
Introduction to the R package TDA

Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément

Maria, David L. Millman, and Vincent Rouvreau
In collaboration with the CMU TopStat Group

Abstract

We present a short tutorial and introduction to using the R package TDA, which pro-
vides some tools for Topological Data Analysis. In particular, it includes implementations
of functions that, given some data, provide topological information about the underlying
space, such as the distance function, the distance to a measure, the kNN density estimator,
the kernel density estimator, and the kernel distance. The salient topological features of
the sublevel sets (or superlevel sets) of these functions can be quantified with persistent
homology. We provide an R interface for the efficient algorithms of the C++ libraries
GUDHI, Dionysus, and PHAT, including a function for the persistent homology of the
Rips filtration, and one for the persistent homology of sublevel sets (or superlevel sets)
of arbitrary functions evaluated over a grid of points. The significance of the features
in the resulting persistence diagrams can be analyzed with functions that implement the
methods discussed in Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, and Singh (2014),
Chazal, Fasy, Lecci, Rinaldo, and Wasserman (2014c) and Chazal, Fasy, Lecci, Michel,
Rinaldo, and Wasserman (2014a). The R package TDA also includes the implementation
of an algorithm for density clustering, which allows us to identify the spatial organization
of the probability mass associated to a density function and visualize it by means of a
dendrogram, the cluster tree.

Keywords: Topological Data Analysis, Persistent Homology, Density Clustering.

1. Introduction

Topological Data Analysis (TDA) refers to a collection of methods for finding topological
structure in data (Carlsson 2009). Recent advances in computational topology have made
it possible to actually compute topological invariants from data. The input of these pro-
cedures typically takes the form of a point cloud, regarded as possibly noisy observations
from an unknown lower-dimensional set S whose interesting topological features were lost
during sampling. The output is a collection of data summaries that are used to estimate the
topological features of S.

One approach to TDA is persistent homology (Edelsbrunner and Harer 2010), a method
for studying the homology at multiple scales simultaneously. More precisely, it provides
a framework and efficient algorithms to quantify the evolution of the topology of a family
of nested topological spaces. Given a real-valued function f , such as the ones described in
Section 2, persistent homology describes how the topology of the lower level sets {x : f(x) ≤ t}
(or superlevel sets {x : f(x) ≥ t}) changes as t increases from −∞ to ∞ (or decreases from
∞ to −∞). This information is encoded in the persistence diagram, a multiset of points in

 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

2 Introduction to the R package TDA

the plane, each corresponding to the birth and death of a homological feature that existed
for some interval of t.

This paper is devoted to the presentation of the R package TDA, which provides a user-
friendly interface for the efficient algorithms of the C++ libraries GUDHI (Maria 2014),
Dionysus (Morozov 2007), and PHAT (Bauer, Kerber, and Reininghaus 2012).

In Section 2, we describe how to compute some widely studied functions that, starting from
a point cloud, provide some topological information about the underlying space: the distance
function (distFct), the distance to a measure function (dtm), the k Nearest Neighbor density
estimator (knnDE), the kernel density estimator (kde), and the kernel distance (kernelDist).
Section 3 is devoted to the computation of persistence diagrams: the function gridDiag can
be used to compute persistent homology of sublevel sets (or superlevel sets) of functions
evaluated over a grid of points; the function ripsDiag returns the persistence diagram of the
Rips filtration built on top of a point cloud.

One of the key challenges in persistent homology is to find a way to isolate the points of
the persistence diagram representing the topological noise. Statistical methods for persistent
homology provide an alternative to its exact computation. Knowing with high confidence
that an approximated persistence diagrams is close to the true–computationally infeasible–
diagram is often enough for practical purposes. Fasy et al. (2014), Chazal et al. (2014c),
and Chazal et al. (2014a) propose several statistical methods to construct confidence sets for
persistence diagrams and other summary functions that allow us to separate topological signal
from topological noise. The methods are implemented in the TDA package and described in
Section 3.

Finally, the TDA package provides the implementation of an algorithm for density clustering.
This method allows us to identify and visualize the spatial organization of the data, without
specific knowledge about the data generating mechanism and in particular without any a priori
information about the number of clusters. In Section 4, we describe the function clusterTree,
that, given a density estimator, encodes the hierarchy of the connected components of its
superlevel sets into a dendrogram, the cluster tree (Kpotufe and von Luxburg 2011; Kent
2013).

2. Distance Functions and Density Estimators

As a first toy example to using the TDA package, we show how to compute distance functions
and density estimators over a grid of points. The setting is the typical one in TDA: a set
of points X = {x1, . . . , xn} ⊂ R

d has been sampled from some distribution P and we are
interested in recovering the topological features of the underlying space by studying some
functions of the data. The following code generates a sample of 400 points from the unit
circle and constructs a grid of points over which we will evaluate the functions.

> library("TDA")

> X <- circleUnif(400)

> Xlim <- c(-1.6, 1.6); Ylim <- c(-1.7, 1.7); by <- 0.065

> Xseq <- seq(Xlim[1], Xlim[2], by = by)

> Yseq <- seq(Ylim[1], Ylim[2], by = by)

> Grid <- expand.grid(Xseq, Yseq)

 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau3

The TDA package provides implementations of the following functions:

• The distance function is defined for each y ∈ R
d as ∆(y) = infx∈X ‖x − y‖2 and is

computed for each point of the Grid with the following code:

> distance <- distFct(X = X, Grid = Grid)

• Given a probability measure P , the distance to measure (DTM) is defined for each
y ∈ R

d as

dm0(y) =

(

1

m0

∫ m0

0
(G−1

y (u))rdu

)1/r

,

where Gy(t) = P (‖X − y‖ ≤ t), and m0 ∈ (0, 1) and r ∈ [1, ∞) are tuning parame-
ters. As m0 increases, DTM function becomes smoother, so m0 can be understood as a
smoothing parameter. r affects less but also changes DTM function as well. The default
value of r is 2. The DTM can be seen as a smoothed version of the distance function.
See (Chazal, Cohen-Steiner, and Mérigot 2011, Definition 3.2) and (Chazal, Massart,
and Michel 2015, Equation (2)) for a formal definition of the "distance to measure"
function.

Given X = {x1, . . . , xn}, the empirical version of the DTM is

d̂m0(y) =

1

k

∑

xi∈Nk(y)

‖xi − y‖r

1/r

,

where k = ⌈m0 ∗ n⌉ and Nk(y) is the set containing the k nearest neighbors of y among
x1, . . . , xn.

For more details, see (Chazal et al. 2011) and (Chazal et al. 2015).

The DTM is computed for each point of the Grid with the following code:

> m0 <- 0.1

> DTM <- dtm(X = X, Grid = Grid, m0 = m0)

• The k Nearest Neighbor density estimator, for each y ∈ R
d, is defined as

δ̂k(y) =
k

n vd rd
k(y)

,

where vn is the volume of the Euclidean d dimensional unit ball and rd
k(x) is the Eu-

clidean distance form point x to its kth closest neighbor among the points of X. It is
computed for each point of the Grid with the following code:

> k <- 60

> kNN <- knnDE(X = X, Grid = Grid, k = k)

4 Introduction to the R package TDA

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ R
d, is defined as

p̂h(y) =
1

n(
√

2πh)d

n
∑

i=1

exp

(

−‖y − xi‖2
2

2h2

)

.

where h is a smoothing parameter. It is computed for each point of the Grid with the
following code:

> h <- 0.3

> KDE <- kde(X = X, Grid = Grid, h = h)

• The Kernel distance estimator, for each y ∈ R
d, is defined as

κ̂h(y) =

√

√

√

√

1

n2

n
∑

i=1

n
∑

j=1

Kh(xi, xj) + Kh(y, y) − 2
1

n

n
∑

i=1

Kh(y, xi),

where Kh(x, y) = exp
(−‖x−y‖2

2

2h2

)

is the Gaussian Kernel with smoothing parameter h.

The Kernel distance is computed for each point of the Grid with the following code:

> h <- 0.3

> Kdist <- kernelDist(X = X, Grid = Grid, h = h)

For this 2 dimensional example, we can visualize the functions using persp form the graphics

package. For example the following code produces the KDE plot in Figure 1:

> persp(Xseq, Yseq,

+ matrix(KDE, ncol = length(Yseq), nrow = length(Xseq)), xlab = "",

+ ylab = "", zlab = "", theta = -20, phi = 35, ltheta = 50,

+ col = 2, border = NA, main = "KDE", d = 0.5, scale = FALSE,

+ expand = 3, shade = 0.9)

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau5

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Sample X
Distance Function DTM

kNN KDE Kernel Distance

Figure 1: distance functions and density estimators evaluated over a grid of points.

2.1. Bootstrap Confidence Bands

We can construct a (1 − α) confidence band for a function using the bootstrap algorithm,
which we briefly describe using the kernel density estimator:

1. Given a sample X = {x1, . . . , xn}, compute the kernel density estimator p̂h;

2. Draw X∗ = {x∗
1, . . . , x∗

n} from X = {x1, . . . , xn} (with replacement), and compute
θ∗ =

√
n‖p̂∗

h(x) − p̂h(x)‖∞, where p̂∗
h is the density estimator computed using X∗;

3. Repeat the previous step B times to obtain θ∗
1, . . . , θ∗

B;

4. Compute qα = inf
{

q : 1
B

∑B
j=1 I(θ∗

j ≥ q) ≤ α
}

;

5. The (1 − α) confidence band for E[p̂h] is
[

p̂h − qα√
n

, p̂h + qα√
n

]

.

Fasy et al. (2014) and Chazal et al. (2014a) prove the validity of the bootstrap algorithm
for kernel density estimators, distance to measure, and kernel distance, and use it in the
framework of persistent homology. The bootstrap algorithm is implemented in the function
bootstrapBand, which provides the option of parallelizing the algorithm (parallel = TRUE)
using the package parallel. The following code computes a 90% confidence band for E[p̂h],
showed in Figure 2.

6 Introduction to the R package TDA

> band <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,

+ parallel = FALSE, alpha = 0.1, h = h)

Figure 2: the 90% confidence band for E[p̂h] has the form [ℓ, u] = [p̂h − qα/
√

n , p̂h + qα/
√

n].
The plot on the right shows a section of the functions: the red surface is the KDE p̂h; the
pink surfaces are ℓ and u.

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau7

3. Persistent Homology

We provide an informal description of the implemented methods of persistent homology. We
assume the reader is familiar with the basic concepts and, for a rigorous exposition, we refer
to the textbook Edelsbrunner and Harer (2010).

3.1. Persistent Homology Over a Grid

In this section, we describe how to use the gridDiag function to compute the persistent
homology of sublevel (and superlevel) sets of the functions described in Section 2. The
function gridDiag evaluates a given real valued function over a triangulated grid, constructs
a filtration of simplices using the values of the function, and computes the persistent homology
of the filtration. From version 1.2, gridDiag works in arbitrary dimension. The core of the
function is written in C++ and the user can choose to compute persistence diagrams using
either the C++ library GUDHI, Dionysus, or PHAT.

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The same code would work for the
other functions defined in Section 2 (it is sufficient to replace kde and its smoothing parameter
h with another function and the corresponding parameter). The function gridDiag returns
an object of the class "diagram". The other inputs are the features of the grid over which
the kde is evaluated (lim and by), the smoothing parameter h, and a logical variable that
indicates whether a progress bar should be printed (printProgress).

> DiagGrid <- gridDiag(

+ X = X, FUN = kde, h = 0.3, lim = cbind(Xlim, Ylim), by = by,

+ sublevel = FALSE, library = "Dionysus", location = TRUE,

+ printProgress = FALSE)

We plot the data and the diagram, using the function plot, implemented as a standard S3

method for objects of the class "diagram". The following command produces the third plot
in Figure 3.

> plot(DiagGrid[["diagram"]], band = 2 * band[["width"]],

+ main = "KDE Diagram")

The option (band = 2 * band[["width"]]) produces a pink confidence band for the persis-
tence diagram, using the confidence band constructed for the corresponding kernel density
estimator in the previous section. The features above the band can be interpreted as repre-
senting significant homological features, while points in the band are not significantly different
from noise. The validity of the bootstrap confidence band for persistence diagrams of KDE,
DTM, and Kernel Distance derive from the Stability Theorem (Chazal, de Silva, Glisse, and
Oudot 2012) and is discussed in detail in Fasy et al. (2014) and Chazal et al. (2014a).

The function plot for the class "diagram" provide the options of rotating the diagram
(rotated = TRUE), drawing the barcode in place of the diagram (barcode = TRUE), as well
as other standard graphical options. See Figure 4.

 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

8 Introduction to the R package TDA

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Sample X KDE

KDE Diagram

0.00 0.10 0.20

0
.0

0
0
.1

0
0
.2

0

Death

B
ir

th

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

Representative loop

Figure 3: The plot on the right shows the persistence diagram of the superlevel sets of the
KDE. Black points represent connected components and red triangles represent loops. The
features are born at high levels of the density and die at lower levels. The pink 90% confidence
band separates significant features from noise.

3.2. Rips Diagrams

The Vietoris-Rips complex R(X, ε) consists of simplices with vertices in
X = {x1, . . . , xn} ⊂ R

d and diameter at most ε. In other words, a simplex σ is included
in the complex if each pair of vertices in σ is at most ε apart. The sequence of Rips com-
plexes obtained by gradually increasing the radius ε creates a filtration.

The ripsDiag function computes the persistence diagram of the Rips filtration built on top
of a point cloud. The user can choose to compute the Rips filtration using either the C++

library GUDHI or Dionysus. Then for computing the persistence diagram from the Rips
filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT.
The following code generates 60 points from two circles:

 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau9

> par(mfrow = c(1, 2), mai = c(0.8, 0.8, 0.3, 0.1))

> plot(DiagGrid[["diagram"]], rotated = TRUE, band = band[["width"]],

+ main = "Rotated Diagram")

> plot(DiagGrid[["diagram"]], barcode = TRUE, main = "Barcode")

Rotated Diagram

0.00 0.10 0.20

0
.0

0
0

.1
0

0
.2

0

(Death+Birth)/2

(B
ir

th
−

D
e

a
th

)/
2

Barcode

0.00 0.10 0.20

time

Figure 4: Rotated Persistence Diagram and Barcode

> Circle1 <- circleUnif(60)

> Circle2 <- circleUnif(60, r = 2) + 3

> Circles <- rbind(Circle1, Circle2)

We specify the limit of the Rips filtration and the max dimension of the homological features
we are interested in (0 for components, 1 for loops, 2 for voids, etc.):

> maxscale <- 5 # limit of the filtration

> maxdimension <- 1 # components and loops

and we generate the persistence diagram:

> DiagRips <- ripsDiag(X = Circles, maxdimension, maxscale,

+ library = c("GUDHI", "Dionysus"), location = TRUE, printProgress = FALSE)

Alternatively, using the option (dist = "arbitrary") in ripsDiag(), the input X can be
an n × n matrix of distances. This option is useful when the user wants to consider a Rips
filtration constructed using an arbitrary distance and is currently only available for the option
(library = "Dionysus").

Finally we plot the data and the diagram, as in Figure 5.:

3.3. Alpha Complex Persistence Diagram

For a finite set of points X ⊂ R
d, the Alpha complex Alpha(X, s) is a simplicial subcomplex of

the Delaunay complex of X consisting of simplices of circumradius less than or equal to
√

s.

10 Introduction to the R package TDA

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

Two Circles Rips persistence diagram

0 1 2 3 4 5

0
1

2
3

4
5

Birth

D
e

a
th

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

Representative loop

x1

x
2

Figure 5: Rips persistence diagram. Black points represent connected components and red
triangles represent loops.

For each u ∈ X, let Vu be its Voronoi cell, i.e. Vu = {x ∈ R
d : d(x, u) ≤ d(x, v) for all v ∈ X},

and Bu(r) be the closed ball with center u and radius r. Let Ru(r) consists of be the
intersection of earh ball of radius r with the voronoi cell of u, i.e. Ru(r) = Bu(r) ∩ Vu. Then
Alpha(X, s) is defined as

Alpha(X, r) =

{

σ ⊂ X :
⋂

u∈σ

Ru(
√

s) 6= ∅
}

.

See (Edelsbrunner and Harer 2010, Section 3.4) and (Rouvreau 2015). The sequence of
Alpha complexes obtained by gradually increasing the parameter s creates an Alpha complex
filtration.

The alphaComplexDiag function computes the Alpha complex filtration built on top of a point
cloud, using the C++ library GUDHI. Then for computing the persistence diagram from the
Alpha complex filtration, the user can use either the C++ library GUDHI, Dionysus, or
PHAT.

We first generate 30 points from a circle:

> X <- circleUnif(n = 30)

and the following code compute the persistence diagram of the alpha complex filtration us-
ing the point cloud X, with printing its progress (printProgress = FALSE). The function
alphaComplexDiag returns an object of the class "diagram".

> # persistence diagram of alpha complex

> DiagAlphaCmplx <- alphaComplexDiag(

+ X = X, library = c("GUDHI", "Dionysus"), location = TRUE,

+ printProgress = TRUE)

Generated complex of size: 115

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

Persistence timer: Elapsed time [0.000148] seconds

 https://project.inria.fr/gudhi/software/
 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau11

And we plot the diagram in Figure 6.

> # plot

> par(mfrow = c(1, 2))

> plot(DiagAlphaCmplx[["diagram"]], main = "Alpha complex persistence diagram")

> one <- which(DiagAlphaCmplx[["diagram"]][, 1] == 1)

> one <- one[which.max(

+ DiagAlphaCmplx[["diagram"]][one, 3] - DiagAlphaCmplx[["diagram"]][one, 2])]

> plot(X, col = 1, main = "Representative loop")

> for (i in seq(along = one)) {

+ for (j in seq_len(dim(DiagAlphaCmplx[["cycleLocation"]][[one[i]]])[1])) {

+ lines(DiagAlphaCmplx[["cycleLocation"]][[one[i]]][j, ,], pch = 19,

+ cex = 1, col = i + 1)

+ }

+ }

> par(mfrow = c(1, 1))

Alpha complex persistence diagram

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Birth

D
e

a
th

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

Representative loop

x1

x
2

Figure 6: Persistence diagram of Alpha complex. Black points represent connected compo-
nents and red triangles represent loops.

3.4. Persistence Diagram of Alpha Shape

The Alpha shape complex S(X, α) is the polytope with its boundary consisting of α-exposed
simplices, where a simplex σ is α-exposed if there is an open ball b of radius α such that
b∩X = ∅ and ∂b∩X = σ. Suppose R

d is filled with ice cream, then consider scooping out the
ice cream with sphere-shaped spoon of radius α without touching the points X. S(X, α) is the
remaining polytope with straightening round surfaces. See (Fischer 2005) and (Edelsbrunner
and Mücke 1994). The sequence of Alpha shape complexes obtained by gradually increasing
the parameter α creates an Alpha shape complex filtration.

The alphaShapeDiag function computes the persistence diagram of the Alpha shape filtration
built on top of a point cloud in 3 dimension, using the C++ library GUDHI. Then for
computing the persistence diagram from the Alpha shape filtration, the user can use either
the C++ library GUDHI, Dionysus, or PHAT. Currently the point data cloud should lie in

 https://project.inria.fr/gudhi/software/
 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://bitbucket.org/phat-code/phat/

12 Introduction to the R package TDA

3 dimension.

We first generate 30 points from a cylinder:

> n <- 30

> X <- cbind(circleUnif(n = n), runif(n = n, min = -0.1, max = 0.1))

and the following code compute the persistence diagram of the alpha shape filtration us-
ing the point cloud X, with printing its progress (printProgress = TRUE). The function
alphaShapeDiag returns an object of the class "diagram".

> DiagAlphaShape <- alphaShapeDiag(

+ X = X, maxdimension = 1, library = c("GUDHI", "Dionysus"), location = TRUE,

+ printProgress = TRUE)

Generated complex of size: 539

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

Persistence timer: Elapsed time [0.000679] seconds

And we plot the diagram and first two dimension of data in Figure 7.

3.5. Persistence Diagrams from Filtration

Rather than computing persistence diagrams from built-in function, it is also possible to com-
pute persistence diagrams from a user-defined filtration. A filtration consists of simplicial com-
plex and the filtration values on each simplex. The functions ripsDiag, alphaComplexDiag,
alphaShapeDiag have their counterparts for computing corresponding filtrations instead
of persistence diagrams: namely, ripsFiltration corresponds to the Rips filtration built
on top of a point cloud, alphaComplexFiltration to the alpha complex filtration, and
alphaShapeFiltration to the alpha shape filtration.

We first generate 100 points from a circle:

> X <- circleUnif(n = 100)

Then, after specifying the limit of the Rips filtration and the max dimension of the homological
features, the following code compute the Rips filtration using the point cloud X.

> maxscale <- 0.4 # limit of the filtration

> maxdimension <- 1 # components and loops

> FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,

+ maxscale = maxscale, dist = "euclidean", library = "GUDHI",

+ printProgress = TRUE)

Generated complex of size: 2808

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau13

> par(mfrow = c(1, 2))

> plot(DiagAlphaShape[["diagram"]])

> plot(X[, 1:2], col = 2, main = "Representative loop of alpha shape filtration")

> one <- which(DiagAlphaShape[["diagram"]][, 1] == 1)

> one <- one[which.max(

+ DiagAlphaShape[["diagram"]][one, 3] - DiagAlphaShape[["diagram"]][one, 2])]

> for (i in seq(along = one)) {

+ for (j in seq_len(dim(DiagAlphaShape[["cycleLocation"]][[one[i]]])[1])) {

+ lines(

+ DiagAlphaShape[["cycleLocation"]][[one[i]]][j, , 1:2], pch = 19,

+ cex = 1, col = i)

+ }

+ }

> par(mfrow = c(1, 1))

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Birth

D
e

a
th

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
0

.0
1

.0

Representative loop of alpha shape filtration

x1

x
2

Figure 7: Persistence diagram of Alpha shape. Black points represent connected components
and red triangles represent loops.

One way of defining a user-defined filtration is to build a filtration from a simplicial com-
plex and function values on the vertices. The function funFiltration takes function values
(FUNvalues) and simplicial complex (cmplx) as input, and build a filtration, where a filtra-
tion value on a simplex is defined as the maximum of function values on the vertices of the
simplex.

In the following example, the function funFiltration construct a filtration from a Rips
complex and the DTM function values on data points.

> m0 <- 0.1

> dtmValues <- dtm(X = X, Grid = X, m0 = m0)

> FltFun <- funFiltration(FUNvalues = dtmValues, cmplx = FltRips[["cmplx"]])

Once the filtration is computed, the function filtrationDiag computes the persistence di-
agram from the filtration. The user can choose to compute the persistence diagram using
either the C++ library GUDHI or Dionysus.

 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/

14 Introduction to the R package TDA

> DiagFltFun <- filtrationDiag(filtration = FltFun, maxdimension = maxdimension,

+ library = "Dionysus", location = TRUE, printProgress = TRUE)

0% 10 20 30 40 50 60 70 80 90 100%

|----|----|----|----|----|----|----|----|----|----|

Persistence timer: Elapsed time [0.002400] seconds

Then we plot the data and the diagram in Figure 8.

> par(mfrow = c(1, 2), mai=c(0.8, 0.8, 0.3, 0.3))

> plot(X, pch = 16, xlab = "",ylab = "")

> plot(DiagFltFun[["diagram"]], diagLim = c(0, 1))

−1.0 0.0 0.5 1.0

−
1

.0
0

.0
0

.5
1

.0

0.0 0.4 0.8

0
.0

0
.4

0
.8

Birth

D
e

a
th

Figure 8: Persistence diagram from Rips filtration and DTM function values. Black points
represent connected components and red triangles represent loops.

3.6. Bottleneck and Wasserstein Distances

Standard metrics for measuring the distance between two persistence diagrams are the bot-
tleneck distance and the pth Wasserstein distance (Edelsbrunner and Harer 2010). The TDA

package includes the functions bottleneck and wasserstein, which are R wrappers of the
functions “bottleneck_distance" and “wasserstein_distance" of the C++ library Dionysus.

We generate two persistence diagrams of the Rips filtrations built on top of the two (separate)
circles of the previous example,

> Diag1 <- ripsDiag(Circle1, maxdimension = 1, maxscale = 5)

> Diag2 <- ripsDiag(Circle2, maxdimension = 1, maxscale = 5)

and we compute the bottleneck distance and the 2nd Wasserstein distance between the two di-
agrams. In the following code, the option dimension = 1 specifies that the distances between
diagrams are computed using only one dimensional features (loops).

 https://www.mrzv.org/software/dionysus/

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau15

> print(bottleneck(Diag1[["diagram"]], Diag2[["diagram"]],

+ dimension = 1))

[1] 1.243418

> print(wasserstein(Diag1[["diagram"]], Diag2[["diagram"]], p = 2,

+ dimension = 1))

[1] 2.02464

3.7. Landscapes and Silhouettes

Persistence landscapes and silhouettes are real-valued functions that further summarize the
information contained in a persistence diagram. They have been introduced and studied
in Bubenik (2012), Chazal et al. (2014c), and Chazal, Fasy, Lecci, Michel, Rinaldo, and
Wasserman (2014b). We briefly introduce the two functions.

Landscape. The persistence landscape is a collection of continuous, piecewise linear func-
tions λ : Z+ × R → R that summarizes a persistence diagram. To define the landscape, con-

sider the set of functions created by tenting each each point p = (x, y) =
(

b+d
2 , d−b

2

)

repre-

senting a birth-death pair (b, d) in the persistence diagram D as follows:

Λp(t) =

t − x + y t ∈ [x − y, x]

x + y − t t ∈ (x, x + y]

0 otherwise

=

t − b t ∈ [b, b+d
2]

d − t t ∈ (b+d
2 , d]

0 otherwise.

(1)

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the func-
tions {Λp}p; see Figure 9 (left). The persistence landscape of D is a summary of this arrange-
ment. Formally, the persistence landscape of D is the collection of functions

λ(k, t) = kmax
p

Λp(t), t ∈ [0, T], k ∈ N, (2)

where kmax is the kth largest value in the set; in particular, 1max is the usual maximum func-
tion. see Figure 9 (middle).

Silhouette. Consider a persistence diagram with N off diagonal points {(bj , dj)}N
j=1. For

every 0 < p < ∞ we define the power-weighted silhouette

φ(p)(t) =

∑N
j=1 |dj − bj |pΛj(t)
∑N

j=1 |dj − bj |p
.

The value p can be thought of as a trade-off parameter between uniformly treating all pairs
in the persistence diagram and considering only the most persistent pairs. Specifically, when
p is small, φ(p)(t) is dominated by the effect of low persistence features. Conversely, when p
is large, φ(p)(t) is dominated by the most persistent features; see Figure 9 (right).

The landscape and silhouette functions can be evaluated over a one-dimensional grid of points
tseq using the functions landscape and silhouette. In the following code, we use the
persistence diagram from Figure 5 to construct the corresponding landscape and silhouette

16 Introduction to the R package TDA

Triangles

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

(Birth + Death) / 2

(D
e
a
th

 −
 B

ir
th

)
/
2

1st Landscape

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

Silhouette p = 1

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 9: Left: we use the rotated axes to represent a persistence diagram D. A feature
(b, d) ∈ D is represented by the point (b+d

2 , d−b

2) (pink). In words, the x-coordinate is the
average parameter value over which the feature exists, and the y-coordinate is the half-life
of the feature. Middle: the blue curve is the landscape λ(1, ·). Right: the blue curve is the
silhouette φ(1)(·).

for one-dimensional features (dimension = 1). The option (KK = 1) specifies that we are
interested in the 1st landscape function, and (p = 1) is the power of the weights in the
definition of the silhouette function.

> maxscale <- 5

> tseq <- seq(0, maxscale, length = 1000) #domain

> Land <- landscape(DiagRips[["diagram"]], dimension = 1, KK = 1, tseq)

> Sil <- silhouette(DiagRips[["diagram"]], p = 1, dimension = 1, tseq)

The functions landscape and silhouette return real valued vectors, which can be simply
plotted with plot(tseq, Land, type = "l"); plot(tseq, Sil, type = "l"). See Fig-
ure 10.

0 1 2 3 4 5

−
0

.5
0

.5
1

.5

1st Landscape, dim = 1

0 1 2 3 4 5

−
0

.5
0

.5
1

.5

Silhouette(p = 1), dim = 1

Figure 10: Landscape and Silhouette of the one-dimensional features of the diagram of Figure
5.

3.8. Confidence Bands for Landscapes and Silhouettes

Recent results in Chazal et al. (2014c) and Chazal et al. (2014b) show how to construct con-
fidence bands for landscapes and silhouettes, using a bootstrap algorithm (multiplier boot-
strap). This strategy is useful in the following scenario. We have a very large dataset with N

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau17

points. There is a diagram D and landscape λ corresponding to some filtration built on the
data. When N is large, computing D is prohibitive. Instead, we draw n subsamples, each
of size m. We compute a diagram and a landscape for each subsample yielding landscapes
λ1, . . . , λn. (Assuming m is much smaller than N , these subsamples are essentially indepen-
dent and identically distributed.) Then we compute 1

n

∑

i λi, an estimate of E(λi), which can
be regarded as an approximation of λ. The function multipBootstrap uses the landscapes
λ1, . . . , λn to construct a confidence band for E(λi). The same strategy is valid for silhouette
functions. We illustrate the method with a simple example.
First we sample N points from two circles:

> N <- 4000

> XX1 <- circleUnif(N / 2)

> XX2 <- circleUnif(N / 2, r = 2) + 3

> X <- rbind(XX1, XX2)

Then we specify the number of subsamples n, the subsample size m, and we create the objects
that will store the n diagrams and landscapes:

> m <- 80 # subsample size

> n <- 10 # we will compute n landscapes using subsamples of size m

> tseq <- seq(0, maxscale, length = 500) #domain of landscapes

> #here we store n Rips diags

> Diags <- list()

> #here we store n landscapes

> Lands <- matrix(0, nrow = n, ncol = length(tseq))

For n times, we subsample from the large point cloud, compute n Rips diagrams and the
corresponding 1st landscape functions (KK = 1), using 1 dimensional features (dimension =

1):

> for (i in seq_len(n)) {

+ subX <- X[sample(seq_len(N), m),]

+ Diags[[i]] <- ripsDiag(subX, maxdimension = 1, maxscale = 5)

+ Lands[i,] <- landscape(Diags[[i]][["diagram"]], dimension = 1,

+ KK = 1, tseq)

+ }

Finally we use the n landscapes to construct a 95% confidence band for the mean landscape

> bootLand <- multipBootstrap(Lands, B = 100, alpha = 0.05,

+ parallel = FALSE)

which is plotted by the following code. See Figure 11.

> plot(tseq, bootLand[["mean"]], main = "Mean Landscape with 95% band")

> polygon(c(tseq, rev(tseq)),

+ c(bootLand[["band"]][, 1], rev(bootLand[["band"]][, 2])),

+ col = "pink")

> lines(tseq, bootLand[["mean"]], lwd = 2, col = 2)

18 Introduction to the R package TDA

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

Large Sample from Circles

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Mean Landscape with 95% band

Figure 11: 95% confidence band for the mean landscape function.

3.9. Selection of Smoothing Parameters

An unsolved problem in topological inference is how to choose the smoothing parameters, for
example h for KDE and m0 for DTM.

Chazal et al. (2014a) suggest the following method, that we describe here for the kernel
density estimator, but works also for the kernel distance and the distance to measure.

Let ℓ1(h), ℓ2(h), . . . , be the lifetimes of the features of a persistence diagram at scale h. Let
qα(h)/

√
n be the width of the confidence band for the kernel density estimator at scale h,

as described in Section 2.1. We define two quantities that measure the amount of significant
information at level h:

• The number of significant features, N(h) = #
{

i : ℓ(i) > 2 qα(h)√
n

}

;

• The total significant persistence, S(h) =
∑

i

[

ℓi − 2 qα(h)√
n

]

+
.

These measures are small when h is small since qα(h) is large. On the other hand, they are
small when h is large since then all the features of the KDE are smoothed out. Thus we have
a kind of topological bias-variance tradeoff. We choose h to maximize N(h) or S(h).

The method is implemented in the function maxPersistence, as shown in the following toy
example. First, we sample 1600 point from two circles (plus some clutter noise) and we specify
the limits of the grid over which the KDE is evaluated:

> XX1 <- circleUnif(600)

> XX2 <- circleUnif(1000, r = 1.5) + 2.5

> noise <- cbind(runif(80, -2, 5), runif(80, -2, 5))

> X <- rbind(XX1, XX2, noise)

> # Grid limits

> Xlim <- c(-2, 5)

> Ylim <- c(-2, 5)

> by <- 0.2

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau19

Then we specify a sequence of smoothing parameters among which we will select the optimal
one, the number of bootstrap iterations and the level of the confidence bands to be computed:

> parametersKDE <- seq(0.1, 0.6, by = 0.05)

> B <- 50 # number of bootstrap iterations. Should be large.

> alpha <- 0.1 # level of the confidence bands

The function maxPersistence can be parallelized (parallel = TRUE) and a progress bar can
be printed (printProgress = TRUE):

> maxKDE <- maxPersistence(kde, parametersKDE, X,

+ lim = cbind(Xlim, Ylim), by = by, sublevel = FALSE,

+ B = B, alpha = alpha, parallel = TRUE,

+ printProgress = TRUE, bandFUN = "bootstrapBand")

0 10 20 30 40 50 60 70 80 90 100

|----|----|----|----|----|----|----|----|----|----|

The S3 methods summary and plot are implemented for the class "maxPersistence". We
can display the values of the parameters that maximize the two criteria:

> print(summary(maxKDE))

Call:

maxPersistence(FUN = kde, parameters = parametersKDE, X = X,

lim = cbind(Xlim, Ylim), by = by, sublevel = FALSE, B = B,

alpha = alpha, bandFUN = "bootstrapBand", parallel = TRUE,

printProgress = TRUE)

The number of significant features is maximized by

[1] 0.25 0.30

The total significant persistence is maximized by

[1] 0.25

and produce the summary plot of Figure 12.

4. Density Clustering

The last example of this vignette illustrates the use of the function clusterTree, which is an
implementation of Algorithm 1 in Kent, Rinaldo, and Verstynen (2013).

First, we briefly describe the task of density clustering; we defer the reader to Kent (2013) for a
more rigorous and complete description. Let f be the density of the probability distribution P
generating the observed sample X = {x1, . . . , xn} ⊂ R

d. For a threshold value λ > 0, the
corresponding super level set of f is Lf (λ) := cl({x ∈ R

s : f(x) > λ}), and its d-dimensional

20 Introduction to the R package TDA

> par(mfrow = c(1, 2), mai = c(0.8, 0.8, 0.35, 0.3))

> plot(X, pch = 16, cex = 0.5, main = "Two Circles")

> plot(maxKDE, main = "Max Persistence - KDE")

−2 −1 0 1 2 3 4 5

−
2

−
1

0
1

2
3

4

Two Circles

x1

x
2

Max Persistence − KDE

parameter

P
e
rs

is
te

n
c
e

0.1 0.2 0.3 0.4 0.5 0.6
0
.0

0
0
.1

0
0
.2

0
0
.3

0

Figure 12: Max Persistence Method for the selection of smoothing parameters. For each
value of the smoothing parameter we display the persistence of the corresponding homolog-
ical features, along with a (pink) confidence band that separates the statistically significant
features from the topological noise.

subsets are called high-density regions. The high-density clusters of P are the maximal
connected subsets of Lf (λ). By considering all the level sets simultaneously (from λ = 0 to
λ = ∞), we can record the evolution and the hierarchy of the high-density clusters of P .
This naturally leads to the notion of the cluster density tree of P (see, e.g., Hartigan (1981)),
defined as the collection of sets T := {Lf (λ), λ ≥ 0}, which satisfies the tree property:
A, B ∈ T implies that A ⊂ B or B ⊂ A or A∩B = ∅. We will refer to this construction as the
λ-tree. Alternatively, Kent et al. (2013) introduced the α-tree and κ-tree, which facilitate the
interpretation of the tree by precisely encoding the probability content of each tree branch
rather than the density level. Cluster trees are particularly useful for high dimensional data,
whose spatial organization is difficult to represent.

We illustrate the strategy with a simple example. First we generate a 2D point cloud from
three (not so well) separated clusters (see top left plot of Figure 13):

> X1 <- cbind(rnorm(300, 1, .8), rnorm(300, 5, 0.8))

> X2 <- cbind(rnorm(300, 3.5, .8), rnorm(300, 5, 0.8))

> X3 <- cbind(rnorm(300, 6, 1), rnorm(300, 1, 1))

> XX <- rbind(X1, X2, X3)

Then we use the function clusterTree to compute cluster trees using the k Nearest Neighbors
density estimator (k = 100 nearest neighbors) and the Gaussian kernel density estimator,
with smoothing parameter h.

> Tree <- clusterTree(XX, k = 100, density = "knn",

+ printProgress = FALSE)

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau21

> TreeKDE <- clusterTree(XX, k = 100, h = 0.3, density = "kde",

+ printProgress = FALSE)

Note that, even when kde is used to estimate the density, we have to provide the option (k
= 100), so that the algorithm can compute the connected components at each level of the
density using a k Nearest Neighbors graph.

The "clusterTree" objects Tree and TreeKDE contain information about the λ-tree, α-tree
and κ-tree. The function plot for objects of the class "clusterTree" produces the plots in
Figure 13.

> plot(Tree, type = "lambda", main = "lambda Tree (knn)")

> plot(Tree, type = "kappa", main = "kappa Tree (knn)")

> plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")

> plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")

0 2 4 6 8

−
2

0
2

4
6

Data lambda Tree (knn)

0.0 0.2 0.4 0.6 0.8 1.0

0
0

.0
5

2
0

.0
8

9

lambda Tree (kde)

0.0 0.2 0.4 0.6 0.8 1.0

0
0

.0
5

6
0

.0
9

1

0 2 4 6 8

−
2

0
2

4
6

cluster labels (knn) kappa Tree (knn)

0.0 0.2 0.4 0.6 0.8 1.0

0
0

.3
8

2
0

.6
1

1

kappa Tree (kde)

0.0 0.2 0.4 0.6 0.8 1.0

0
0

.3
8

4
0

.6
1

1

Figure 13: The lambda trees and kappa trees of the k Nearest Neighbor density estimator
and the kernel density estimator.

22 Introduction to the R package TDA

References

Bauer U, Kerber M, Reininghaus J (2012). “PHAT, a software library for persistent homol-
ogy.” https://bitbucket.org/phat-code/phat/.

Bubenik P (2012). “Statistical topological data analysis using persistence landscapes.” arXiv
preprint arXiv:1207.6437.

Carlsson G (2009). “Topology and data.” Bulletin of the American Mathematical Society,
46(2), 255–308.

Chazal F, Cohen-Steiner D, Mérigot Q (2011). “Geometric inference for probability measures.”
Foundations of Computational Mathematics, 11(6), 733–751.

Chazal F, de Silva V, Glisse M, Oudot S (2012). “The structure and stability of persistence
modules.” arXiv preprint arXiv:1207.3674.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014a). “Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance.” Technical Report.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014b). “Subsampling
Methods for Persistent Homology.” arXiv preprint arXiv:1406.1901.

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014c). “Stochastic Convergence of
Persistence Landscapes and Silhouettes.” In Proceedings of the Thirtieth Annual Symposium
on Computational Geometry, SOCG’14, pp. 474:474–474:483. ACM, New York, NY, USA.
ISBN 978-1-4503-2594-3. doi:10.1145/2582112.2582128. URL http://doi.acm.org/

10.1145/2582112.2582128.

Chazal F, Massart P, Michel B (2015). “Rates of convergence for robust geometric inference.”
CoRR, abs/1505.07602. URL http://arxiv.org/abs/1505.07602.

Edelsbrunner H, Harer J (2010). Computational topology: an introduction. American Math-
ematical Society.

Edelsbrunner H, Mücke EP (1994). “Three-dimensional Alpha Shapes.” ACM Trans. Graph.,
13(1), 43–72. ISSN 0730-0301. doi:10.1145/174462.156635. URL http://doi.acm.

org/10.1145/174462.156635.

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2014). “Confidence
sets for persistence diagrams.” Ann. Statist., 42(6), 2301–2339. ISSN 0090-5364. doi:

10.1214/14-AOS1252. URL https://doi.org/10.1214/14-AOS1252.

Fischer K (2005). “Introduction to Alpha Shapes.” http://www.cs.uu.nl/docs/vakken/

ddm/texts/Delaunay/alphashapes.pdf.

Hartigan JA (1981). “Consistency of single linkage for high-density clusters.” Journal of the
American Statistical Association, 76(374), 388–394.

Kent B (2013). Level Set Trees for Applied Statistics. Ph.D. thesis, Department of Statistics,
Carnegie Mellon University.

 https://bitbucket.org/phat-code/phat/
 https://bitbucket.org/phat-code/phat/
https://doi.org/10.1145/2582112.2582128
http://doi.acm.org/10.1145/2582112.2582128
http://doi.acm.org/10.1145/2582112.2582128
http://arxiv.org/abs/1505.07602
https://doi.org/10.1145/174462.156635
http://doi.acm.org/10.1145/174462.156635
http://doi.acm.org/10.1145/174462.156635
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1214/14-AOS1252
 http://www.cs.uu.nl/docs/vakken/ddm/texts/Delaunay/alphashapes.pdf
 http://www.cs.uu.nl/docs/vakken/ddm/texts/Delaunay/alphashapes.pdf
 http://www.cs.uu.nl/docs/vakken/ddm/texts/Delaunay/alphashapes.pdf
 http://www.cs.uu.nl/docs/vakken/ddm/texts/Delaunay/alphashapes.pdf

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L. Millman, Vincent Rouvreau23

Kent BP, Rinaldo A, Verstynen T (2013). “DeBaCl: A Python Package for Interactive
DEnsity-BAsed CLustering.” arXiv preprint arXiv:1307.8136.

Kpotufe S, von Luxburg U (2011). “Pruning nearest neighbor cluster trees.” In International
Conference on Machine Learning (ICML).

Maria C (2014). “GUDHI, Simplicial Complexes and Persistent Homology Packages.” https:

//project.inria.fr/gudhi/software/.

Morozov D (2007). “Dionysus, a C++ library for computing persistent homology.” https:

//www.mrzv.org/software/dionysus/.

Rouvreau V (2015). “Alpha complex.” In GUDHI User and Reference Manual. GUDHI
Editorial Board. URL http://gudhi.gforge.inria.fr/doc/latest/group__alpha_

_complex.html.

Affiliation:

Brittany T. Fasy
Computer Science Department
Montana State University
Website: http://www.cs.montana.edu/brittany/

Email: brittany.fasy@alumni.duke.edu

Jisu Kim
DataShape Group
INRIA Saclay
Website: http://www.stat.cmu.edu/~jisuk/

Email: jisu.kim@inria.fr

Fabrizio Lecci
Email: fabrizio.lecci@gmail.com

Clément Maria
School of Mathematics and Physics
The University of Queensland
Website: http://www-sop.inria.fr/members/Clement.Maria/

Email: clement.maria@inria.fr

David L. Millman
Computer Science Department
Montana State University
Website: http://millman.us

Email: david.millman@montana.edu

 https://project.inria.fr/gudhi/software/
 https://project.inria.fr/gudhi/software/
 https://project.inria.fr/gudhi/software/
 https://project.inria.fr/gudhi/software/
 https://www.mrzv.org/software/dionysus/
 https://www.mrzv.org/software/dionysus/
 https://www.mrzv.org/software/dionysus/
 https://www.mrzv.org/software/dionysus/
http://gudhi.gforge.inria.fr/doc/latest/group__alpha__complex.html
http://gudhi.gforge.inria.fr/doc/latest/group__alpha__complex.html
 http://www.cs.montana.edu/brittany/
mailto:brittany.fasy@alumni.duke.edu
 http://www.stat.cmu.edu/~jisuk/
mailto:jisu.kim@inria.fr
mailto:fabrizio.lecci@gmail.com
 http://www-sop.inria.fr/members/Clement.Maria/
mailto:clement.maria@inria.fr
 http://millman.us
mailto:david.millman@montana.edu

24 Introduction to the R package TDA

Vincent Rouvreau
GUDHI Group
INRIA Saclay
Email: vincent.rouvreau@inria.fr

TopStat Group
Carnegie Mellon University
Website: http://www.stat.cmu.edu/topstat/

Email: topstat@stat.cmu.edu

mailto:vincent.rouvreau@inria.fr
 http://www.stat.cmu.edu/topstat/
mailto:topstat@stat.cmu.edu

	Introduction
	Distance Functions and Density Estimators
	Bootstrap Confidence Bands

	Persistent Homology
	Persistent Homology Over a Grid
	Rips Diagrams
	Alpha Complex Persistence Diagram
	Persistence Diagram of Alpha Shape
	Persistence Diagrams from Filtration
	Bottleneck and Wasserstein Distances
	Landscapes and Silhouettes
	Confidence Bands for Landscapes and Silhouettes
	Selection of Smoothing Parameters

	Density Clustering

