
Package ‘TRAMPR’
February 7, 2022

Title 'TRFLP' Analysis and Matching Package for R

Version 1.0-10

License GPL-2

Depends R (>= 2.4)

URL https://github.com/richfitz/TRAMPR

Description Matching terminal restriction fragment length
polymorphism ('TRFLP') profiles between unknown samples and a
database of known samples. 'TRAMPR' facilitates analysis of
many unknown profiles at once, and provides tools for working
directly with electrophoresis output through to generating
summaries suitable for community analyses with R's rich set of
statistical functions. 'TRAMPR' also resolves the issues of
multiple 'TRFLP' profiles within a species, and shared 'TRFLP'
profiles across species.

NeedsCompilation no

Author Rich FitzJohn [aut, cre],
Ian Dickie [aut]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2022-02-07 18:40:02 UTC

R topics documented:
TRAMPR-package . 2
add.known . 3
build.knowns . 6
combine . 8
combine.TRAMPsamples . 8
create.diffsmatrix . 9
demo.knowns . 11
demo.samples . 11
group.knowns . 12

1

https://github.com/richfitz/TRAMPR

2 TRAMPR-package

load.abi . 16
plot.TRAMP . 18
plot.TRAMPknowns . 20
plot.TRAMPsamples . 22
read.abi . 23
read.write . 24
rebuild.TRAMP . 26
remove.TRAMP.match . 26
summary.TRAMP . 27
TRAMP . 28
TRAMPindexing . 30
TRAMPknowns . 32
TRAMPsamples . 34
update.TRAMP . 36

Index 38

TRAMPR-package The TRAMPR Package (TRFLP Analysis and Matching Package for
R)

Description

This package contains a collection of functions to help analyse terminal restriction fragment length
polymorphism (TRFLP) profiles, by matching unknown peaks to known TRFLP profiles in order
to identify species.

The TRAMPR package contains a vignette, which includes a worked example; type vignette("TRAMPRdemo")
to view it. To see all documented help topics, type library(help=TRAMPR).

Details

Start by reading the TRAMP (and perhaps create.diffsmatrix) help pages, which explain the
matching algorithm.

Then read load.abi to learn how to load ABI format data into the program. Alternatively, read
TRAMPsamples and read.TRAMPsamples to load already-processed data.

If you already have a collection of knowns, read TRAMPknowns and read.TRAMPknowns to learn
how to load them. Otherwise, read build.knowns to learn how to automatically generate a set of
known profiles from your data.

Once your data are loaded, reread TRAMP to do the analysis, then read plot.TRAMP and summary.TRAMP
to examine the analysis. update.TRAMP may also be useful for modifying your matches. summary.TRAMP
is also useful for preparing presence/absence matrices for analysis with other tools (e.g. the vegan
package; see the vignette indicated below).

TRAMPR works with database-like objects, and a basic understanding of relational databases and
primary/foreign keys will aid in understanding some aspects of the package.

add.known 3

Citation

Please see citation("TRAMPR") for the citation of TRAMPR.

Note

TRAMPR is designed specifically for “database TRFLP” (identifying species based on a database
of known TRFLP profiles: see Dicke et al. 2002. It is not designed for direct community analysis
of TRFLP profiles as in peak-profile TRFLP.

Author(s)

Rich FitzJohn and Ian Dickie, Landcare Research

References

Dicke IA, FitzJohn RG 2007: Using terminal-restriction fragment length polymorphism (T-RFLP)
to identify mycorrhizal fungi; a methods review. Mycorrhiza 17: 259-270.

Dickie IA, Xu B, Koide RT 2002. Vertical distribution of ectomycorrhizal hyphae in soil as shown
by T-RFLP analysis. New Phytologist 156: 527-535.

FitzJohn RG, Dickie IA 2007: TRAMPR: An R package for analysis and matching of terminal-
restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes [doi:10.1111/j.1471-
8286.2007.01744.x].

add.known Add Knowns To TRAMPknowns Databases

Description

Add a single known or many knowns to a knowns database in a TRAMPknowns object. add.known
takes a TRAMPknowns object, and adds the peak profile of a single sample from a TRAMPsamples ob-
ject. combine.TRAMPknowns combines two TRAMPknowns objects (similar to combine.TRAMPsamples).
add.known and combine are generic, so if x argument is a TRAMP object, then the knowns component
of that object will be updated.

Usage

add.known(x, ...)
S3 method for class 'TRAMPknowns'
add.known(x, samples, sample.fk, prompt=TRUE, default.species=NULL, ...)
S3 method for class 'TRAMP'
add.known(x, sample.fk, rebuild=TRUE, ...)

S3 method for class 'TRAMPknowns'
combine(x, y, rewrite.knowns.pk=FALSE, ...)
S3 method for class 'TRAMP'
combine(x, y, rebuild=TRUE, ...)

4 add.known

Arguments

x A TRAMPknowns or TRAMP object, containing identified TRFLP patterns.

samples A TRAMPsamples object, containing unidentified samples.

sample.fk sample.fk of sample in samples to add to the knowns database. If x is a TRAMP
object, then sample.fk refers to a sample in the TRAMPsamples object used in
the creation of that TRAMP object (stored as x$samples: see labels(x$samples)
for codes).

prompt Logical: Should the function interactively prompt for a new species name?
default.species

Default species name. If NULL (the default), the name chosen will be the value of
samples$info$species for the current sample. Set to NA if no name is currently
known (see group.knowns - identical non-NA names are considered related).

y A second TRAMPknowns object, containing knowns to add to x.
rewrite.knowns.pk

Logical: If the new knowns data contain knowns.pk values that conflict with
those in the original TRAMPknowns object, should the new knowns be renum-
bered? If this is TRUE, do not rely on any knowns.pk values staying the same for
the newly added knowns. knowns.pk values in the original TRAMPknowns object
will never be changed.

rebuild Logical: should the TRAMP object be rebuilt after adding knowns, by running
rebuild.TRAMP on it? This is important to determine if the new known(s) match
any of the samples in the TRAMP object. This should be left as TRUE unless you
plan on manually rebuilding the object later.

... Additional arguments passed to future methods.

Details

(add.known only): When adding the profile of a single individual via add.known, if more than one
peak per enzyme/primer combination is present we select the most likely profile by picking the
highest peak (largest height value) for each enzyme/primer combination (a warning will be given).
If two peaks are of the same height, then the peak taken is unspecified (similar to build.knowns
with min.ratio=0).

(combine only): rewrite.knowns.pk provides a simple way of merging knowns databases that use
the same values of knowns.pk. Because knowns.pk must be unique, if y (the new knowns database)
uses knowns.pk values present in x (the original database), then the knowns.pk values in y must be
rewritten. This will be done by adding max(labels(x)) to every knowns.pk value in y$info and
knowns.fk value in y$data.

If retaining knowns.pk information is important, we suggest saving the value of knowns.pk before
running this function, e.g.

info$knowns.pk.old <-info$knowns.pk

If more control over the renaming process is required, manually adjust y$info$knowns.pk yourself
before calling this function. However, by default no translation will be done, and an error will occur
if x and y share knowns.pk values.

For add.known, only a subset of columns are passed to the knowns object (a future version may be
more inclusive):

add.known 5

• From samples$info: sample.pk (as knowns.pk.)

• From samples$data: sample.fk (as knowns.fk), primer, enzyme, size.

For combine, the data and info elements of the resulting TRAMPknowns object will have the union
of the columns present in both sets of knowns. If any additional elements exist as part of the second
TRAMPknowns object (e.g. passed as ... to TRAMPknowns when creating y), these will be ignored.

Value

An object of the same class as x: if a TRAMP object is supplied, a new TRAMP object with an updated
TRAMPknowns component will be returned, and if the object is a TRAMPknowns object an updated
TRAMPknowns object will be returned.

Note

If the TRAMPknowns object has a file.pat element (see TRAMPknowns), then the new knowns
database will be written to file. This may be confusing when operating on TRAMP objects directly,
since both the TRAMPknowns object used in the TRAMP object and the original TRAMPknowns ob-
ject will share the same file.pat argument, but contain different data as soon as add.known or
combine is used. In short - be careful! To avoid this issue, either set file.pat to NULL before using
add.known or combine.

See Also

build.knowns, which automatically builds a knowns database, and TRAMPknowns, which docu-
ments the object containing the knowns database.

combine.TRAMPsamples, which combines a pair of TRAMPsamples objects.

Examples

data(demo.knowns)
data(demo.samples)

(1) Using add.known(), to add a single known:

Sample "101" looks like a potential known, add it to our knowns
database:
plot(demo.samples, 101)

Add this to a knowns database:
Because there is more than one peak per enzyme/primer combination, a
warning will be given. In this case, since there are clear peaks it
is harmless.
demo.knowns.2 <- add.known(demo.knowns, demo.samples, 101,

prompt=FALSE)

The known has been added:
demo.knowns.2[101]
try(demo.knowns[101]) # error - known didn't exist in original knowns

Same, but adding to an existing TRAMP object.

6 build.knowns

res <- TRAMP(demo.samples, demo.knowns)
plot(res, 101)
res2 <- add.known(res, 101, prompt=FALSE, default.species="New known")

Now the new known matches itself.
plot(res2, 101)

(2) Using combine() to combine knowns databases.

Let's split the original knowns database in two:
demo.knowns.a <- demo.knowns[head(labels(demo.knowns), 10)]
demo.knowns.b <- demo.knowns[tail(labels(demo.knowns), 10)]

Combining these is easy:
demo.knowns.c <- combine(demo.knowns.a, demo.knowns.b)

Knowns from both the small database are present in the new one:
identical(c(labels(demo.knowns.a), labels(demo.knowns.b)),

labels(demo.knowns.c))

Demonstration of knowns rewriting:
demo.knowns.d <- demo.knowns.a
demo.knowns.a$info$from <- "a"
demo.knowns.d$info$from <- "d"

try(combine(demo.knowns.a, demo.knowns.d)) # error
demo.knowns.e <- combine(demo.knowns.a, demo.knowns.d,

rewrite.knowns.pk=TRUE)

See that both data sets are here (check the "from" column).
demo.knowns.e$info

Note that a better approach in might be to manually resolve
conficting knowns.pk values before combining.

build.knowns Automatically Build Knowns Database

Description

This function uses several filters to select likely knowns, and construct a TRAMPknowns object from
a TRAMPsamples object. Samples are considered to be “potential knowns” if they have data for an
adequate number of enzyme/primer combinations, and if for each combination they have either a
single peak, or a peak that is “distinct enough” from any other peaks.

Usage

build.knowns(d, min.ratio=3, min.comb=NA, restrict=FALSE, ...)

build.knowns 7

Arguments

d A TRAMPsamples object, containing samples from which to build the knowns
database.

min.ratio Minimum ratio of maximum to second highest peak to accept known (see De-
tails).

min.comb Minimum number of enzyme/primer combinations required for each known (see
Details for behaviour of default).

restrict Logical: Use only cases where d$info$species is non-blank? (These are as-
sumed to come from samples of a known species. However, it is not guaranteed
that all samples with data for species will become knowns; if they fail either
the min.ratio or min.comb checks they will be excluded.)

... Additional arguments passed to TRAMPknowns (e.g. cluster.pars, file.pat
and any additional objects).

Details

For all samples and enzyme/primer combinations, the ratio of the largest to the second largest peak
is calculated. If it is greater than min.ratio, then that combination is accepted. If the sample has
at least min.comb valid enzyme/primer combinations, then that sample is included in the knowns
database. If min.comb is NA (the default), then every enzyme/primer combination present in the data
is required.

Value

A new TRAMPknowns object. It will generally be neccessary to edit this object; see read.TRAMPknowns
for details on how to write, edit, and read back a modified object.

Note

If two peaks have the same height, then using min.ratio=1 will not allow the entry as part of
the knowns database; use min.ratio=0 instead if this is desired. In this case, the peak chosen is
unspecified.

Note that this function is sensitive to data quality. In particular split peaks may cause a sample not
to be added. These samples may be manually added using add.known.

Examples

data(demo.samples)
demo.knowns.auto <- build.knowns(demo.samples, min.comb=4)
plot(demo.knowns.auto, cex=.75)

8 combine.TRAMPsamples

combine Combine Two Objects

Description

This function is used to combine TRAMPsamples together, and to combine TRAMPknowns to TRAMPknowns
or TRAMP objects. combine is generic; please see combine.TRAMPsamples and combine.TRAMPknowns
for more information.

Usage

combine(x, y, ...)

Arguments

x, y Objects to be combined. See combine.TRAMPsamples and combine.TRAMPknowns
for more information.

... Additional arguments required by methods.

See Also

See combine.TRAMPsamples and combine.TRAMPknowns for more information.

combine.TRAMPsamples Combine TRAMPsamples Objects

Description

Combines two TRAMPsamples objects into one large TRAMPsamples object containing all the sam-
ples for both original objects.

Usage

S3 method for class 'TRAMPsamples'
combine(x, y, rewrite.sample.pk=FALSE, ...)

Arguments

x, y TRAMPsamples objects, containing TRFLP patterns.
rewrite.sample.pk

Logical: If the new sample data (y) contains sample.pk values that conflict
with those in the original TRAMPsamples object (x), should the new samples
be renumbered? If this is TRUE, do not rely on any sample.pk values stay-
ing the same for the newly added samples. sample.pk values in the original
TRAMPsamples object will never be changed.

... Further arguments passed to or from other methods.

create.diffsmatrix 9

Details

For a discussion of rewrite.sample.pk, see the comments on rewrite.knowns.pk in the Details
of combine.TRAMPknowns.

The data and info elements of the resulting TRAMPsamples object will have union of the columns
present in both sets of samples.

If any additional elements exist as part of the second TRAMPsamples object (e.g. passed as ... to
TRAMPsamples), these will be ignored with a warning (see Example).

See Also

combine.TRAMPknowns, the method for TRAMPknowns objects.

Examples

data(demo.samples)

Let's split the original samples database in two, and recombine.
demo.samples.a <- demo.samples[head(labels(demo.samples), 10)]
demo.samples.b <- demo.samples[tail(labels(demo.samples), 10)]

Combining these is easy:
demo.samples.c <- combine.TRAMPsamples(demo.samples.a, demo.samples.b)

There is a warning message because demo.samples.b contains extra
elements:
names(demo.samples.b)

In this case, these objects should not be combined, but in other
cases it may be necessary to rbind() the extra objects together:
Not run:
demo.samples.c$soilcore <- rbind(demo.samples.a$soilcore,

demo.samples.b$soilcore)

End(Not run)

This must be done manually, since there is no way of telling what
should be done automatically. Ideas/contributions are welcome here.

create.diffsmatrix Calculate Matrix of Distances between Peaks

Description

Generate an array of goodness-of-fit (or distance) between samples and knowns based on the sizes
(in base pairs) of TRFLP peaks. For each sample/known combination, and for each enzyme/primer
combination, this calculates the minimum distance between any peak in the sample and the single
peak in the known.

10 create.diffsmatrix

Usage

create.diffsmatrix(samples, knowns)

Arguments

samples A TRAMPsamples object, containing unidentified samples.

knowns A TRAMPknowns object, containing identified TRFLP patterns.

Details

This function will rarely need to be called directly, but does most of the calculations behind TRAMP,
so it is useful to understand how this works.

This function generates a three-dimensional s × k × n matrix of the (smallest, see below) dis-
tance in base pairs between peaks in a collection of unknowns (run data) and a database of knowns
for several enzyme/primer combinations. s is the number of different samples in the samples
data (length(labels(samples))), k is the number of different types in the knowns database
(length(labels(knowns))), and n is the number of different enzyme/primer combinations. The
enzyme/primer combinations used are all combinations present in the knowns database; combina-
tions present only in the samples will be ignored. Not all samples need contain all enzyme/primer
combinations present in the knowns.

In the resulting array, m[i,j,k] is the difference (in base pairs) between the ith sample and the jth
known for the kth enzyme/primer combination. The ordering of the n enzyme/primer combinations
is arbitrary, so a data.frame of combinations is included as the attribute enzyme.primer, where
enzyme.primer$enzyme[k] and enzyme.primer$primer[k] correspond to enzyme and primer
used for the distances in m[,,k].

Each case in the knowns database has a single (or no) peak for each enzyme/primer combination,
but each sample may contain multiple peaks for an enzyme/primer combination; the difference
is always the smallest distance from the sample to the known peak. Where a sample and/or a
known lacks an enzyme/primer combination, the value of the difference is NA. The smallest absolute
distance is taken between sample and known peaks, but the sign of the difference is preserved
(negative where the closest sample peak was less than the known peak, positive where greater; see
absolute.min).

Value

A three-dimensional matrix, with an attribute enzyme.primer, described above.

See Also

TRAMP, which uses output from create.diffsmatrix.

Examples

data(demo.samples)
data(demo.knowns)

s <- length(labels(demo.samples))
k <- length(labels(demo.knowns))

demo.knowns 11

n <- nrow(unique(demo.knowns$data[c("enzyme", "primer")]))

m <- create.diffsmatrix(demo.samples, demo.knowns)

dim(m)
identical(dim(m), c(s, k, n))

Maximum error for each sample/known (i.e. across all enzyme/primer
combinations), similar to how calculated by \link{TRAMP}
error <- apply(abs(m), 1:2, max, na.rm=TRUE)
dim(error)

Euclidian error (see ?\link{TRAMP})
error.euclid <- sqrt(rowSums(m^2, TRUE, 2))/rowSums(!is.na(m), dims=2)

Euclidian and maximum error will require different values of
accept.error in TRAMP:
plot(error, error.euclid, pch=".")

demo.knowns Demonstration Knowns Database

Description

A knowns database, for demonstrating the TRAMPR package. This is a subset of a full knowns
database, and not intended to represent any real data set, and should not be assumed to be accurate.

The data are stored as a TRAMPknowns object. Columns in the info and data components are
described on the TRAMPknowns page.

Usage

data(demo.knowns)

Licence

This data set is provided under a Creative Commons “Attribution-NonCommercial-NoDerivs 2.5”
licence. Please see https://creativecommons.org/licenses/by-nc-nd/2.5/ for details.

demo.samples Demonstration Samples Database

https://creativecommons.org/licenses/by-nc-nd/2.5/

12 group.knowns

Description

A samples database, for demonstrating the TRAMPR package. This is a subset of a full samples
database, is not intended to represent any real data set, and should not be assumed to be accurate.

The data are stored as a TRAMPsamples object. Columns in the info and data components are
described on the TRAMPsamples page, but with some additions:

• info:

– soilcore.fk: Key to the soil core from which a sample came. See soilcore, below.

• data:

– sample.file.name: Original .fsa file corresponding to the TRFLP run. This is included
in all TRAMPsamples objects created by load.abi.

• soilcore: A data.frame with information about the soilcore from which samples came.

– soilcore.pk: Key, distinguishing soil cores.
– plot: Plot number (1 to 10).
– elevation: Height above mean sea level, in metres.
– east: Easting (New Zealand Map Grid/NZMG).
– north: Northing (NZMG).
– vegetation: Vegetation type (Nothofagus solandri or Pinus contorta).

Usage

data(demo.samples)

Format

A TRAMPsamples object.

Licence

This data set is provided under a Creative Commons “Attribution-NonCommercial-NoDerivs 2.5”
licence. Please see https://creativecommons.org/licenses/by-nc-nd/2.5/ for details.

group.knowns Knowns Clustering

Description

Group a TRAMPknowns object so that knowns with similar TRFLP patterns and knowns that share
the same species name “group” together. In general, this function will be called automatically
whenever appropriate (e.g. when loading a data set or adding new knowns). Please see Details to
understand why this function is necessary, and how it works.

The main reason for manually calling group.knowns is to change the default values of the argu-
ments; if you call group.knowns on a TRAMPknowns object, then any subsequent automatic call
to group.knowns will use any arguments you passed in the manual group.knowns call (e.g. after
doing group.knowns(x,cut.height=20), all future groupings will use cut.height=20).

https://creativecommons.org/licenses/by-nc-nd/2.5/

group.knowns 13

Usage

group.knowns(x, ...)
S3 method for class 'TRAMPknowns'
group.knowns(x, dist.method, hclust.method, cut.height, ...)
S3 method for class 'TRAMP'
group.knowns(x, ...)

Arguments

x A TRAMPknowns or TRAMP object, containing identified TRFLP patterns.

dist.method Distance method used in calculating similarity between different knowns (see
dist). Valid options include "maximum", "euclidian" and "manhattan".

hclust.method Clustering method used in generating clusters from the similarity matrix (see
hclust).

cut.height Passed to cutree; controls how similar members of each group should be (the
larger cut.height, the more inclusive knowns groups will be).

... Arguments passed to further methods.

Details

group.knowns groups together knowns in a TRAMPknowns object based on two criteria: (1) TRFLP
profiles that are very similar across shared enzyme/primer combinations (based on clustering) and
(2) TRFLP profiles that belong to the same species (i.e. share a common species column in the
info data.frame of x; see TRAMPknowns for more information). This is to solve three issues in
TRFLP analysis:

1. The TRFLP profile of a single species can have variation in peak sizes due to DNA sequence
variation. By including multiple collections of each species, variation in TRFLP profiles can
be accounted for. If a TRAMPknowns object contains multiple collections of a species, these
will be aggregated by group.knowns. This aggregation is essential for community analysis,
as leaving individual collections will artificially inflate the number of “present species” when
running TRAMP.
Some authors have taken an alternative approach by using a larger tolerance in matching peaks
between samples and knowns (effectively increasing accept.error in TRAMP) to account for
within-species variation. This is not recommended, as it dramatically increases the risk of
incorrect matches.

2. Distinctly different TRFLP profiles may occur within a species (or in some cases within an
individual); see Avis et al. (2006). group.knowns looks at the species column of the info
data.frame of x and joins any knowns with identical species values as a group.
This can also be used where multiple profiles are present in an individual.

3. Different species may share a similar TRFLP profile and therefore be indistinguishable using
TRFLP. If these patterns are not grouped, two species will be recorded as present wherever
either is present. group.knowns prevents this by joining knowns with “very similar” TR-
FLP patterns as a group. Ideally, these problematic groups can be resolved by increasing the
number of enzyme/primer pairs in the data.

14 group.knowns

Groups names are generated by concatenating all unique (sorted) species names together, separated
by commas.

To determine if knowns are “similar enough” to form a group, we use R’s clustering tools: dist,
hclust and cutree. First, we generate a distance matrix of the knowns profiles using dist, and
using method dist.method (see Example below; this is very similar to what TRAMP does, and
dist.method should be specified accordingly). We then generate clusters using hclust, and using
method hclust.method, and “cut” the tree at cut.height using cutree.

Knowns are grouped together iteratively; so that all groups sharing a common cluster are grouped
together, and all knowns that share a common species name are grouped together. In certain cases
this may chain together seemingly unrelated groups.

Because group.knowns is generic, it can be run on either a TRAMPknowns or a TRAMP object. When
run on a TRAMP object, it updates the TRAMPknowns object (stored as x$knowns), so that subsequent
calls to plot.TRAMPknowns or summary.TRAMPknowns (for example) will use the new grouping
parameters.

Parameters set by group.knowns are retained as part of the object, so that when adding additional
knowns (add.known and combine), or when subsetting a knowns database (see [.TRAMPknowns,
aka TRAMPindexing), the same grouping parameters will be used.

Value

For group.knowns.TRAMPknowns, a new TRAMPknowns object. The cluster.pars element will
have been updated with new parameters, if any were specified.

For group.knowns.TRAMP, a new TRAMP object, with an updated knowns element. Note that the
original TRAMPknowns object (i.e. the one from which the TRAMP object was constructed) will not
be modified.

Warning

Warning about missing data: where there are NA values in certain combinations, NAs may be present
in the final distance matrix, which means we cannot use hclust to generate the clusters! In general,
NA values are fine. They just can’t be everywhere.

References

Avis PG, Dickie IA, Mueller GM 2006. A ‘dirty’ business: testing the limitations of terminal
restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology 15:
873-882.

See Also

TRAMPknowns, which describes the TRAMPknowns object.

build.knowns, which attempts to generate a knowns database from a TRAMPsamples data set.

plot.TRAMPknowns, which graphically displays the relationships between knowns.

group.knowns 15

Examples

data(demo.knowns)
data(demo.samples)

demo.knowns <- group.knowns(demo.knowns, cut.height=2.5)
plot(demo.knowns)

Increasing cut.height makes groups more inclusive:
plot(group.knowns(demo.knowns, cut.height=100))

res <- TRAMP(demo.samples, demo.knowns)
m1.ungrouped <- summary(res)
m1.grouped <- summary(res, group=TRUE)
ncol(m1.grouped) # 94 groups

res2 <- group.knowns(res, cut.height=100)
m2.ungrouped <- summary(res2)
m2.grouped <- summary(res2, group=TRUE)
ncol(m2.grouped) # Now only 38 groups

group.knowns results in the same distance matrix as produced by
TRAMP, therefore using the same method (e.g. method="maximum") is
important. The example below shows how the matrix produced by
dist(summary(x)) (as calculated by group.knowns) is the same as that
produced by TRAMP:
f <- function(x, method="maximum") {

Create a pseudo-samples object from our knowns
y <- x
y$data$height <- 1
names(y$info)[names(y$info) == "knowns.pk"] <- "sample.pk"
names(y$data)[names(y$data) == "knowns.fk"] <- "sample.fk"
class(y) <- "TRAMPsamples"

Run TRAMP, clean up and return
(If method != "maximum", rescale the error to match that
generated by dist()).
z <- TRAMP(y, x, method=method)
if (method != "maximum") z$error <- z$error * z$n
names(dimnames(z$error)) <- NULL
z

}

g <- function(x, method="maximum")
as.matrix(dist(summary(x), method=method))

all.equal(f(demo.knowns, "maximum")$error, g(demo.knowns, "maximum"))
all.equal(f(demo.knowns, "euclidian")$error, g(demo.knowns, "euclidian"))
all.equal(f(demo.knowns, "manhattan")$error, g(demo.knowns, "manhattan"))

However, TRAMP is over 100 times slower in this special case.
system.time(f(demo.knowns))
system.time(g(demo.knowns))

16 load.abi

load.abi Load ABI Output Files

Description

These functions help convert data from Applied Biosystems Gene Mapper (ABI) output format into
TRAMPsamples objects for analysis. Note that this operates on the summarised output (a text file),
rather than the .fsa files containing data for individual runs.

Details of the procedure of this function are given below, and a worked example is given in the
package vignette; type vignette("TRAMPRdemo") to view it.

The function peakscanner.to.genemapper is an experimental function to convert from peakscan-
ner output to abi genemapper output. The peakscanner output is very slightly different in format,
and currently load.abi is very fussy about the input file’s structure. Eventially load.abi will be
made more tolerant, but as an interim solution, run peakscanner.to.genemapper on your file.
By default, running peakscanner.to.genemapper(myfile.csv) will produce a file myfile.txt.
This can then be loaded using load.abi as described below, specifying myfile.txt as the file
argument.

Usage

load.abi(file, file.template, file.info, primer.translate, ...)
load.abi.create.template(file, file.template)
load.abi.create.info(file, file.template, file.info)

peakscanner.to.genemapper(filename, output)

Arguments

file The name of the file from which the ABI data are to be read from.

file.template The name of the file containing the “template” file (see Details).

file.info (Optional) the name of the file containing extra information associated with each
sample (see Details).

primer.translate

List used to translate dye codes into primers. The same codes are assumed to
apply across the whole file. See Details for format.

... Additional objects to incorportate into a TRAMPsamples object. See TRAMPsamples
for details.

filename In peakscanner.to.genemapper, the name of the csv file containing output.

output In peakscanner.to.genemapper, the name of the file to be output in abi format
(if omitted, this will be automatically generated).

load.abi 17

Details

Some terminology: a “sample” refers to a physical sample (e.g. a root tip), while a “run” refers to
an individual TRFLP run (i.e. one enzyme and one primer). Because two primers are run at once,
each “runfile” contains information on two “runs”, but each “sample” may contain more than one
“runfile”. Runfiles are distinguished by different sample.file.name values in the ABI file, while
different samples are distinguished by different sample.fk/sample.pk values.

primer.translate is a list used to translate between the dyes recorded in the ABI file and the
primers used. Each element corresponds to a different primer, and is a vector of different colour
dyes. The list:

list(ITS1F="B",ITS4="G")

would translate all dyes with the value "B" to "ITS1F", and all dyes with the value "G" to "ITS4".
The list:

list(ITS1F="B",ITS4=c("G","Y"))

would do the same, except that both "G" and "Y" dyes would be converted to "ITS4". If a dye is
used in the data that is not represented within primer.translate, then it will be excluded (e.g., all
rows of data with dye as "R" will be excluded).

The procedure for loading in ABI data is:

1. Create the “template” file. Template files are required to record which enzymes were used for
each run, since that is not included in the ABI output, and to group together separate runs (typi-
cally different enzymes) that apply to the same individual. The function load.abi.create.template
will create a template that contains all the unique file names found in the ABI file (as sample.file.name),
and blank columns titled enzyme and sample.index. Running
load.abi.create.template(x)

where x is the name of your ABI file will create a template file in the same directory as the
ABI file. The function will print the name and location of the template file to the console.

2. Edit the template file and save. The enzyme and sample.index columns are initially empty
and need filling in, which can be done in Excel, or another spreadsheet program. The sample.index
column links sample.file.name back to an individual sample; multiple sample.file.names
that share sample.index values come from the same individual sample. (If editing with Ex-
cel, ignore all the warnings about incompatible file formats when saving.) sample.index
should be a positive integer (but see Note below).

3. Optionally create an “info” file, which is useful if you want to associate extra information
against your samples. The function load.abi.create.info will create an info file that
contains all the unique values of sample.index, and an empty column titled species. The
species column can be filled in where the species is known (e.g. from collections of sporo-
carps). Any additional columns may be added. Running
load.abi.create.info(x)

where x is the name of your ABI file will create an info file in the same directory as the ABI
file. The function will print the name and location of the info file to the console. Edit and save
this file.

4. Create the TRAMPsamples object by running load.abi. This loads your ABI data, plus the
new template file, plus an optional information file. Running
my.samples <-load.abi(x,primer.translate=primer.translate)

will create an object “my.samples” containing your data.

18 plot.TRAMP

By default, the filenames of the template and info files will be automatically generated: <prefix>.<ext>
becomes <prefix>_template.csv or <prefix>_info.csv. If you choose to specify file.template
or file.info manually when running load.info.create.template or load.info.create.info,
you must use the same values of file.template and file.info when running load.abi.

Warning

Do not change the names of any columns produced by load.abi.create.template or load.abi.create.info.

Note

There is no reason that data from other types of output files could not be manually imported using
TRAMPsamples. We welcome contributions for other major data formats.

When creating sample.index values, these should be positive integers. If you enter strings (e.g.
a1, b1), these will be automatically converted into integers. Once loaded, sample.pk/sample.fk is
always a positive integer key, but sample.index will be retained as your string keys.

See Also

read.abi, which reads in ABI data with few modifications.

TRAMPsamples, which documents the data type produced by load.abi.

The package vignette, which includes a worked example of loading data using these functions; to
locate the vignette, type help(library=TRAMPR), and scroll to the bottom of the page, or type:
system.file("doc/TRAMPR_demo.pdf",package="TRAMPR").

plot.TRAMP Plot a TRAMP Object

Description

Creates a graphical representation of matches performed by TRAMP. The plot displays (1) “matches”,
showing how samples match the knowns and (2) “peak profiles”, showing the locations of peaks for
individual enzyme/primer combinations.

Usage

S3 method for class 'TRAMP'
plot(x, sample.fk, ...)
TRAMP.plotone(x, sample.fk, grouped=FALSE, ignore=FALSE,

all.knowns=TRUE, all.samples=FALSE,
all.samples.global=FALSE, col=1:10,
pch=if (grouped) 15 else 16, xmax=NULL, horiz.lines=TRUE,
mar.default=.5, p.top=.5, p.labels=1/3, cex.axis=NULL,
cex.axis.max=1)

plot.TRAMP 19

Arguments

x A TRAMP object.

sample.fk The sample.fk to plot. If omitted, then all samples are plotted, one after the
other (this is useful for generating a summary of all fits for printing out: see
Example).

grouped Logical: Should the matched knowns be grouped?

ignore Logical: Should matches marked as ignored by remove.TRAMP.match be ex-
cluded?

all.knowns, all.samples, all.samples.global

Controls which enzyme/primer combinations are displayed (see Details)

col Vector of colours to plot the different enzyme/primer combinations. There must
be at least as many colours as there are different combinations.

pch Plotting symbol to use (see points for possible values and their interpretation).
By default, this will use filled circles when ungrouped and filled squares when
grouped.

xmax Maximum size (in base pairs) for the plots to cover. NULL (the default) uses the
range of all data found in the TRAMPsamples object (rounded up to the nearest
100). NA will use the range of all data in the current sample.

horiz.lines Logical: Should horizontal grid lines be used for each matched known?
The following arguments control the layout and margins of the plot:

mar.default Margin size (in lines of text) to surround the plot.

p.top Proportion of the plotting area to be used for the “matches”. The “peak profiles”
will share the bottom 1-p.top of the plot.

p.labels Proportion of the plotting area to be used for labels to the left of the plots.
1-p.labels will be used for the plots (try increasing this if you have very long
species or group names).

cex.axis Size of the text used for axes. If NULL (the default), then the largest cex that will
exactly fit labels is chosen (up to cex.axis.max).

cex.axis.max Maximum size of the text used for axes, if automatically determining the label
size (i.e. cex.axis is NULL).

... Additional arguments passed to TRAMP.plotone.

Details

This constructs a plot of a TRAMP fit, illustrating where knowns match the sample data, and which
sample peaks remain unmatched.

The top portion of the plot displays “matches”, showing how samples match the knowns. Individual
species (or groups if grouped is TRUE) are represented by different horizontal lines. Where the
sample matches a particular known, a symbol is drawn (Beware: it may look like only one symbol
is drawn when several symbols are plotted on top of one another).

The bottom portion of the plot displays the “peak profile” of the sample, showing the locations
and heights of peaks for various enzyme/primer combinations (the exact combination depends on
the values of all.knowns, all.samples and all.samples.global; see below). The height is
arbitrary, so units are ommited.

20 plot.TRAMPknowns

The arguments all.knowns, all.samples and all.samples.global control which enzyme/primer
combinations are displayed in the plot. all.knowns=TRUE displays all combinations present in the
knowns database and all.samples=TRUE displays all combinations present in the samples; when
all.samples.global=TRUE this is combinations across the entire samples data set, otherwise this
is samples present in the current sample only. At least one of all.knowns and all.samples must
be TRUE.

Note

While TRAMP.plotone does the actual plot, it should not be called directly; please use plot(x,sample.fk,...).

See Also

plot.TRAMPknowns, for plotting TRAMPknowns objects, and plot.TRAMPsamples, for plotting TRAMPsamples
objects.

Examples

data(demo.samples)
data(demo.knowns)
res <- TRAMP(demo.samples, demo.knowns)

plot(res, 101)
plot(res, 110)
plot(res, 117)

plot(res, 117, grouped=TRUE)

Not run:
Create a PDF file with all matches:
pdf("all_matches.pdf")
plot(res)
dev.off()

End(Not run)

plot.TRAMPknowns Summary Plot of Knowns Data

Description

Creates a plot showing the clustering and profiles of a TRAMPknowns object (a “knowns database”).
The plot has three vertical panels;

• The leftmost contains a dendrogram, showing how similar the profiles of knowns are (see
group.knowns for details).

• The rightmost displays the TRFLP profile for each individual (with a different colour symbol
for each different enzyme/primer combination).

• The middle panel displays information on the species names and groups of the knowns.

plot.TRAMPknowns 21

Usage

S3 method for class 'TRAMPknowns'
plot(x, cex=1, name="species", pch=1, peaks.col, p=.02,

group.clusters=TRUE, groups.col=1:4, grid.by=5, grid.col="gray",
widths=c(1, 2, 1), ...)

Arguments

x A TRAMPknowns object.

cex Character size for the plot. Because knowns databases can be large, this should
be small and may need to be adjusted. Most aspects of the plot will scale with
this.

name Column name to use when generating species names; must be one of species
or group.name.

pch Plotting symbol to use for peaks in the peak profiles.

peaks.col Vector of colours to plot the different enzymes in the peak profiles. These will
be used in the order of the columns of summary(x).

p Scaling factor for the middle plot; this specifies the proportion of the width
that elements are spaced horizontally from one another. Columns of text are p
apart, brackets grouping knowns are p/2 apart, and cluster groups (if present)
are p*2/3 apart.

group.clusters Logical: Should groups of clusters (determined by group.strict - see group.knowns)
be joined together?

groups.col Vector of colours to plot different group clusters in. This will be recycled as
neccessary.

grid.by Interval between horizontal grid lines. Grid lines start at ceiling(grid.by/2)
from the bottom of the plot. A value of NA suppresses grid lines.

grid.col Colour of the horizontal grid lines.

widths Relative widths of the three panels of the plot (see layout). widths must be a
vector of 3 elements, corresponding to the three panels from left to right.

... Additional arguments (ignored).

Note

In general, there will probably be too many knowns to make a legible plot when displayed on the
screen. We recommend creating a PDF of the plot and viewing that instead (see Example).

When plotted on the interactive plotting device, if the plot is resized, the plot is likely to look
strange.

See Also

group.knowns, which controls the grouping of knowns, and TRAMPknowns, which constructs TRAMPknowns
objects.

22 plot.TRAMPsamples

Examples

data(demo.knowns)
plot(demo.knowns)

Not run:
pdf("knowns_summary.pdf", paper="default", width=8, height=11)
plot(demo.knowns)
plot(demo.knowns, group.clusters=FALSE)
dev.off()

End(Not run)

plot.TRAMPsamples Plot a TRAMPsamples Object

Description

Shows the peak profiles of samples in a TRAMPsamples object, showing the locations and heights
of peaks for individual enzyme/primer combinations. This is the same information that is displayed
in the bottom portion of a plot.TRAMP plot, but may be useful where a TRAMP fit has not been
performed yet (e.g. before a knowns database has been constructed).

Usage

S3 method for class 'TRAMPsamples'
plot(x, sample.fk, ...)
TRAMPsamples.plotone(x, sample.fk, all.samples.global=FALSE, col=1:10,

xmax=NULL, mar.default=.5, mar.labels=8, cex=1)

Arguments

x A TRAMPsamples object, containing profiles to plot.

sample.fk The sample.fk to plot. If omitted, then all samples are plotted, one after the
other (this is useful for generating a summary of all fits for printing out: see
Example).

all.samples.global

Logical: Should plots be set up for all enzyme/primer combinations present in
x, even if the combinations are not present for all individual cases? Analagous
to the same argument in plot.TRAMP. (This is useful for keeping combinations
in the same place, and plotted with the same colours.)

col Vector of colours to plot the different enzyme/primer combinations. There must
be at least as many colours as there are different combinations.

xmax Maximum size (in base pairs) for the plots to cover. NULL (the default) uses the
range of all data found in the TRAMPsamples object (rounded up to the nearest
100). NA will use the range of all data in the current sample.

mar.default Margin size (in lines of text) to surround the plot.

read.abi 23

mar.labels Number of lines of text to be used for labels to the left of the plots. Increase this
if labels are being truncated.

cex Scaling factor for text.

... Additional arguments (ignored).

See Also

plot.TRAMP, the plotting method for TRAMP objects, and plot.TRAMPknowns, for TRAMPknowns
objects.

Examples

data(demo.samples)

plot(demo.samples, 101)
plot(demo.samples, 117)

Not run:
Create a PDF file with all profiles:
pdf("all_profiles.pdf")
plot(demo.samples)
dev.off()

End(Not run)

read.abi Read ABI Output Files

Description

Read an Applied Biosystems Gene Mapper (ABI) output file, and prepare for analysis.

Note that this operates on the summarised output (a text file), rather than the .fsa files containing
data for individual runs.

Usage

read.abi(file)

Arguments

file The name of the file from which the data are to be read.

24 read.write

Details

The ABI file format contains a few features that make it difficult to interact with directly, so
read.abi provides a wrapper around read.table to work around these. The three issues are
(1) trailing tab characters, (2) mixed case and punctuation in column names, and (3) parsing the
“Dye/Sample Peak” column.

Because each line of an ABI file contains a trailing tab character (\t), read.table fails to read
the file correctly. read.abi renames all columns so that non-alphanumeric characters all become
periods, and all uppercase letters are converted to lower case.

The column Dye/Sample Peak contains data of the form <Dye>,<Sample Peak>, where <Dye> is
a code for the dye colour used and <Sample Peak> is an integer indicating the order of the peaks.
Entries where the contents of Dye/Sample Peak terminates in a "*" character (indicating an internal
size standard) are automatically excluded from the analysis.

The final column names are:

• sample.file.name: Name of the file containing data.

• size: Size of the peak (in base pairs).

• height: Height of the peak (arbitrary units).

• dye: Code for dye used.

• sample.peak: Rank of peak within current sample.

In addition, other column names may be retained from ABI output, but not used.

Note

There is no reason that data from other types of output files could not be manually imported using
TRAMPsamples. We welcome contributions for other major data formats.

See Also

load.abi, which attempts to construct a TRAMPsamples object from an ABI file (with a bit of user
intervention).

read.write Read/Write TRAMPknowns and TRAMPsamples Objects

Description

Saves and loads TRAMPknowns and TRAMPsamples objects as a series of “csv” (comma separated
value) files for external editing.

If you do not want to edit your data, then saving with save is preferable; it is faster, creates smaller
files, and will save any additional components in the objects (see Examples).

read.write 25

Usage

read.TRAMPknowns(file.pat, auto.save=TRUE, overwrite=FALSE)
write.TRAMPknowns(x, file.pat=x$file.pat, warn=TRUE)

read.TRAMPsamples(file.pat)
write.TRAMPsamples(x, file.pat)

Arguments

x A TRAMPknowns or TRAMPsamples object.

file.pat Pattern, with the filename prefix: “info” and “data” objects will be read/written
as <file.pat>_info.csv and <file.pat>_data.csv, respectively.

auto.save Logical: Should TRAMPknowns object be automatically saved back to the loaded
filename as it is modified (e.g. knowns added to the database). If this is TRUE,
the original files will be backed up as
<file.pat>_(info|data)_<YYYYMMDD>.csv,
where <YYYYMMDD> is the ISO date.

overwrite Should previous backup files be overwritten when creating new backups?

warn Should the function warn when no filename is given? (Because this function is
called automatically when adding new knowns, and because TRAMPknowns ob-
jects need not contain a file.pat element, it may not be possible or neccesary
to save).

Details

file.pat may contain a path. It is best to use forward slashes as directory separators (path/to/file),
but on Windows (only), double backslashes will also work (path\\to\\file).

Paths may be either relative (e.g. path/to/file), or absolute (e.g. /path/to/file, or x:/path/to/file
on Windows).

See Also

load.abi, for semi-automatic loading of ABI output files.

save and load, for saving and loading of arbitrary R objects.

Examples

Not run:
Preferred way of saving/loading objects, if editing is not required:
save(demo.knowns, file="my_knowns.Rdata")

(possibly in a different session, but _after_ loading TRAMP)
load("my_knowns.Rdata") # -> creates 'demo.knowns' in global environment

End(Not run)

26 remove.TRAMP.match

rebuild.TRAMP Rebuild a TRAMP Object

Description

This function rebuilds a TRAMP object. Typically this will be called automatically after adding
knowns (see add.known); there should be little need to call this manually. The same parameters
that were used in the original call to TRAMP are used again, and these cannot currently be modified
during this call.

Usage

rebuild.TRAMP(x)

Arguments

x A TRAMP object.

Value

A new TRAMP object, with all components recalculated.

remove.TRAMP.match Mark a TRAMP Match as Ignored

Description

Mark a match in a TRAMP object as ignored; when this is set, a match will be ignored when produc-
ing presence/absence matrices (see summary.TRAMP) or when plotting (plot.TRAMP) when ignore
is TRUE. update.TRAMP provides an interactive interface for doing this, but remove.TRAMP.match
may be useful directly.

Usage

remove.TRAMP.match(x, sample.fk, knowns.fk)

Arguments

x A TRAMP object.
sample.fk, knowns.fk

Key of sample and known, respectively. See TRAMPsamples and TRAMPknowns
for more information.

Value

A modified TRAMP object.

summary.TRAMP 27

Warning

This should be regarded as experimental. There is currently no mechanism for restoring ignored
matches, aside from recreating the TRAMP object, or through editing x$presence.ign directly (the
format of that table is self-explanatory, but is not guaranteed not to change between TRAMP ver-
sions). Note that by default, summary.TRAMP and plot.TRAMP will not remove matches; you must
specify ignore=TRUE to enable this.

Note

This function returns a modified object - the TRAMP object is not modified in place. You must do:

x <-remove.TRAMP.match(x,sample.fk,knowns.fk)

to mark a match as ignored in the object x.

summary.TRAMP Create Presence/Absence Matrices from TRAMP Objects

Description

Generate a summary of a TRAMP object, by producing a presence/absence matrix. This is the pre-
ferred way of extracting the presence/absence matrix from a TRAMP object, and allows for grouping,
naming knowns, and ignoring matches (specified by remove.TRAMP.match).

Usage

S3 method for class 'TRAMP'
summary(object, name=FALSE, grouped=FALSE, ignore=FALSE, ...)

Arguments

object A TRAMP object.

name Logical: Should the knowns be named?

grouped Logical: Should the knowns be grouped?

ignore Logical: Should matches marked as ignored be excluded?

... Further arguments passed to or from other methods.

Value

A presence/absence matrix, with samples as rows and knowns as columns. If name is TRUE, then
names of knowns (or groups of knowns) are used, otherwise the knowns.fk is used (group.strict
if grouped). If grouped is TRUE, then the knowns are collapsed by group (using group.strict; see
group.knowns). A group is present if any of the knowns belonging to it are present. If ignore is
TRUE, then any matches marked by remove.TRAMP.match are excluded.

28 TRAMP

Examples

data(demo.knowns)
data(demo.samples)
res <- TRAMP(demo.samples, demo.knowns)

head(summary(res))
head(summary(res, name=TRUE))
head(summary(res, name=TRUE, grouped=TRUE))

Extract the species richness for each sample (i.e. the number of
knowns present in each sample)
rowSums(summary(res, grouped=TRUE))

Extract species frequencies and plot a rank abundance diagram:
(i.e. the number of times each known was recorded)
sp.freq <- colSums(summary(res, name=TRUE, grouped=TRUE))

sp.freq <- sort(sp.freq[sp.freq > 0], decreasing=TRUE)
plot(sp.freq, xlab="Species rank", ylab="Species frequency", log="y")
text(1:2, sp.freq[1:2], names(sp.freq[1:2]), cex=.7, pos=4, font=3)

TRAMP TRFLP Analysis and Matching Program

Description

Determine if TRFLP profiles may match those in a database of knowns. The resulting object can be
used to produce a presence/absence matrix of known profiles in environmental samples.
The TRAMPR package contains a vignette, which includes a worked example; type vignette("TRAMPRdemo")
to view it.

Usage

TRAMP(samples, knowns, accept.error=1.5, min.comb=4, method="maximum")

Arguments

samples A TRAMPsamples object, containing unidentified samples.
knowns A TRAMPknowns object, containing identified TRFLP patterns.
accept.error The largest acceptable difference (in base pairs) between any peak in the sample

data and the knowns database (see Details; interpretation will depend on the
value of method).

min.comb Minimum number of enzyme/primer combinations required before presence will
be tested. The default (4) should be reasonable in most cases. Setting min.comb
to NA will require that all enzyme/primer combinations in the knowns database
are present in the samples.

method Method used in calculating the difference between samples and knowns; may be
one of "maximum", "euclidian" or "manhattan" (or any unambiguous abbre-
viation).

TRAMP 29

Details

TRAMP attempts to determine which species in the ‘knowns’ database may be present in a collection
of samples.

A sample matches a known if it has a peak that is “close enough” to every peak in the known
for every enzyme/primer combination that they share. The default is to accept matches where the
largest distance between a peak in the knowns database and the sample is less than accept.error
base pairs (default 2), and where at least min.comb enzyme/primer combinations are shared between
a sample and a known (default 4).

The three-dimensional matrix of match errors is generated by create.diffsmatrix. In the result-
ing array, m[i,j,k] is the difference (in base pairs) between the ith sample and the jth known for
the kth enzyme/primer combination.

If pk and qk are the sizes of peaks for the kth enzyme/primer combination for a sample and known
(respectively), then maximum distance is defined as

max(|pk − qk|)

Euclidian distance is defined as
1

n

√∑
(pk − qk)2

and Manhattan distance is defined as

1

n

∑
|pk − qk|

where n is the number of shared enzyme/primer combinations, since this may vary across sam-
ple/known combinations. For Euclidian and Manhattan distances, accept.error then becomes the
mean distance, rather than the total distance.

Value

A TRAMP object, with elements:

presence Presence/absence matrix. Rows are different samples (with rownames from
labels(samples)) and columns are different knowns (with colnames from labels(knowns)).
Do not access the presence/absence matrix directly, but use summary.TRAMP,
which provides options for labelling knowns, grouping knowns, and excluding
“ignored” matches.

error Matrix of distances between the samples and known, calculated by one of the
methods described above. Rows correspond to different samples, and columns
correspond to different knowns. The matrix dimension names are set to the
values sample.pk and knowns.pk for the samples and knowns, respectively.

n A two-dimensional matrix (same dimensions as error), recording the number
of enzyme/primer combinations present for each combination of samples and
knowns.

diffsmatrix Three-dimensional array of output from create.diffsmatrix.

enzyme.primer Different enzyme/primer combinations present in the data, in the order of the
third dimension of diffsmatrix (see create.diffsmatrix for details).

30 TRAMPindexing

samples, knowns, accept.error, min.comb, method

The input data objects and arguments, unmodified.

In addition, an element presence.ign is included to allow matches to be ignored. However, this
interface is experimental and its current format should not be relied on - use remove.TRAMP.match
rather than interacting directly with presence.ign.

Matching is based only on peak size (in base pairs), and does not consider peak heights.

See Also

See create.diffsmatrix for discussion of how differences between sample and known profiles
are generated.

plot.TRAMP, which displays TRAMP fits graphically.

summary.TRAMP, which creates a presence/absence matrix.

remove.TRAMP.match, which marks TRAMP matches as ignored.

Examples

data(demo.knowns)
data(demo.samples)

res <- TRAMP(demo.samples, demo.knowns)

The resulting object can be interrogated with methods:

The goodness of fit of the sample with sample.pk=101 (see
?\link{plot.TRAMP}).
plot(res, 101)

Not run:
To see all plots (this produces many figures), one after another.
op <- par(ask=TRUE)
plot(res)
par(op)

End(Not run)

Produce a presence/absence matrix (see ?\link{summary.TRAMP}).
m <- summary(res)
head(m)

TRAMPindexing Index (Subset) TRAMPsamples and TRAMPknowns Objects

Description

This provides very basic support for subsetting TRAMPsamples and TRAMPknowns objects.

TRAMPindexing 31

Usage

S3 method for class 'TRAMPknowns'
x[i, na.interp=TRUE, ...]
S3 method for class 'TRAMPsamples'
x[i, na.interp=TRUE, ...]

Arguments

x A TRAMPsamples or TRAMPknowns object.

i A vector of sample.fk or knowns.fk values. For valid values, use labels(x).
If any index values are not present in x, then an error will be raised. Alterna-
tively, this may be a logical vector, of the same length as the number of samples
or knowns in x. See Examples for use of this.

na.interp Logical: Controls how NA values should be interpreted when i is a logical vector.

... Further arguments passed to or from other methods.

Details

When indexing by logical vectors, NA values do not make valid indexes, but may be produced when
testing columns that contain missing values, so these must be converted to either TRUE or FALSE. If
i is a logical index that contains missing values (NAs), then na.interp controls how they will be
interpreted:

• If na.interp=TRUE, then TRUE,FALSE,NA becomes TRUE,FALSE,TRUE.

• If na.interp=FALSE, then TRUE,FALSE,NA becomes TRUE,FALSE,FALSE.

Warning

For TRAMPknowns objects, if the file.pat element is specified as part of the object (see TRAMPknowns),
then the subsetted TRAMPknowns object will be written to a file. This may not be what you want,
so it is probably best to disable knowns writing by doing x$file.pat <-NULL before doing any
subsetting (where x is the name of your TRAMPknowns object).

Examples

data(demo.samples)
data(demo.knowns)

Subsetting by sample.fk values
labels(demo.samples)
demo.samples[c(101, 102, 110)]
labels(demo.samples[c(101, 102, 110)])

Take just samples from the first 10 soilcores:
demo.samples[demo.samples$info$soilcore.fk <= 10]

Indexing also works on TRAMPknowns:
demo.knowns[733]
labels(demo.knowns[733])

32 TRAMPknowns

TRAMPknowns TRAMPknowns Objects

Description

These functions create and interact with TRAMPknowns objects (collections of known TRFLP pat-
terns). Knowns contrast with “samples” (see TRAMPsamples) in that knowns contain identified
profiles, while samples contain unidentified profiles. Knows must have at most one peak per en-
zyme/primer combination (see Details).

Usage

TRAMPknowns(data, info, cluster.pars=list(), file.pat=NULL,
warn.factors=TRUE, ...)

S3 method for class 'TRAMPknowns'
labels(object, ...)
S3 method for class 'TRAMPknowns'
summary(object, include.info=FALSE, ...)

Arguments

data data.frame containing peak information.

info data.frame, describing individual samples (see Details for definitions of both
data.frames).

cluster.pars Parameters used when clustering the knowns database. See Details.

file.pat Optional partial filename in which to store knowns database after modification.
Files <file.pat>_info.csv and <file.pat>_data.csv will be created.

warn.factors Logical: Should a warning be given if any columns in info or data are con-
verted into factors?

object A TRAMPknowns object.

include.info Logical: Should the output be augmented with the contents of the info compo-
nent of the TRAMPknowns object?

... TRAMPknowns: Additional objects to incorportate into a TRAMPknowns object.
Other methods: Further arguments passed to or from other methods.

Details

The object has at least two components, which relate to each other (in the sense of a relational
database). info holds information about the individual samples, and data holds information about
individual peaks (many of which may belong to a single sample).

Column definitions:

• info:

TRAMPknowns 33

knowns.pk: Unique positive integer, used to identify individual knowns (i.e. a “primary
key”).

species: Character, giving species name.

• data:

knowns.fk: Positive integer, indicating which sample the peak belongs to (by matching against
info$knowns.pk) (i.e. a “foreign key”).

primer: Character, giving the name of the primer used.
enzyme: Character, giving the name of the restriction digest enzyme used.
size: Numeric, giving size (in base pairs) of the peak.

In addition, TRAMPknowns will create additional columns holding clustering information (see group.knowns).
Additional columns are allowed (and retained, but ignored) in both data.frames. Additional objects
are allowed as part of the TRAMPknowns object, but these will not be written by write.TRAMPknowns;
any extra objects passed (via ...) will be included in the final TRAMPknowns object.

The cluster.pars argument controls how knowns will be clustered (this will happen automat-
ically as needed). Elements of the list cluster.pars may be any of the three arguments to
group.knowns, and will be used as defaults in subsequent calls to group.knowns. If not provided,
default values are: dist.method="maximum", hclust.method="complete", cut.height=2.5 (if
only some elements of cluster.pars are provided, the remaining elements default to the val-
ues above). To change values of clustering parameters in an existing TRAMPknowns object, use
group.knowns.

A known contains at most one peak per enzyme/primer combination. Where a species is known to
have multiple TRFLP profiles, these should be treated as separate knowns with different, unique,
knowns.pk values, but with identical species values. A sample containing either pattern will then
be recorded as having that species present (see group.knowns).

Value

TRAMPknowns A new TRAMPknowns object: a list with components info, data (the provided
data.frames, with clustering information added to info), cluster.pars and
file.pat, plus any extra objects passed as

labels.TRAMPknowns

A sorted vector of the unique samples present in x (from info$knowns.pk).
summary.TRAMPknowns

A data.frame, with the size of the peak (if present) for each enzyme/primer com-
bination, with each known (indicated by knowns.pk) as rows and each combi-
nation (in the format <primer>_<enzyme>) as columns.

Note

Across a TRAMPknowns object, primer and enzyme names must be exactly the same (including case
and whitespace) to be considered the same. For example "ITS4", "Its4", "ITS 4" and "ITS4 "
would be considered to be four different primers.

Factors will not merge correctly (with combine.TRAMPknowns or add.known). TRAMPknowns will
attempt to catch factor columns and convert them into characters for the info and data data.frames.
Other objects (passed as part of ...) will not be altered.

34 TRAMPsamples

See Also

TRAMPsamples, which constructs an analagous object to hold “samples” data.

plot.TRAMPknowns, which creates a graphical representation of the knowns data.

TRAMP, for matching unknown TRFLP patterns to TRAMPknowns objects.

group.knowns, which groups similar knowns (generally called automatically).

add.known and combine.TRAMPknowns, which provide tools for adding knowns from a sample data
set and merging knowns databases.

Examples

This example builds a TRAMPknowns object from completely artificial
data:

The info data.frame:
knowns.info <-

data.frame(knowns.pk=1:8,
species=rep(paste("Species", letters[1:5]), length=8))

knowns.info

The data data.frame:
knowns.data <- expand.grid(knowns.fk=1:8,

primer=c("ITS1F", "ITS4"),
enzyme=c("BsuRI", "HpyCH4IV"))

knowns.data$size <- runif(nrow(knowns.data), min=40, max=800)

Construct the TRAMPknowns object:
demo.knowns <- TRAMPknowns(knowns.data, knowns.info, warn.factors=FALSE)

A plot of the pretend knowns:
plot(demo.knowns, cex=1, group.clusters=TRUE)

TRAMPsamples TRAMPsamples Objects

Description

These functions create and interact with TRAMPsamples objects (collections of TRFLP patterns).
Samples contrast with “knowns” (see TRAMPknowns) in that samples contain primarily unidentified
profiles. In contrast with knowns, samples may have many peaks per enzyme/primer combination.

Usage

TRAMPsamples(data, info=NULL, warn.factors=TRUE, ...)

S3 method for class 'TRAMPsamples'
labels(object, ...)
S3 method for class 'TRAMPsamples'
summary(object, include.info=FALSE, ...)

TRAMPsamples 35

Arguments

data data.frame containing peak information.
info (Optional) data.frame, describing individual samples (see Details for definitions

of both data.frames). If this is omitted, a basic data.frame will be generated.
warn.factors Logical: Should a warning be given if any columns in info or data are con-

verted into factors?
object A TRAMPsamples object.
include.info Logical: Should the output be augmented with the contents of the info compo-

nent of the TRAMPsamples object?
... TRAMPsamples: Additional objects to incorportate into a TRAMPsamples object.

Other methods: Further arguments passed to or from other methods.

Details

The object has at least two components, which relate to each other (in the sense of a relational
database). info holds information about the individual samples, and data holds information about
individual peaks (many of which belong to a single sample).

Column definitions:

• info:
sample.pk Unique positive integer, used to identify individual samples (i.e. a “primary key”).
species Character, giving species name if samples were collected from an identified species.

If this column is missing, it will be initialised as NA.
• data:
sample.fk Positive integer, indicating which sample the peak belongs to (by matching against

info$sample.pk) (i.e. a “foreign key”).
primer: Character, giving the name of the primer used.
enzyme: Character, giving the name of the restriction digest enzyme used.
size Numeric, giving size (in base pairs) of the peak.
height Numeric, giving the height (arbitrary units) of the peak.

Additional columns are allowed (and ignored) in both data.frames, and will be retained. This al-
lows notes on data quality and treatments to be easily included. Additional objects are allowed as
part of the TRAMPsamples object; any extra objects passed (via ...) will be included in the final
TRAMPsamples object.

If info is omitted, then a basic data.frame will be generated, containing just the unique values of
sample.fk, and NA for species.

Value

TRAMPsamples A new TRAMPsamples object, as described above.
labels.TRAMPsamples

A sorted vector of the unique samples present in x (from info$sample.pk).
summary.TRAMPsamples

A data.frame, with the number of peaks per enzyme/primer combination, with
each sample (indicated by sample.pk) as rows and each combination (in the
format <primer>_<enzyme>) as columns.

36 update.TRAMP

Note

Across a TRAMPsamples object, primer and enzyme names must be exactly the same (including
case and whitespace) to be considered the same. For example "ITS4", "Its4", "ITS4 " and "ITS
4" would be considered to be four different primers.

Factors will not merge correctly (with combine.TRAMPsamples). TRAMPsamples will attempt to
catch factor columns and convert them into characters for the info and data data.frames. Other
objects (passed as part of ...) will not be altered.

See Also

plot.TRAMPsamples and summary.TRAMPsamples, for plotting and summarising TRAMPsamples
objects.

TRAMPknowns, which constructs an analagous object to hold “knowns” data.

TRAMP, for analysing TRAMPsamples objects.

load.abi, which creates a TRAMPsamples object from Gene Mapper (Applied Biosystems) output.

update.TRAMP Interactively Alter a TRAMP Object

Description

This function allows some manual checking and correction of a TRAMP object. By default, it steps
through each sample, and offers to (1) add a new known to the TRAMPknowns database within
the TRAMP object (see add.known for details), (2) mark matches to be ignored in future calls to
plot.TRAMP (see remove.TRAMP.match), (3) save the current plot as a PDF.

Usage

S3 method for class 'TRAMP'
update(object, sample.fk=labels(object$samples), grouped=FALSE,

ignore=TRUE, delay.rebuild=FALSE, default.species=NULL,
filename.fmt="TRAMP_%d.pdf", ...)

Arguments

object A TRAMP object.

sample.fk A vector of sample.fk to cycle through. If omitted, this will default to all
samples present in the TRAMPsamples component of the TRAMP object.

grouped, ignore

Plotting parameters, as in plot.TRAMP. Currently these cannot be altered from
their default values.

update.TRAMP 37

delay.rebuild Logical: Should the rebuild of the TRAMP object be delayed until the function
returns? If this is FALSE (the default), then the TRAMP object will rebuild every
time a new known is added. This may take a while for large objects, so if set
to TRUE, then the TRAMP object will not be rebuilt until all sample.fks have
been displayed. This means that any new samples added as knowns will not be
included in plots.

default.species

Default species name for newly added knowns. Passed to add.known.

filename.fmt Format used to generate filenames when saving PDFs. Include a "%d" to stand in
for the sample.fk (so "TRAMP_%d.pdf" becomes "TRAMP_12.pdf" for sample.fk
12).

... Further arguments passed to the plotting function plot.TRAMP.

Warning

If an error occurs while running update, all modifications will be lost.

Note

update.TRAMP returns a modified TRAMP object, and does not modify the original TRAMP object in
place. You must use it like:

x <-update(x)

or

x2 <-update(x)

to modify the original object or create a new, modified object in place. Note that if creating mutiple
objects, if the TRAMPknowns object has a file.pat element, then any changes to either of x or x2
will be written back to file, but the knowns contained in x and x2 may be different. See the note in
add.known.

The action “Quit” will always exit the update function and save the object.

Be careful when using a TRAMP object whose TRAMPknowns element has a file.pat element; new
knowns added will be immediately written to file.

Examples

Since this function runs interactively, there can be no sample.

Index

∗ array
TRAMPindexing, 30

∗ classes
TRAMPknowns, 32
TRAMPsamples, 34

∗ cluster
build.knowns, 6
create.diffsmatrix, 9
group.knowns, 12
rebuild.TRAMP, 26
TRAMP, 28
update.TRAMP, 36

∗ connection
read.abi, 23

∗ datagen
build.knowns, 6

∗ datasets
demo.knowns, 11
demo.samples, 11

∗ file
load.abi, 16
read.abi, 23
read.write, 24

∗ hplot
plot.TRAMP, 18
plot.TRAMPknowns, 20
plot.TRAMPsamples, 22

∗ manip
add.known, 3
combine.TRAMPsamples, 8
remove.TRAMP.match, 26

∗ methods
combine, 8
summary.TRAMP, 27
TRAMPindexing, 30

∗ multivariate
build.knowns, 6
create.diffsmatrix, 9
group.knowns, 12

rebuild.TRAMP, 26
TRAMP, 28
update.TRAMP, 36

∗ package
TRAMPR-package, 2

[.TRAMPknowns, 14
[.TRAMPknowns (TRAMPindexing), 30
[.TRAMPsamples (TRAMPindexing), 30

absolute.min, 10
add.known, 3, 7, 14, 26, 33, 34, 36, 37

build.knowns, 2, 4, 5, 6, 14

combine, 8
combine.TRAMP (add.known), 3
combine.TRAMPknowns, 8, 9, 33, 34
combine.TRAMPknowns (add.known), 3
combine.TRAMPsamples, 3, 5, 8, 8, 36
create.diffsmatrix, 2, 9, 29, 30
cutree, 13, 14

demo.knowns, 11
demo.samples, 11
dist, 13, 14

group.knowns, 4, 12, 20, 21, 27, 33, 34

hclust, 13, 14

labels.TRAMPknowns (TRAMPknowns), 32
labels.TRAMPsamples (TRAMPsamples), 34
layout, 21
load, 25
load.abi, 2, 12, 16, 24, 25, 36

peakscanner.to.genemapper (load.abi), 16
plot.TRAMP, 2, 18, 22, 23, 26, 27, 30, 36, 37
plot.TRAMPknowns, 14, 20, 20, 23, 34
plot.TRAMPsamples, 20, 22, 36
points, 19

38

INDEX 39

read.abi, 18, 23
read.table, 24
read.TRAMPknowns, 2, 7
read.TRAMPknowns (read.write), 24
read.TRAMPsamples, 2
read.TRAMPsamples (read.write), 24
read.write, 24
rebuild.TRAMP, 4, 26
remove.TRAMP.match, 19, 26, 27, 30, 36

save, 24, 25
summary.TRAMP, 2, 26, 27, 27, 29, 30
summary.TRAMPknowns, 14
summary.TRAMPknowns (TRAMPknowns), 32
summary.TRAMPsamples, 36
summary.TRAMPsamples (TRAMPsamples), 34

TRAMP, 2–4, 8, 10, 13, 14, 18, 19, 22, 23, 26,
28, 34, 36

TRAMP.plotone (plot.TRAMP), 18
TRAMPindexing, 14, 30
TRAMPknowns, 2–14, 20, 21, 23–26, 28, 30, 31,

32, 34, 36, 37
TRAMPR (TRAMPR-package), 2
TRAMPR-package, 2
TRAMPsamples, 2–6, 8–10, 12, 14, 16, 18, 22,

24–26, 28, 30–32, 34, 34, 36
TRAMPsamples.plotone

(plot.TRAMPsamples), 22

update.TRAMP, 2, 26, 36

write.TRAMPknowns, 33
write.TRAMPknowns (read.write), 24
write.TRAMPsamples (read.write), 24

	TRAMPR-package
	add.known
	build.knowns
	combine
	combine.TRAMPsamples
	create.diffsmatrix
	demo.knowns
	demo.samples
	group.knowns
	load.abi
	plot.TRAMP
	plot.TRAMPknowns
	plot.TRAMPsamples
	read.abi
	read.write
	rebuild.TRAMP
	remove.TRAMP.match
	summary.TRAMP
	TRAMP
	TRAMPindexing
	TRAMPknowns
	TRAMPsamples
	update.TRAMP
	Index

