Most of the work in creating a ‘Tplyr’ table is at the layer level, but there are a few overarching properties that are worth spending some time discussing. One of the things that we wanted to make sure we did in ‘Tplyr’ is allow you to eliminate redundant code wherever possible. Adding some processing to the tplyr_table()
level allows us to do that. Furthermore, some settings simply need to be applied table wide.
The tplyr_table()
function has 4 parameters:
treat_var
: The variable containing treatment group assignmentswhere
: The overarching table subset criteria. Each layer will use this subset by default. The where
parameter at the table level will be called in addition to the layer subset criteria.cols
: Grouping variables used in addition to the by
variables set at the layer level, but will be transposed into columns in addition to treat_var
.Let’s look at an example:
tplyr_table(adsl, TRT01P, where= SAFFL =="Y", cols = SEX) %>%
add_layer(
group_count(RACE, by = "Race")
%>%
) add_layer(
group_desc(AGE, by = "Age (Years)")
%>%
) build() %>%
kable()
row_label1 | row_label2 | var1_Placebo_F | var1_Placebo_M | var1_Xanomeline High Dose_F | var1_Xanomeline High Dose_M | var1_Xanomeline Low Dose_F | var1_Xanomeline Low Dose_M | ord_layer_index | ord_layer_1 | ord_layer_2 |
---|---|---|---|---|---|---|---|---|---|---|
Race | AMERICAN INDIAN OR ALASKA NATIVE | 0 ( 0.0%) | 0 ( 0.0%) | 0 ( 0.0%) | 1 ( 2.3%) | 0 ( 0.0%) | 0 ( 0.0%) | 1 | 1 | 1 |
Race | BLACK OR AFRICAN AMERICAN | 5 ( 9.4%) | 3 ( 9.1%) | 6 ( 15.0%) | 3 ( 6.8%) | 6 ( 12.0%) | 0 ( 0.0%) | 1 | 1 | 2 |
Race | WHITE | 48 ( 90.6%) | 30 ( 90.9%) | 34 ( 85.0%) | 40 ( 90.9%) | 44 ( 88.0%) | 34 (100.0%) | 1 | 1 | 3 |
Age (Years) | n | 53 | 33 | 40 | 44 | 50 | 34 | 2 | 1 | 1 |
Age (Years) | Mean (SD) | 78.1 ( 8.73) | 73.9 ( 8.15) | 76.0 ( 7.67) | 75.9 ( 8.16) | 77.4 ( 8.09) | 77.5 ( 8.69) | 2 | 1 | 2 |
Age (Years) | Median | 78.0 | 74.0 | 76.0 | 77.0 | 77.5 | 77.5 | 2 | 1 | 3 |
Age (Years) | Q1, Q3 | 69.0, 84.0 | 69.0, 80.0 | 72.0, 79.0 | 69.0, 80.0 | 72.0, 81.0 | 68.0, 82.0 | 2 | 1 | 4 |
Age (Years) | Min, Max | 59, 89 | 52, 85 | 56, 88 | 56, 86 | 54, 87 | 51, 88 | 2 | 1 | 5 |
Age (Years) | Missing | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 6 |
In the example above, the where
parameter is passed forward into both the RACE
and AGE
layers. Furthermore, note how the cols
parameter works. By default, the target variables from the layers are transposed by the treat_var
variables. The cols
argument adds an additional variable to transpose by, and the values of these variable are added as a suffix to the variable name. You are able to use multiple cols
variables just like by
, by using dplyr::vars()
. But use with caution - as depending on the distinct variable values in the dataset, this could get quite wide.
Note: Treatment groups and additional column variables presented in the final output are always taken from the pre-filtered population data. This means that if a filter completed excludes a treatment group or group within a column variable, columns will still be created for those groups and will be empty/zero filled.
tplyr_table(adsl, TRT01P, where= SAFFL =="Y", cols = vars(SEX, RACE)) %>%
add_layer(
group_desc(AGE, by = "Age (Years)")
%>%
) build() %>%
kable()
row_label1 | row_label2 | var1_Placebo_F_AMERICAN INDIAN OR ALASKA NATIVE | var1_Placebo_F_BLACK OR AFRICAN AMERICAN | var1_Placebo_F_WHITE | var1_Placebo_M_AMERICAN INDIAN OR ALASKA NATIVE | var1_Placebo_M_BLACK OR AFRICAN AMERICAN | var1_Placebo_M_WHITE | var1_Xanomeline High Dose_F_AMERICAN INDIAN OR ALASKA NATIVE | var1_Xanomeline High Dose_F_BLACK OR AFRICAN AMERICAN | var1_Xanomeline High Dose_F_WHITE | var1_Xanomeline High Dose_M_AMERICAN INDIAN OR ALASKA NATIVE | var1_Xanomeline High Dose_M_BLACK OR AFRICAN AMERICAN | var1_Xanomeline High Dose_M_WHITE | var1_Xanomeline Low Dose_F_AMERICAN INDIAN OR ALASKA NATIVE | var1_Xanomeline Low Dose_F_BLACK OR AFRICAN AMERICAN | var1_Xanomeline Low Dose_F_WHITE | var1_Xanomeline Low Dose_M_AMERICAN INDIAN OR ALASKA NATIVE | var1_Xanomeline Low Dose_M_BLACK OR AFRICAN AMERICAN | var1_Xanomeline Low Dose_M_WHITE | ord_layer_index | ord_layer_1 | ord_layer_2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age (Years) | n | 5 | 48 | 3 | 30 | 6 | 34 | 1 | 3 | 40 | 6 | 44 | 34 | 1 | 1 | 1 | ||||||
Age (Years) | Mean (SD) | 80.0 ( 7.79) | 77.9 ( 8.89) | 67.0 ( 6.81) | 74.8 ( 7.84) | 73.5 ( 6.08) | 76.4 ( 7.91) | 61.0 ( ) | 79.0 ( 2.52) | 75.5 ( 8.16) | 75.0 (11.78) | 77.8 ( 7.54) | 77.5 ( 8.69) | 1 | 1 | 2 | ||||||
Age (Years) | Median | 80.0 | 78.0 | 67.0 | 74.5 | 73.5 | 76.0 | 61.0 | 79.0 | 76.0 | 75.0 | 78.0 | 77.5 | 1 | 1 | 3 | ||||||
Age (Years) | Q1, Q3 | 64.0, 81.0 | 69.0, 84.0 | 57.0, 67.0 | 70.0, 80.0 | 67.0, 74.0 | 72.0, 80.0 | 61.0, 61.0 | 77.0, 79.0 | 69.0, 80.0 | 60.0, 76.0 | 72.0, 81.0 | 68.0, 82.0 | 1 | 1 | 4 | ||||||
Age (Years) | Min, Max | 64, 81 | 59, 89 | 57, 70 | 52, 85 | 63, 79 | 56, 88 | 61, 61 | 77, 82 | 56, 86 | 57, 87 | 54, 86 | 51, 88 | 1 | 1 | 5 | ||||||
Age (Years) | Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 |
Another important feature that works at the table level is the addition of treatment groups. By adding additional treatment groups, you’re able to do a number of things:
We’ve added the function add_treat_grps()
to do this work for you. With this function, you can create new treatment groups by combining existing treatment groups from values within treat_var
. Additionally, to simplify the process we added an abstraction of add_treat_grps()
named add_total_group()
to simplify the process of creating a “Total” group.
tplyr_table(adsl, TRT01P) %>%
add_treat_grps('Treated' = c("Xanomeline High Dose", "Xanomeline Low Dose")) %>%
add_total_group() %>%
add_layer(
group_desc(AGE, by = "Age (Years)")
%>%
) build() %>%
kable()
row_label1 | row_label2 | var1_Placebo | var1_Total | var1_Treated | var1_Xanomeline High Dose | var1_Xanomeline Low Dose | ord_layer_index | ord_layer_1 | ord_layer_2 |
---|---|---|---|---|---|---|---|---|---|
Age (Years) | n | 86 | 254 | 168 | 84 | 84 | 1 | 1 | 1 |
Age (Years) | Mean (SD) | 76.3 ( 8.59) | 76.5 ( 8.25) | 76.6 ( 8.09) | 75.9 ( 7.89) | 77.4 ( 8.29) | 1 | 1 | 2 |
Age (Years) | Median | 76.0 | 77.0 | 77.0 | 76.0 | 77.5 | 1 | 1 | 3 |
Age (Years) | Q1, Q3 | 69.0, 81.0 | 70.0, 81.0 | 71.0, 81.0 | 70.0, 80.0 | 71.0, 82.0 | 1 | 1 | 4 |
Age (Years) | Min, Max | 52, 89 | 51, 89 | 51, 88 | 56, 88 | 51, 88 | 1 | 1 | 5 |
Age (Years) | Missing | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 |
Note how in the above example, there are two new columns added to the data - var1_Total
and var1_Treated
. The summaries for the individual cohorts are left unchanged.
A last and very important aspect of table level properties in ‘Tplyr’ is the addition of a population dataset. In CDISC standards, datasets like adae
only contain adverse events when the occur. This means that if a subject did not experience an adverse event, or did not experience an adverse event within the criteria that you’re subsetting for, they don’t appear in the dataset. When you’re looking at the proportion of subject who experienced an adverse event compared to the total number of subjects in that cohort, adae
itself leaves you no way to calculate that total - as the subjects won’t exist in the data.
‘Tplyr’ allows you to provide a separate population dataset to overcome this. Furthermore, you are also able to provide a separate population dataset where
parameter and a population treatment variable named pop_treat_var
, as variable names may differ between the datasets.
<- tplyr_table(adae, TRTA, where = AEREL != "NONE") %>%
t set_pop_data(adsl) %>%
set_pop_treat_var(TRT01A) %>%
set_pop_where(TRUE) %>%
add_layer(
group_count(AEDECOD) %>%
set_distinct_by(USUBJID)
)
%>%
t build() %>%
kable()
row_label1 | var1_Placebo | var1_Xanomeline High Dose | var1_Xanomeline Low Dose | ord_layer_index | ord_layer_1 |
---|---|---|---|---|---|
ALOPECIA | 1 ( 1.2%) | 0 ( 0.0%) | 0 ( 0.0%) | 1 | 2 |
BLISTER | 0 ( 0.0%) | 1 ( 1.2%) | 5 ( 6.0%) | 1 | 3 |
COLD SWEAT | 1 ( 1.2%) | 0 ( 0.0%) | 0 ( 0.0%) | 1 | 4 |
DERMATITIS CONTACT | 0 ( 0.0%) | 0 ( 0.0%) | 1 ( 1.2%) | 1 | 6 |
ERYTHEMA | 9 ( 10.5%) | 14 ( 16.7%) | 13 ( 15.5%) | 1 | 8 |
HYPERHIDROSIS | 2 ( 2.3%) | 8 ( 9.5%) | 4 ( 4.8%) | 1 | 9 |
PRURITUS | 8 ( 9.3%) | 26 ( 31.0%) | 21 ( 25.0%) | 1 | 10 |
PRURITUS GENERALISED | 0 ( 0.0%) | 1 ( 1.2%) | 1 ( 1.2%) | 1 | 11 |
RASH | 4 ( 4.7%) | 8 ( 9.5%) | 13 ( 15.5%) | 1 | 12 |
RASH ERYTHEMATOUS | 0 ( 0.0%) | 0 ( 0.0%) | 2 ( 2.4%) | 1 | 13 |
RASH MACULO-PAPULAR | 0 ( 0.0%) | 1 ( 1.2%) | 0 ( 0.0%) | 1 | 14 |
RASH PAPULAR | 0 ( 0.0%) | 1 ( 1.2%) | 0 ( 0.0%) | 1 | 15 |
RASH PRURITIC | 0 ( 0.0%) | 2 ( 2.4%) | 1 ( 1.2%) | 1 | 16 |
SKIN EXFOLIATION | 0 ( 0.0%) | 0 ( 0.0%) | 1 ( 1.2%) | 1 | 17 |
SKIN IRRITATION | 2 ( 2.3%) | 5 ( 6.0%) | 6 ( 7.1%) | 1 | 18 |
SKIN ODOUR ABNORMAL | 0 ( 0.0%) | 1 ( 1.2%) | 0 ( 0.0%) | 1 | 19 |
SKIN ULCER | 1 ( 1.2%) | 0 ( 0.0%) | 0 ( 0.0%) | 1 | 20 |
URTICARIA | 0 ( 0.0%) | 1 ( 1.2%) | 1 ( 1.2%) | 1 | 21 |
In the above example, AEREL
doesn’t exist in adsl
, therefore we used set_pop_where()
to remove the filter criteria on the population data. Setting the population dataset where parameter to TRUE
removes any filter applied by the population data. If set_pop_where()
is not set for the population data, it will default to the where
parameter used in tplyr_table()
. The same logic applies to the population treatment variable. TRTA
does not exist in adsl
either, so we used set_pop_treat_var()
to change it to the appropriate variable in adsl
.
Note the percentage values in the summary above. By setting the population data, ‘Tplyr’ now knew to use those values when calculating the percentages for the distinct counts of subjects who experienced the summarized adverse events. Furthermore, with the population data provided, ‘Tplyr’ is able to calculate your header N’s properly:
header_n(t) %>%
kable()
TRT01A | n |
---|---|
Placebo | 86 |
Xanomeline High Dose | 84 |
Xanomeline Low Dose | 84 |
With the table level settings under control, now you’re ready to learn more about what ‘Tplyr’ has to offer in each layer.
vignettes("desc")
vignette("count")
vignette("shift")
vignettes("riskdiff")
vignettes("sort")
vignettes("options")
vignettes("styled-table")