)
plot(Diag[["diagram"]], band = 2 * cc)
```

bottleneck Bottleneck distance between two persistence diagrams

Description

The function bottleneck computes the bottleneck distance between two persistence diagrams.

Usage

bottleneck(Diag1, Diag2, dimension = 1)

Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and death of n topological features.
Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and death of m topological features.
dimension an integer or a vector specifying the dimension of the features used to compute the bottleneck distance. 0 for connected components, 1 for loops, 2 for voids and so on. The default value is 1 (loops). The default value is 1 .

Details

The bottleneck distance between two diagrams is the cost of the optimal matching between points of the two diagrams. Note that all the diagonal points are included in the persistence diagrams when computing the optimal matching. When a vector is given for dimension, then maximum among bottleneck distances using each element in dimension is returned. The function bottleneck is an R wrapper of the function "bottleneck_distance" in the C++ library Dionysus. See references.

Value

The function bottleneck returns the value of the bottleneck distance between the two persistence diagrams.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www. mrzv.org/software/dionysus/
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

```
wasserstein, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag, plot.diagram
```


Examples

```
XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)
DiagLim <- 5
maxdimension <- 1
Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)
bottleneckDist <- bottleneck(Diag1[["diagram"]], Diag2[["diagram"]],
        dimension = 1)
print(bottleneckDist)
```

circleUnif Uniform Sample From The Circle

Description

The function circleUnif samples n points from the circle of radius r, uniformly with respect to the circumference length.

Usage

```
circleUnif(n, r = 1)
```


Arguments

$\mathrm{n} \quad$ an integer specifying the number of points in the sample.
$r \quad$ a numeric variable specifying the radius of the circle. The default value is 1.

Value

circleUnif returns an n by 2 matrix of coordinates.

Note

Uniform sample from sphere of arbitrary dimension can be generated using sphereUnif.

Author(s)

Fabrizio Lecci

See Also

sphereUnif, torusUnif

Examples

X <- circleUnif(100)
plot(X)

```
clusterTree Density clustering: the cluster tree
```


Description

Given a point cloud, or a matrix of distances, the function clusterTree computes a density estimator and returns the corresponding cluster tree of superlevel sets (lambda tree and kappa tree; see references).

Usage

clusterTree(
X, k, h = NULL, density = "knn", dist = "euclidean", d = NULL, Nlambda $=100$, printProgress $=$ FALSE)

Arguments

X
k
h
density string: if "knn" then the k-nearest neighbor density estimator is used to compute the cluster tree; if "kde" then the kernel density estimator is used to compute the cluster tree. The default value is "knn".
dist string: can be "euclidean", when X is a point cloud or "arbitrary", when X is a matrix of distances. The default value is "euclidean".
d

Nlambda integer: size of the grid of values of the density estimator, used to compute the
integer: if dist="arbitrary", then d is the dimension of the underlying space. The default value is "NULL". cluster tree. High Nlambda (i.e. a fine grid) means a more accurate cluster Tree. The default value is 100 .
printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function clusterTree is an implementation of Algorithm 1 in the first reference.

Value

The function clusterTree returns an object of class clusterTree, a list with the following components
density Vector of length n : the values of the density estimator evaluated at each of the points stored in X

DataPoints A list whose elements are the points of X corresponding to each branch, in the same order of id
$n \quad$ The number of points stored in the input matrix X
id Vector: the IDs associated to the branches of the cluster tree
children A list whose elements are the IDs of the children of each branch, in the same order of id
parent Vector: the IDs of the parents of each branch, in the same order of id
silo
A list whose elements are the horizontal coordinates of the silo of each branch, in the same order of id

Xbase Vector: the horiontal coordinates of the branches of the cluster tree, in the same order of id
lambdaBottom Vector: the vertical bottom coordinates of the branches of the lambda tree, in the same order of id
lambdaTop Vector: the vertical top coordinates of the branches of the lambda tree, in the same order of id
rBottom (only if density="knn") Vector: the vertical bottom coordinates of the branches of the r tree, in the same order of id
rTop (only if density="knn") Vector: the vertical top coordinates of the branches of the r tree, in the same order of id
alphaBottom Vector: the vertical bottom coordinates of the branches of the alpha tree, in the same order of id
alphaTop Vector: the vertical top coordinates of the branches of the alpha tree, in the same order of id

Kbottom Vector: the vertical bottom coordinates of the branches of the kappa tree, in the same order of id

Ktop Vector: the vertical top coordinates of the branches of the kappa tree, in the same order of id

Author(s)

Fabrizio Lecci

References

Kent BP, Rinaldo A, Verstynen T (2013). "DeBaCl: A Python Package for Interactive DEnsityBAsed CLustering." arXiv:1307.8136
Lecci F, Rinaldo A, Wasserman L (2014). "Metric Embeddings for Cluster Trees"

See Also

```
plot.clusterTree
```


Examples

```
## Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
X <- rbind(X1, X2, X3)
k <- 100 #parameter of knn
## Density clustering using knn and kde
Tree <- clusterTree(X, k, density = "knn")
TreeKDE <- clusterTree(X, k, h = 0.3, density = "kde")
par(mfrow = c(2, 3))
plot(X, pch = 19, cex = 0.6)
# plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
# plot clusters
plot(X, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){
    points(matrix(X[Tree[["DataPoints"]][[i]],],ncol = 2), col = i, pch = 19,
                cex = 0.6)
}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")
```

distFct Distance function

Description

The function distFct computes the distance between each point of a set Grid and the corresponding closest point of another set X.

Usage

distFct(X, Grid)

Arguments

$\mathrm{X} \quad$ a numeric m by d matrix of coordinates in the space, where m is the number of points in X and d is the dimension of the space. X is the set of points whose distance is being measured from a base grid.
Grid a numeric n by d matrix of coordinates in the space, where n is the number of points in Grid and d is the dimension of the space. Grid is the base set from which each point is compared to the closest point in X .

Details

Given a set of points X, the distance function computed at g is defined as

$$
d(g)=\inf _{x \in X}\|x-g\|_{2}
$$

Value

The function distFct returns a numeric vector of length n, where n is the number of points stored in Grid. Each value in V corresponds to the distance between a point in G and the nearest point in X.

Author(s)

Fabrizio Lecci

See Also

kde,kernelDist, dtm

Examples

```
## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)
## Construct a grid of points over which we evaluate the function
interval <- 0.065
Xseq <- seq(-1.6, 1.6, by = interval)
Yseq <- seq(-1.7, 1.7, by = interval)
Grid <- expand.grid(Xseq, Yseq)
## distance fct
distance <- distFct(X, Grid)
```


Description

The function dtm computes the "distance to measure function" on a set of points Grid, using the uniform empirical measure on a set of points X . Given a probability measure P, The distance to measure function, for each $y \in R^{d}$, is defined by

$$
d_{m 0}(y)=\left(\frac{1}{m 0} \int_{0}^{m 0}\left(G_{y}^{-1}(u)\right)^{r} d u\right)^{1 / r}
$$

where $G_{y}(t)=P(\|X-y\| \leq t)$, and $m 0 \in(0,1)$ and $r \in[1, \infty)$ are tuning parameters. As m0 increases, DTM function becomes smoother, so m0 can be understood as a smoothing parameter. r affects less but also changes DTM function as well. The DTM can be seen as a smoothed version of the distance function. See Details and References.
Given $X=\left\{x_{1}, \ldots, x_{n}\right\}$, the empirical version of the distance to measure is

$$
\hat{d}_{m 0}(y)=\left(\frac{1}{k} \sum_{x_{i} \in N_{k}(y)}\left\|x_{i}-y\right\|^{r}\right)^{1 / r}
$$

where $k=\lceil m 0 * n\rceil$ and $N_{k}(y)$ is the set containing the k nearest neighbors of y among x_{1}, \ldots, x_{n}.

Usage

$\operatorname{dtm}(X, G r i d, m 0, r=2$, weight = 1)

Arguments

$\mathrm{X} \quad$ an n by d matrix of coordinates of points used to construct the uniform empirical measure for the distance to measure, where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates of points where the distance to measure is computed, where m is the number of points in Grid and d is the dimension.
m0 a numeric variable for the smoothing parameter of the distance to measure. Roughly, $m 0$ is the the percentage of points of X that are considered when the distance to measure is computed for each point of Grid. The value of $m 0$ should be in $(0,1)$.
$r \quad a \quad$ numeric variable for the tuning parameter of the distance to measure. The value of r should be in $[1, \infty)$, and the default value is 2 .
weight either a number, or a vector of length n. If it is a number, then same weight is applied to each points of X. If it is a vector, weight represents weights of each points of X. The default value is 1 .

Details

See (Chazal, Cohen-Steiner, and Merigot, 2011, Definition 3.2) and (Chazal, Massart, and Michel, 2015, Equation (2)) for a formal definition of the "distance to measure" function.

Value

The function dtm returns a vector of length m (the number of points stored in Grid) containing the value of the distance to measure function evaluated at each point of Grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Cohen-Steiner D, Merigot Q (2011). "Geometric inference for probability measures." Foundations of Computational Mathematics 11.6, 733-751.

Chazal F, Massart P, Michel B (2015). "Rates of convergence for robust geometric inference."
Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

```
kde, kernelDist,distFct
```


Examples

```
## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)
## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)
## distance to measure
m0 <- 0.1
DTM <- dtm(X, Grid, m0)
```


Description

The function filtrationDiag computes the persistence diagram of the filtration.

Usage

filtrationDiag(
filtration, maxdimension, library = "GUDHI", location = FALSE, printProgress = FALSE, diagLimit = NULL)

Arguments

filtration	a list representing the input filtration. This list consists of three components: "cmplx", a list representing the complex, "values", a vector representing the filtration values, and "increasing", a logical variable indicating if the filtration values are in increasing order or in decreasing order. integer: max dimension of the homological features to be computed. (e.g. 0 for connected components, 1 for connected components and loops, 2 for connected components, loops, voids, etc.)
maxdimension	
a string specifying which library to compute the persistence diagram. The user	
can choose either the library "GUDHI" or "Dionysus". The default value is	
"GUDHI".	

Details

The user can decide to use either the C++ library GUDHI or Dionysus. See refereneces.

Value

The function filtrationDiag returns a list with the following elements:
diagram an object of class diagram, a P by 3 matrix, where P is the number of points in the resulting persistence diagram. The first column contains the dimension of each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third columns are Birth and Death of the features.
birthLocation only if location=TRUE and if "Dionysus" is used for computing the persistence diagram: a vector of length P. Each row represents the index of the vertex completing the simplex that gives birth to an homological feature.
deathLocation only if location=TRUE and if "Dionysus" is used for computing the persistence diagram: a vector of length P. Each row represents the index of the vertex completing the simplex that kills an homological feature.
cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence diagram: a P_{i} by $h_{i}+1$ matrix for h_{i} dimensional homological feature. It represents index of $h_{i}+1$ vertices of P_{i} simplices on a representative cycle of the h_{i} dimensional homological feature.

Author(s)

Jisu Kim

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www. mrzv.org/software/dionysus/
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

See Also

summary.diagram, plot.diagram

Examples

```
n <- 5
x <- cbind(cos(2*pi*seq_len(n)/n), sin(2*pi*seq_len(n)/n))
maxdimension <- 1
maxscale <- 1.5
dist <- "euclidean"
library <- "Dionysus"
FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
    maxscale = maxscale, dist = "euclidean", library = "Dionysus",
    printProgress = TRUE)
DiagFltRips <- filtrationDiag(filtration = FltRips, maxdimension = maxdimension,
            library = "Dionysus", location = TRUE, printProgress = TRUE)
plot(DiagFltRips[["diagram"]])
```

 FUNvalues <- X[, 1] + X[, 2]
 FltFun <- funFiltration(FUNvalues = FUNvalues, cmplx = FltRips[["cmplx"]])
 DiagFltFun <- filtrationDiag(filtration = FltFun, maxdimension = maxdimension,
library = "Dionysus", location = TRUE, printProgress = TRUE)
plot(DiagFltFun[["diagram"]], diagLim $=c(-2,5)$)

```
funFiltration Filtration from function values
```


Description

The function funFiltration computes the filtration from the complex and the function values.

Usage

funFiltration(FUNvalues, cmplx, sublevel = TRUE)

Arguments

FUNvalues The function values on the vertices of the complex.
cmplx the complex.
sublevel a logical variable indicating if the Persistence Diagram should be computed for sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value is TRUE.

Details

See references.

Value

The function funFiltration returns a list with the following elements:
cmplx a list representing the complex. Its i-th element represents the vertices of i-th simplex.
values a vector representing the filtration values. Its i-th element represents the filtration value of i-th simplex.
increasing a logical variable indicating if the filtration values are in increasing order (TRUE) or in decreasing order (FALSE).

Author(s)

Jisu Kim

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

filtrationDiag

Examples

```
n<- 5
X <- cbind(cos(2*pi*seq_len(n)/n), sin(2*pi*seq_len(n)/n))
maxdimension <- 1
maxscale <- 1.5
dist <- "euclidean"
library <- "Dionysus"
FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
    maxscale = maxscale, dist = "euclidean", library = "Dionysus",
    printProgress = TRUE)
FUNvalues <- X[, 1] + X[, 2]
FltFun <- funFiltration(FUNvalues = FUNvalues, cmplx = FltRips[["cmplx"]])
```

 gridDiag Persistence Diagram of a function over a Grid

Description

The function gridDiag computes the Persistence Diagram of a filtration of sublevel sets (or superlevel sets) of a function evaluated over a grid of points in arbitrary dimension d.

Usage

gridDiag(
X = NULL, FUN $=$ NULL, $\lim =$ NULL, by $=$ NULL, FUNvalues $=$ NULL,
maxdimension $=\max (\operatorname{NCOL}(X)$, length(dim(FUNvalues))) - 1 ,
sublevel = TRUE, library = "GUDHI", location = FALSE,
printProgress = FALSE, diagLimit = NULL, ...)

Arguments

X
an n by d matrix of coordinates, used by the function FUN, where n is the number of points stored in X and d is the dimension of the space. NULL if this option is not used. The default value is NULL.

FUN	a function whose inputs are 1) an n by d matrix of coordinates $X, 2$) an m by d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which	
compute the distance function, the kernel density estimator and the distance to	
measure, over a grid of points using the input X. Note that Grid is not an input	
of gridDiag, but is automatically computed by the function using lim, and by.	
NULL if this option is not used. The default value is NULL.	
a 2 by d matrix, where each column specifying the range of each dimension of	
the grid, over which the function FUN is evaluated. NULL if this option is not	
used. The default value is NULL.	

Details

If the values of X, FUN are set, then FUNvalues should be NULL. In this case, gridDiag evaluates the function FUN over a grid. If the value of FUNvalues is set, then X, FUN should be NULL. In this case, FUNvalues is used as function values over the grid. If location=TRUE, then lim, and by should be set.

Once function values are either computed or given, gridDiag constructs a filtration by triangulating the grid and considering the simplices determined by the values of the function of dimension up to maxdimension+1.

Value

The function gridDiag returns a list with the following components:

$$
\begin{array}{ll}
\text { diagram } & \begin{array}{l}
\text { an object of class diagram, a } P \text { by } 3 \text { matrix, where } P \text { is the number of points } \\
\text { in the resulting persistence diagram. The first column stores the dimension of } \\
\text { each feature (} 0 \text { for components, } 1 \text { for loops, } 2 \text { for voids, etc). Second and third } \\
\text { columns are Birth and Death of the features, in case of a filtration constructed } \\
\text { using sublevel sets (from -Inf to Inf), or Death and Birth of features, in case of a } \\
\text { filtration constructed using superlevel sets (from Inf to -Inf). }
\end{array} \\
\text { birthLocation } & \begin{array}{l}
\text { only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the } \\
\text { persistence diagram: a } P \text { by } d \text { matrix, where } P \text { is the number of points in the } \\
\text { resulting persistence diagram. Each row represents the location of the grid point } \\
\text { completing the simplex that gives birth to an homological feature. }
\end{array} \\
\text { deathLocation } & \begin{array}{l}
\text { only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the } \\
\text { persistence diagram: a } P \text { by } d \text { matrix, where } P \text { is the number of points in the }
\end{array} \\
\text { resulting persistence diagram. Each row represents the location of the grid point } \\
\text { completing the simplex that kills an homological feature. }
\end{array}
$$

Note

The user can decide to use either the C++ library GUDHI, Dionysus, or PHAT. See references.
Since dimension of simplicial complex from grid points in R^{d} is up to d, homology of dimension $\geq d$ is trivial. Hence setting maxdimension with values $\geq d$ is equivalent to maxdimension=d-1.

Author(s)

Brittany T. Fasy, Jisu Kim, and Fabrizio Lecci

References

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.
Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www. mrzv.org/software/dionysus/
Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology." https://bitbucket.org/phat-code/phat/

See Also

summary.diagram, plot.diagram, distFct, kde, kernelDist, dtm, alphaComplexDiag, alphaComplexDiag, ripsDiag

Examples

```
## Distance Function Diagram and Kernel Density Diagram
# input data
n <- 300
XX <- circleUnif(n)
## Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05
h <- . }3\mathrm{ #bandwidth for the function kde
#Distance Function Diagram of the sublevel sets
Diag1 <- gridDiag(XX, distFct, lim = lim, by = by, sublevel = TRUE,
    printProgress = TRUE)
#Kernel Density Diagram of the superlevel sets
Diag2 <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,
    library = "Dionysus", location = TRUE, printProgress = TRUE, h = h)
#plot
par(mfrow = c(2, 2))
plot(XX, cex = 0.5, pch = 19)
title(main = "Data")
plot(Diag1[["diagram"]])
title(main = "Distance Function Diagram")
plot(Diag2[["diagram"]])
title(main = "Density Persistence Diagram")
one <- which(Diag2[["diagram"]][, 1] == 1)
plot(XX, col = 2, main = "Representative loop of grid points")
for (i in seq(along = one)) {
    points(Diag2[["birthLocation"]][one[i], , drop = FALSE], pch = 15, cex = 3,
                col = i)
    points(Diag2[["deathLocation"]][one[i], , drop = FALSE], pch = 17, cex = 3,
                col = i)
    for (j in seq_len(dim(Diag2[["cycleLocation"]][[one[i]]])[1])) {
            lines(Diag2[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1, col = i)
    }
}
```

gridFiltration Persistence Diagram of a function over a Grid

Description

The function gridFiltration computes the Persistence Diagram of a filtration of sublevel sets (or superlevel sets) of a function evaluated over a grid of points in arbitrary dimension d.

Usage

```
gridFiltration(
        X = NULL, FUN = NULL, lim = NULL, by = NULL, FUNvalues = NULL,
        maxdimension \(=\max (\operatorname{NCOL}(X)\), length(dim(FUNvalues))) - 1 ,
        sublevel = TRUE, printProgress = FALSE, ...)
```


Arguments

X

FUN a function whose inputs are 1) an n by d matrix of coordinates $X, 2$) an m by d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns a numeric vector of length m. For example see distFct, kde, and dtm which compute the distance function, the kernel density estimator and the distance to measure, over a grid of points using the input X. Note that Grid is not an input of gridFiltration, but is automatically computed by the function using lim, and by. NULL if this option is not used. The default value is NULL.
lim a 2 by d matrix, where each column specifying the range of each dimension of the grid, over which the function FUN is evaluated. NULL if this option is not used. The default value is NULL.
by \quad either a number or a vector of length d specifying space between points of the grid in each dimension. If a number is given, then same space is used in each dimension. NULL if this option is not used. The default value is NULL.

FUNvalues an $m 1 * m 2 * \ldots * m d$ array of function values over $m 1 * m 2 * \ldots * m d$ grid, where $m i$ is the number of scales of grid on $i t h$ dimension. NULL if this option is not used. The default value is NULL.
maxdimension a number that indicates the maximum dimension of the homological features to compute: 0 for connected components, 1 for loops, 2 for voids and so on. The default value is $d-1$, which is (dimension of embedding space -1).
sublevel a logical variable indicating if the Persistence Diagram should be computed for sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value is TRUE.
printProgress if TRUE a progress bar is printed. The default value is FALSE.
additional parameters for the function FUN.

Details

If the values of X, FUN are set, then FUNvalues should be NULL. In this case, gridFiltration evaluates the function FUN over a grid. If the value of FUNvalues is set, then X, FUN should be NULL. In this case, FUNvalues is used as function values over the grid.

Once function values are either computed or given, gridFiltration constructs a filtration by triangulating the grid and considering the simplices determined by the values of the function of dimension up to maxdimension+1.

Value

The function gridFiltration returns a list with the following elements:
cmplx a list representing the complex. Its i-th element represents the vertices of i-th simplex.
values a vector representing the filtration values. Its i-th element represents the filtration value of i-th simplex.
increasing a logical variable indicating if the filtration values are in increasing order (TRUE) or in decreasing order (FALSE).
coordinates only if both lim and by are not NULL: a matrix representing the coordinates of vertices. Its i-th row represents the coordinate of i-th vertex.

Note

The user can decide to use either the C++ library GUDHI, Dionysus, or PHAT. See references.
Since dimension of simplicial complex from grid points in R^{d} is up to d, homology of dimension $\geq d$ is trivial. Hence setting maxdimension with values $\geq d$ is equivalent to maxdimension=d-1.

Author(s)

Brittany T. Fasy, Jisu Kim, and Fabrizio Lecci

References

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www. mrzv.org/software/dionysus/
Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology." https://bitbucket.org/phat-code/phat/

See Also

```
summary.diagram, plot.diagram, distFct,kde, kernelDist,dtm, alphaComplexDiag, alphaComplexDiag,
ripsDiag
```


Examples

```
# input data
n <- 10
XX <- circleUnif(n)
## Ranges of the grid
Xlim <- c(-1, 1)
Ylim <- c(-1, 1)
lim <- cbind(Xlim, Ylim)
by <- 1
```

```
#Distance Function Diagram of the sublevel sets
FltGrid <- gridFiltration(
    XX, distFct, lim = lim, by = by, sublevel = TRUE, printProgress = TRUE)
```

hausdInterval Subsampling Confidence Interval for the Hausdorff Distance between
a Manifold and a Sample

Description

hausdInterval computes a confidence interval for the Hausdorff distance between a point cloud X and the underlying manifold from which X was sampled. See Details and References.

Usage

hausdInterval(
X, m, B = 30, alpha = 0.05, parallel = FALSE, printProgress = FALSE)

Arguments

$\mathrm{X} \quad$ an n by d matrix of coordinates of sampled points.
$\mathrm{m} \quad$ the size of the subsamples.
B the number of subsampling iterations. The default value is 30 .
alpha hausdInterval returns a (1-alpha) confidence interval. The default value is 0.05 .
parallel logical: if TRUE, the iterations are parallelized, using the library parallel. The default value is FALSE.
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

For B times, the subsampling algorithm subsamples m points of X (without replacement) and computes the Hausdorff distance between the original sample X and the subsample. The result is a sequence of B values. Let q be the (1 -alpha) quantile of these values and let $c=2 * q$. The interval $[0, c]$ is a valid (1-alpha) confidence interval for the Hausdorff distance between X and the underlying manifold, as proven in (Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, and Singh, 2013, Theorem 3).

Value

The function hausdInterval returns a number c. The confidence interval is $[0, c]$.

Author(s)

Fabrizio Lecci

References

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology: Confidence Sets for Persistence Diagrams." (arXiv:1303.7117). Annals of Statistics.

See Also

bootstrapBand

Examples

X <- circleUnif(1000)
interval <- hausdInterval(X, m = 800)
print(interval)

Description

Given a point cloud X (n points), the function kde computes the Kernel Density Estimator over a grid of points. The kernel is a Gaussian Kernel with smoothing parameter h. For each $x \in R^{d}$, the Kernel Density estimator is defined as

$$
p_{X}(x)=\frac{1}{n(\sqrt{2 \pi} h)^{d}} \sum_{i=1}^{n} \exp \left(\frac{-\left\|x-X_{i}\right\|_{2}^{2}}{2 h^{2}}\right)
$$

Usage

kde(X, Grid, h, kertype = "Gaussian", weight = 1, printProgress $=$ FALSE)

Arguments

X

Grid an m by d matrix of coordinates, where m is the number of points in the grid.
h
kertype
weight either a number, or a vector of length n. If it is a number, then same weight is applied to each points of X. If it is a vector, weight represents weights of each points of X. The default value is 1 .
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Value

The function kde returns a vector of length m (the number of points in the grid) containing the value of the kernel density estimator for each point in the grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Larry Wasserman (2004), "All of statistics: a concise course in statistical inference", Springer.
Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan, and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Persistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

See Also

kernelDist, distFct, dtm

Examples

```
## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)
## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by=by)
Yseq <- seq(-1.7, 1.7, by=by)
Grid <- expand.grid(Xseq,Yseq)
## kernel density estimator
h <- 0.3
KDE <- kde(X, Grid, h)
```

kernelDist Kernel distance over a Grid of Points

Description

Given a point cloud X, the function kernelDist computes the kernel distance over a grid of points. The kernel is a Gaussian Kernel with smoothing parameter h:

$$
K_{h}(x, y)=\exp \left(\frac{-\|x-y\|_{2}^{2}}{2 h^{2}}\right)
$$

For each $x \in R^{d}$, the Kernel distance is defined by

$$
\kappa_{X}(x)=\sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K_{h}\left(X_{i}, X_{j}\right)+K_{h}(x, x)-2 \frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x, X_{i}\right)}
$$

Usage

kernelDist(X, Grid, h, weight = 1, printProgress = FALSE)

Arguments

X
an n by d matrix of coordinates of points, where n is the number of points and d is the dimension.
Grid an m by d matrix of coordinates, where m is the number of points in the grid.
h
weight either a number, or a vector of length n. If it is a number, then same weight is applied to each points of X. If it is a vector, weight represents weights of each points of X. The default value is 1 .
printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Value

The function kernelDist returns a vector of lenght m (the number of points in the grid) containing the value of the Kernel distance for each point in the grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Phillips JM, Wang B, Zheng Y (2013). "Geometric Inference on Kernel Density Estimates." arXiv:1307.7760.
Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm, distFct

Examples

```
## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)
## Construct a grid of points over which we evaluate the functions
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)
## kernel distance estimator
h <- 0.3
Kdist <- kernelDist(X, Grid, h)
```

knnDE
k Nearest Neighbors Density Estimator over a Grid of Points

Description

Given a point cloud X (n points), The function knnDE computes the k Nearest Neighbors Density Estimator over a grid of points. For each $x \in R^{d}$, the knn Density Estimator is defined by

$$
p_{X}(x)=\frac{k}{n v_{d} r_{k}^{d}(x)}
$$

where v_{n} is the volume of the Euclidean d dimensional unit ball and $r_{k}^{d}(x)$ is the Euclidean distance from point x to its k 'th closest neighbor.

Usage

knnDE(X, Grid, k)

Arguments

X an n by d matrix of coordinates of points used in the density estimation process, where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.
k number: the smoothing paramter of the k Nearest Neighbors Density Estimator.

Value

The function knnDE returns a vector of length m (the number of points in the grid) containing the value of the knn Density Estimator for each point in the grid.

Author(s)

Fabrizio Lecci

See Also

kde, kernelDist, distFct, dtm

Examples

```
## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)
## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
```

```
Grid <- expand.grid(Xseq, Yseq)
## kernel density estimator
k <- 50
KNN <- knnDE(X, Grid, k)
```

landscape The Persistence Landscape Function

Description

The function landscape computes the landscape function corresponding to a given persistence diagram.

Usage

landscape(

```
Diag, dimension = 1, KK = 1,
    tseq = seq(min(Diag[,2:3]), max(Diag[,2:3]), length=500))
```


Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram with colnames: "dimension", "Birth", "Death".
dimension the dimension of the topological features under consideration. The default value is 1 (loops).
KK a vector: the order of the landscape function. The default value is 1 . (First Landscape function).
tseq a vector of values at which the landscape function is evaluated.

Value

The function landscape returns a numeric matrix with the number of row as the length of tseq and the number of column as the length of KK. The value at ith row and jth column represents the value of the KK[j]-th landscape function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Bubenik P (2012). "Statistical topology using persistence landscapes." arXiv:1207.6437.
Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persistence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

silhouette

Examples

```
Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")
#persistence landscape
tseq <- seq(0,DiagLim, length = 1000)
Land <- landscape(Diag, dimension = 1, KK = 1, tseq)
par(mfrow = c(1,2))
plot.diagram(Diag)
plot(tseq, Land, type = "l", xlab = "t", ylab = "landscape", asp = 1)
```

maxPersistence Maximal Persistence Method

Description

Given a point cloud and a function built on top of the data, we are interested in studying the evolution of the sublevel sets (or superlevel sets) of the function, using persistent homology. The Maximal Persistence Method selects the optimal smoothing parameter of the function, by maximizing the number of significant topological features, or by maximizing the total significant persistence of the features. For each value of the smoothing parameter, the function maxPersistence computes a persistence diagram using gridDiag and returns the values of the two criteria, the dimension of detected features, their persistence, and a bootstrapped confidence band. The features that fall outside of the band are statistically significant. See References.

Usage

maxPersistence(
FUN, parameters, X, lim, by,
maxdimension $=$ length(lim) / 2 - 1, sublevel = TRUE,
library $=$ "GUDHI", $\mathrm{B}=30$, alpha $=0.05$,
bandFUN = "bootstrapBand", distance = "bottleneck",
dimension $=\min (1$, maxdimension), $p=1$, parallel = FALSE,
printProgress $=$ FALSE, weight $=$ NULL)

Arguments

FUN
the name of a function whose inputs are: 1) X , a n by d matrix of coordinates of the input point cloud, where d is the dimension of the space; 2) a matrix of coordinates of points forming a grid at which the function can be evaluated (note that this grid is not passed as an input, but is automatically computed by maxPersistence); 3) a real valued smoothing parameter. For example, see kde, dtm, kernelDist.
\(\left.$$
\begin{array}{ll}\text { parameters } & \begin{array}{l}\text { a numerical vector, storing a sequence of values for the smoothing paramter of } \\
\text { FUN among which maxPersistence will select the optimal ones. }\end{array} \\
\text { X } & \begin{array}{l}\text { a } n \text { by } d \text { matrix of coordinates of the input point cloud, where } d \text { is the dimension } \\
\text { of the space. }\end{array}
$$

a 2 by d matrix, where each column specifying the range of each dimension of

the grid, over which the function FUN is evaluated.\end{array}\right]\)| either a number or a vector of length d specifying space between points of the |
| :--- |
| grid in each dimension. If a number is given, then same space is used in each |
| dimension. |

Details

The function maxPersistence calls the gridDiag function, which computes the persistence diagram of sublevel (or superlevel) sets of a function, evaluated over a grid of points.

Value

The function maxPersistence returns an object of the class "maxPersistence", a list with the following components
parameters the same vector parameters given in input
sigNumber a numeric vector storing the number of significant features in the persistence diagrams computed using each value in parameters
sigPersistence a numeric vector storing the sum of significant persistence of the features in the persistence diagrams, computed using each value in parameters
bands a numeric vector storing the bootstrap band's width, for each value in parameters
Persistence a list of the same lenght of parameters. Each element of the list is a P_{i} by 2 matrix, where P_{i} is the number of features found using the parameter i : the first column stores the dimension of each feature and the second column the persistence abs(death-birthl).

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Cisewski J, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: distance-to-a-measure and kernel distance."
Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology", (arXiv:1303.7117). Annals of Statistics.

See Also

gridDiag, kde, kernelDist, dtm, bootstrapBand

Examples

```
## input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)
## limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2
B <- 80
alpha <- 0.05
## candidates
```

```
parametersKDE <- seq(0.1, 0.5, by = 0.2)
maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
                    bandFUN = "bootstrapBand", B = B, alpha = alpha,
                    parallel = FALSE, printProgress = TRUE)
print(summary(maxKDE))
par(mfrow = c(1,2))
plot(X, pch = 16, cex = 0.5, main = "Circle")
plot(maxKDE)
```

multipBootstrap Multiplier Bootstrap for Persistence Landscapes and Silhouettes

Description

The function multipBootstrap computes a confidence band for the average landscape (or the average silhouette) using the multiplier bootstrap.

Usage

multipBootstrap(
$\mathrm{Y}, \mathrm{B}=30$, alpha $=0.05$, parallel $=$ FALSE, printProgress $=$ FALSE)

Arguments

\(\left.$$
\begin{array}{ll}\text { Y } & \begin{array}{l}\text { an } N \text { by } m \text { matrix of values of } N \text { persistence landscapes (or silhouettes) evalu- } \\
\text { ated over a 1 dimensional grid of length } m .\end{array} \\
\text { B } & \begin{array}{l}\text { the number of bootstrap iterations. }\end{array}
$$

alphaltipBootstrap returns a 1-alpha confidence band for the mean landscape

(or silhouette).\end{array}\right]\)| logical: if TRUE the bootstrap iterations are parallelized, using the library parallel. |
| :--- |
| parallel |
| printProgress |

Details

See Algorithm 1 in the reference.

Value

The function multipBootstrap returns a list with the following elements:
width number: half of the width of the unfiorm confidence band; that is, the distance of the upper and lower limits of the band from the empirical average landscape (or silhouette).
mean a numeric vector of length m, storing the values of the empirical average landscape (or silhouette) over a 1 dimensional grid of length m.
band an m by 2 matrix that stores the values of the lower limit of the confidence band (first column) and upper limit of the confidence band (second column), evaluated over a 1 dimensional grid of length m.

Author(s)

Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persistence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

landscape, silhouette

Examples

```
nn <- 3000 #large sample size
mm <- 50 #small subsample size
NN <- 5 #we will compute NN diagrams using subsamples of size mm
XX <- circleUnif(nn) ## large sample from the unit circle
DiagLim <- 2
maxdimension <- 1
tseq <- seq(0, DiagLim, length = 1000)
Diags <- list() #here we will store the NN rips diagrams
        #constructed using different subsamples of mm points
#here we'll store the landscapes
Lands <- matrix(0, nrow = NN, ncol = length(tseq))
for (i in seq_len(NN)){
    subXX <- XX[sample(seq_len(nn), mm), ]
    Diags[[i]] <- ripsDiag(subXX, maxdimension, DiagLim)
    Lands[i, ] <- landscape(Diags[[i]][["diagram"]], dimension = 1, KK = 1, tseq)
}
## now we use the NN landscapes to construct a confidence band
B <- 50
alpha <- 0.05
boot <- multipBootstrap(Lands, B, alpha)
LOWband <- boot[["band"]][, 1]
UPband <- boot[["band"]][, 2]
MeanLand <- boot[["mean"]]
```

```
plot(tseq, MeanLand, type = "l", lwd = 2, xlab = "", ylab = "",
    main = "Mean Landscape with band", ylim = c(0, 1.2))
polygon(c(tseq, rev(tseq)), c(LOWband, rev(UPband)), col = "pink")
lines(tseq, MeanLand, lwd = 1, col = 2)
```

plot.clusterTree Plots the Cluster Tree

Description

The function plot. clusterTree plots the Cluster Tree stored in an object of class clusterTree.

Usage

```
## S3 method for class 'clusterTree'
plot(
    x, type = "lambda", color = NULL, add = FALSE, ...)
```


Arguments

$x \quad$ an object of class clusterTree. (see clusterTree)
type string: if "lambda", then the lambda Tree is plotted. if " r ", then the r Tree is plotted. if "alpha", then the alpha Tree is plotted. if "kappa", then the kappa Tree is plotted.
color number: the color of the branches of the Cluster Tree. The default value is NULL and a different color is assigned to each branch.
add logical: if TRUE, the Tree is added to an existing plot.
.. additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Kent BP, Rinaldo A, Verstynen T (2013). "DeBaCl: A Python Package for Interactive DEnsityBAsed CLustering." arXiv:1307.8136
Lecci F, Rinaldo A, Wasserman L (2014). "Metric Embeddings for Cluster Trees"

See Also

clusterTree, print.clusterTree

Examples

```
## Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
XX <- rbind(X1, X2, X3)
k <- 100 #parameter of knn
## Density clustering using knn and kde
Tree <- clusterTree(XX, k, density = "knn")
TreeKDE <- clusterTree(XX,k, h = 0.3, density = "kde")
par(mfrow = c(2, 3))
plot(XX, pch = 19, cex = 0.6)
# plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
# plot clusters
plot(XX, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){
    points(matrix(XX[Tree[["DataPoints"]][[i]], ], ncol = 2), col = i, pch = 19,
                cex = 0.6)
}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")
```


Description

The function plot. diagram plots the Persistence Diagram stored in an object of class diagram. Optionally, it can also represent the diagram as a persistence barcode.

Usage

```
## S3 method for class 'diagram'
plot(
    x, diagLim = NULL, dimension = NULL, col = NULL,
    rotated = FALSE, barcode = FALSE, band = NULL, lab.line = 2.2,
    colorBand = "pink", colorBorder = NA, add = FALSE, ...)
```


Arguments

x
diagLim
dimension
col an optional vector of length P that stores the colors of the topological features to be plotted, where P is the number of topological features stored in x .
rotated logical: if FALSE the plotted diagram has axes (birth, death), if TRUE the plotted diagram has axes ((birth+death)/2,(death-birth)/2). The default value is FALSE.
barcode logical: if TRUE the persistence barcode is plotted, in place of the diagram.
band numeric: if band!=NULL, a pink band of size band is added around the diagonal. If also barcode is TRUE, then bars shorter than band are dotted. The default value is NULL.
lab.line number of lines from the plot edge, where the labels will be placed. The default value is 2.2 .
colorBand the color for filling the confidence band. The default value is "pink". (NA leaves the band unfilled)
colorBorder the color to draw the border of the confidence band. The default value is NA and omits the border.
add logical: if TRUE, the points of x are added to an existing plot.
additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan, and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To appear, Annals of Statistics.
Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman, (2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the 30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag

Examples

```
XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)
DiagLim <- 5
maxdimension <- 1
## rips diagram
Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)
#plot
par(mfrow = c(1, 3))
plot(Diag[["diagram"]])
plot(Diag[["diagram"]], rotated = TRUE)
plot(Diag[["diagram"]], barcode = TRUE)
```

plot.maxPersistence Summary plot for the maxPersistence function

Description

The function plot.maxPersistence plots an object of class maxPersistence, for the selection of the optimal smoothing parameter for persistent homology. For each value of the smoothing parameter, the plot shows the number of detected features, their persistence, and a bootstrap confidence band.

Usage

\#\# S3 method for class 'maxPersistence' plot
x, features = "dimension", colorBand = "pink", colorBorder = NA, ...)

Arguments

X
features
colorBand the color for filling the confidence band. The default is "pink". (NA leaves the band unfilled)
colorBorder the color to draw the border of the confidence band. The default is NA and omits the border.
... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Chazal F, Cisewski J, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological Inference: distance-to-a-measure and kernel distance."
Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

See Also
 maxPersistence

Examples

```
## input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)
## limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2
B <- 80
alpha <- 0.05
## candidates
parametersKDE <- seq(0.1, 0.5, by = 0.2)
maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
                    bandFUN = "bootstrapBand", B = B, alpha = alpha,
                    parallel = FALSE, printProgress = TRUE)
print(summary(maxKDE))
par(mfrow = c(1, 2))
plot(X, pch = 16, cex = 0.5, main = "Circle")
plot(maxKDE)
```

ripsDiag Rips Persistence Diagram

Description

The function ripsDiag computes the persistence diagram of the Rips filtration built on top of a point cloud.

Usage

```
ripsDiag(
    X, maxdimension, maxscale, dist = "euclidean",
    library = "GUDHI", location = FALSE, printProgress = FALSE)
```


Arguments

X
maxdimension
integer: max dimension of the homological features to be computed. (e.g. 0 for connected components, 1 for connected components and loops, 2 for connected components, loops, voids, etc.) Currently there is a bug for computing homological features of dimension higher than 1 when the distance is arbitrary (dist = "arbitrary") and library 'GUDHI' is used (library = "GUDHI").
maxscale number: maximum value of the rips filtration.
dist "euclidean" for Euclidean distance, "arbitrary" for an arbitrary distance given in input as a distance matrix. Currently there is a bug for the arbitrary distance (dist = "arbitrary") when computing homological features of dimension higher than 1 and library 'GUDHI' is used (library = "GUDHI").
library either a string or a vector of length two. When a vector is given, the first element specifies which library to compute the Rips filtration, and the second element specifies which library to compute the persistence diagram. If a string is used, then the same library is used. For computing the Rips filtration, if dist = "euclidean", the user can use either the library "GUDHI" or "Dionysus". If dist = "arbitrary", the user can use either the library "Dionysus". The default value is "GUDHI" if dist = "euclidean", and "Dionysus" if dist == "arbitrary". When "GUDHI" is used for dist = "arbitrary", "Dionysus" is implicitly used. For computing the persistence diagram, the user can choose either the library "GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI". Currently there is a bug for 'GUDHI' (library = "GUDHI") when computing homological features of dimension higher than 1 and the distance is arbitrary (dist = "arbitrary").
location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram, location of birth point and death point of each homological feature is returned. Additionaly if library="Dionysus", location of representative cycles of each homological feature is also returned.
printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

Details

For Rips filtration based on Euclidean distance of the input point cloud, the user can decide to use either the C++ library GUDHI or Dionysus. For Rips filtration based on arbitrary distance, the user can decide to the C++ library Dionysus. Then for computing the persistence diagram from the Rips filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT. Currently there is a bug for computing homological features of dimension higher than 1 when the distance is arbitrary (dist = "arbitrary") and library 'GUDHI' is used (library = "GUDHI"). See refereneces.

Value

The function ripsDiag returns a list with the following elements:
diagram an object of class diagram, a P by 3 matrix, where P is the number of points in the resulting persistence diagram. The first column contains the dimension of each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third columns are Birth and Death of the features.
birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram: if dist="euclidean", then birthLocation is a P by d matrix, where P is the number of points in the resulting persistence diagram. Each row represents the location of the data point completing the simplex that gives birth to an homological feature. If dist="arbitrary", then birthLocation is a vector of length P. Each row represents the index of the data point completing the simplex that gives birth to an homological feature.
deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the persistence diagram: if dist="euclidean", then deathLocation is a P by d matrix, where P is the number of points in the resulting persistence diagram. Each row represents the location of the data point completing the simplex that kills an homological feature. If dist="arbitrary", then deathLocation is a vector of length P. Each row represents the index of the data point completing the simplex that kills an homological feature.
cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence diagram: if dist="euclidean", then cycleLocation is a list of length P, where P is the number of points in the resulting persistence diagram. Each element is a P_{i} by $h_{i}+1$ by d array for h_{i} dimensional homological feature. It represents location of $h_{i}+1$ vertices of P_{i} simplices, where P_{i} simplices constitutes the h_{i} dimensional homological feature. If dist = "arbitrary", then each element is a P_{i} by $h_{i}+1$ matrix for for h_{i} dimensional homological feature. It represents index of $h_{i}+1$ vertices of P_{i} simplices on a representative cycle of the h_{i} dimensional homological feature.

Author(s)

Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, and Clement Maria

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/.
Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www. mrzv.org/software/dionysus/

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

See Also

summary.diagram, plot.diagram, gridDiag

Examples

```
## EXAMPLE 1: rips diagram for circles (euclidean distance)
X <- circleUnif(30)
maxscale <- 5
maxdimension <- 1
## note that the input X is a point cloud
DiagRips <- ripsDiag(
    X = X, maxdimension = maxdimension, maxscale = maxscale,
    library = "Dionysus", location = TRUE, printProgress = TRUE)
# plot
layout(matrix(c(1, 3, 2, 2), 2, 2))
plot(X, cex = 0.5, pch = 19)
title(main = "Data")
plot(DiagRips[["diagram"]])
title(main = "rips Diagram")
one <- which(
    DiagRips[["diagram"]][, 1] == 1 & 
    DiagRips[["diagram"]][, 3] - DiagRips[["diagram"]][, 2] > 0.5)
plot(X, col = 2, main = "Representative loop of data points")
for (i in seq(along = one)) {
    for (j in seq_len(dim(DiagRips[["cycleLocation"]][[one[i]]])[1])) {
        lines(
        DiagRips[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,
                col = i)
    }
}
```

\#\# EXAMPLE 2: rips diagram with arbitrary distance
\#\# distance matrix for triangle with edges of length: 1,2,4
distX <- matrix(c(0, 1, 2, 1, 0, 4, 2, 4, 0), ncol = 3)
maxscale <- 5
maxdimension <- 1
\#\# note that the input distXX is a distance matrix
DiagTri <- ripsDiag(distX, maxdimension, maxscale, dist = "arbitrary",
printProgress = TRUE)
\#points with lifetime $=0$ are not shown. e.g. the loop of the triangle.
print(DiagTri[["diagram"]])
ripsFiltration Rips Filtration

Description

The function ripsFiltration computes the Rips filtration built on top of a point cloud.

Usage

ripsFiltration(
X, maxdimension, maxscale, dist = "euclidean", library = "GUDHI", printProgress = FALSE)

Arguments

$\mathrm{X} \quad$ If dist="euclidean", X is an n by d matrix of coordinates, where n is the number of points in the d-dimensional euclidean space. If dist="arbitrary", X is an n by n matrix of distances of n points.
maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for connected components, 1 for connected components and loops, 2 for connected components, loops, voids, etc.)
maxscale number: maximum value of the rips filtration.
dist "euclidean" for Euclidean distance, "arbitrary" for an arbitrary distance given in input as a distance matrix.
library a string specifying which library to compute the Rips filtration. If dist = "euclidean", the user can use either the library "GUDHI" or "Dionysus". If dist = "arbitrary", the user can use the library "Dionysus". The default value is "GUDHI" if dist = "euclidean", and "Dionysus" if dist == "arbitrary". When "GUDHI" is used for dist = "arbitrary", "Dionysus" is implicitly used.
printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

Details

For Rips filtration based on Euclidean distance of the input point cloud, the user can decide to use either the C++ library GUDHI or Dionysus. For Rips filtration based on arbitrary distance, the user can use the C++ library Dionysus. See refereneces.

Value

The function ripsFiltration returns a list with the following elements:

cmplx	a list representing the complex. Its i-th element represents the vertices of i-th simplex.
values	a vector representing the filtration values. Its i-th element represents the filtration value of i-th simplex.
increasing	a logical variable indicating if the filtration values are in increasing order (TRUE) or in decreasing order (FALSE).
coordinates	only if dist = "euclidean": a matrix representing the coordinates of vertices. Its i-th row represents the coordinate of i-th vertex.

Author(s)

Jisu Kim

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https: //project.inria.fr/gudhi/software/.
Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www. mrzv.org/software/dionysus/
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

ripsDiag, filtrationDiag

Examples

```
n <- 5
\(x<-\) cbind \((\cos (2 *\) pi*seq_len \((n) / n)\), sin(2*pi*seq_len \((n) / n))\)
maxdimension <- 1
maxscale <- 1.5
FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
            maxscale \(=\) maxscale, dist \(=\) "euclidean", library = "GUDHI",
            printProgress = TRUE)
\# plot rips filtration
\(\lim <-\operatorname{rep}(c(-1,1), 2)\)
plot(NULL, type = "n", xlim = lim[1:2], ylim = lim[3:4],
            main = "Rips Filtration Plot")
for (idx in seq(along = FltRips[["cmplx"] \()\) ) \{
    polygon(FltRips[["coordinates"]][FltRips[["cmplx"]][[idx]], , drop = FALSE],
        col = "pink", border = NA, xlim = lim[1:2], ylim = lim[3:4])
\}
for (idx in seq(along = FltRips[["cmplx"]])) \{
    polygon(FltRips[["coordinates"]][FltRips[["cmplx"]][[idx]], , drop = FALSE],
        col = NULL, xlim = lim[1:2], ylim = lim[3:4])
\}
points(FltRips[["coordinates"]], pch = 16)
```

silhouette
The Persistence Silhouette Function

Description

The function silhouette computes the silhouette function corresponding to a given persistence diagram.

Usage

```
silhouette(
    Diag, p = 1, dimension = 1,
    tseq = seq(min(Diag[, 2:3]), max(Diag[, 2:3]), length = 500))
```


Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram with colnames: "dimension", "Birth", "Death".
$\mathrm{p} \quad$ a vector: the power of the weights of the silhouette function. See the definition of silhouette function, Section 5 in the reference.
dimension the dimension of the topological features under consideration. The default value is 1 (loops).
tseq a vector of values at which the silhouette function is evaluated.

Value

The function silhouette returns a numeric matrix of with the number of row as the length of tseq and the number of column as the length of p. The value at ith row and jth column represents the value of the $p[j]$-th power silhouette function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persistence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

landscape

Examples

```
Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")
#persistence silhouette
tseq <- seq(0, DiagLim, length = 1000)
Sil <- silhouette(Diag, p = 1, dimension = 1, tseq)
par(mfrow = c(1, 2))
plot.diagram(Diag)
plot(tseq, Sil, type = "l", xlab = "t", ylab = "silhouette", asp = 1)
```

sphereUnif Uniform Sample From The Sphere $S^{\wedge} d$

Description

The function sphereUnif samples n points from the sphere S^{d} of radius r embedded in R^{d+1}, uniformly with respect to the volume measure of the sphere.

Usage

sphereUnif(n, d, r = 1)

Arguments

$\mathrm{n} \quad$ an integer specifying the number of points in the sample.
d an integer specifying the dimension of the sphere S^{d}
$r \quad$ a numeric variable specifying the radius of the sphere. The default value is 1.

Value

The function sphereUnif returns an n by 2 matrix of coordinates.

Note

When $d=1$, this function is same as using circleUnif.

Author(s)

Jisu Kim

See Also

```
circleUnif, torusUnif
```


Examples

```
X <- sphereUnif(n = 100, d = 1, r = 1)
plot(X)
```

```
summary.diagram print and summary for diagram
```


Description

The function print. diagram prints a persistence diagram, a P by 3 matrix, where P is the number of points in the diagram. The first column contains the dimension of each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third columns are Birth and Death of the features.
The function summary. diagram produces basic summaries of a persistence diagrams.

Usage

```
## S3 method for class 'diagram'
print(x, ...)
## S3 method for class 'diagram'
summary(object, ...)
```


Arguments

x	an object of class diagram
object	an object of class diagram
\ldots	additional arguments affecting the summary produced.

Author(s)

Fabrizio Lecci

See Also

plot.diagram, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag

Examples

```
# Generate data from 2 circles
XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)
DiagLim <- 5 # limit of the filtration
maxdimension <- 1 # computes betti0 and betti1
Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)
print(Diag[["diagram"]])
print(summary(Diag[["diagram"]]))
```


Description

The function torusUnif samples n points from the 3D torus, uniformly with respect to its surface.

Usage

```
torusUnif(n, a, c)
```


Arguments

$\mathrm{n} \quad$ an integer specifying the number of points in the sample.
a the radius of the torus tube.
c the radius from the center of the hole to the center of the torus tube.

Details

This function torusUnif is an implementation of Algorithm 1 in the reference.

Value

The function torusUnif returns an n by 3 matrix of coordinates.

Author(s)

Fabrizio Lecci

References

Diaconis P, Holmes S, and Shahshahani M (2013). "Sampling from a manifold." Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton. Institute of Mathematical Statistics, 102-125.

See Also

```
circleUnif,sphereUnif
```


Examples

```
X <- torusUnif(300, a = 1.8, c = 5)
plot(X)
```


Description

The function wasserstein computes the Wasserstein distance between two persistence diagrams.

Usage

```
wasserstein(Diag1, Diag2, p = 1, dimension = 1)
```


Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and death of n topological features.

Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and death of m topological features.
$\mathrm{p} \quad$ integer specifying the power to be used in the computation of the Wasserstein distance. The default value is 1 .
dimension an integer or a vector specifying the dimension of the features used to compute the wasserstein distance. 0 for connected components, 1 for loops, 2 for voids and so on. The default value is 1 (loops).

Details

The Wasserstein distance between two diagrams is the cost of the optimal matching between points of the two diagrams. When a vector is given for dimension, then maximum among bottleneck distances using each element in dimension is returned. This function is an R wrapper of the function "wasserstein_distance" in the C++ library Dionysus. See references.

Value

The function wasserstein returns the value of the Wasserstein distance between the two persistence diagrams.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www. mrzv.org/software/dionysus/.
Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathematical Society.

See Also

bottleneck, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag, plot.diagram

Examples

```
XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)
DiagLim <- 5
maxdimension <- 1
Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)
wassersteinDist <- wasserstein(Diag1[["diagram"]], Diag2[["diagram"]], p = 1,
    dimension = 1)
print(wassersteinDist)
```


Index

* datagen
circleUnif, 18
sphereUnif, 56
torusUnif, 58
* hplot
plot.clusterTree, 45
plot.diagram, 46
plot.maxPersistence, 48
* htest
bootstrapBand, 12
bootstrapDiagram, 14
hausdInterval, 34
multipBootstrap, 43
* methods
alphaComplexDiag, 4
alphaComplexFiltration, 7
alphaShapeDiag, 8
alphaShapeFiltration, 11
bottleneck, 17
filtrationDiag, 25
funFiltration, 27
gridDiag, 28
gridFiltration, 31
landscape, 39
maxPersistence, 40
ripsDiag, 49
ripsFiltration, 52
silhouette, 54
wasserstein, 59
* nonparametric
bootstrapBand, 12
bootstrapDiagram, 14
clusterTree, 19
distFct, 21
dtm, 23
hausdInterval, 34
kde, 35
kernelDist, 36
knnDE, 38
multipBootstrap, 43
* optimize
bottleneck, 17
wasserstein, 59
* package

TDA-package, 2
alphaComplexDiag, 4, 8, 10, 18, 30, 33, 47, 57, 60
alphaComplexFiltration, 7
alphaShapeDiag, 6, 8, 12
alphaShapeFiltration, 11
bootstrapBand, 12, 16, 35, 42
bootstrapDiagram, 14
bottleneck, 16, 17, 60
circleUnif, 18, 56, 58
clusterTree, 19, 45
distFct, $12,14,16,21,24,29,30,32,33$, 36-38
dtm, $12-14,16,22,23,29,30,32,33,36-38$, 40, 42
filtrationDiag, 8, 12, 25, 28, 54
funFiltration, 27
gridDiag, $6,10,15,18,28,41,42,47,52,57$, 60
gridFiltration, 31
hausdInterval, 34
kde, $12-14,16,22,24,29,30,32,33,35,37$, 38, 40, 42
kernelDist, 16, 22, 24, 30, 33, 36, 36, 38, 40, 42
knnDE, 38
landscape, 39, 44, 55

```
maxPersistence, 40, 48, 49
multipBootstrap,43
plot.clusterTree, 21,45
plot.diagram, 6, 10, 16,18, 26, 30, 33, 46,
    52,57,60
plot.maxPersistence,48
print.clusterTree,45
print.clusterTree (clusterTree), 19
print.diagram(summary.diagram), 57
print.maxPersistence (maxPersistence),
    4 0
print.summary.diagram
    (summary.diagram), 57
print.summary.maxPersistence
    (maxPersistence), 40
ripsDiag, 6, 10, 18, 30, 33, 47, 49, 54, 57, 60
ripsFiltration,52
silhouette, 40, 44, 54
sphereUnif, 18, 19, 56, 58
summary.diagram, 6,10,16,26,30,33, 52, 57
summary.maxPersistence
    (maxPersistence),40
TDA (TDA-package), 2
TDA-package, 2
torusUnif, 19, 56,58
wasserstein, 18, 59
```

