Package 'TriMatch'

December 6, 2017
License GPL (>=2)
Title Propensity Score Matching of Non-Binary Treatments
Type Package
Author Jason Bryer < jason@bryer.org>
Maintainer Jason Bryer jason@bryer.org
Description Propensity score matching for non-binary treatments.
Version 0.9.9
Date 2017-12-05
URL http://jason.bryer.org/TriMatch, http://github.com/jbryer/TriMatch
BugReports https://github.com/jbryer/TriMatch/issues
Depends ggplot2, scales, reshape2, ez, R (>=3.0)
Imports psych, stats, PSAgraphics, compiler, grid, gridExtra, randomForest
Suggests MASS, xtable
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-12-06 00:05:55 UTC

R topics documented:

TriMatch-package . 2
as.data.frame.list . 3
balance.plot . 4
boxdiff.plot . 5
covariateBalance . 6
data.frame.to.list . 7
distance.euclid . 8
distances.plot . 8
loess3.plot . 9
maximumTreat 10
merge.triangle.matches 10
merge.triangle.psa 11
multibalance.plot 11
nmes 12
OneToN 12
parallel.plot 13
perpPt 13
plot.balance.plots 14
plot.triangle.matches 14
plot.triangle.psa 15
print.balance.plots 16
print.triangle.plot 17
print.trimatch.summary 17
segment 1 18
segment2 18
star 18
summary.balance.plots 19
summary.triangle.matches 19
summary.triangle.psa 20
summary.unmatched 21
trimatch 21
trimatch.apply2 23
trips 23
tutoring 25
unmatched 26
Index 27
TriMatch-package Propensity Score Analysis for Non-Binary Treatments

Description

This packages provides functions to estimate and visualize propensity score analyses including matching for non-binary treatments.

Author(s)

Jason Bryer jason@bryer.org

See Also

PSAgraphics multilevelPSA

Description

This function will convert a list of vectors to a data frame. This function will handle three different types of lists of vectors. First, if all the elements in the list are named vectors, the resulting data frame will have have a number of columns equal to the number of unique names across all vectors. In cases where some vectors do not have names in other vectors, those values will be filled with NA.

Usage

\#\# S3 method for class 'list'
as.data.frame(x, row.names $=$ NULL, optional $=$ FALSE, ...)

Arguments

x
row.names a vector equal to length (x) corresponding to the row names. If NULL, the row names will be set to names (x).
optional not used.
... other parameters passed to data. frame.

Details

The second case is when all the vectors are of the same length. In this case, the resulting data frame is equivalent to applying rbind across all elements.
The third case handled is when there are varying vector lengths and not all the vectors are named. This condition should be avoided. However, the function will attempt to convert this list to a data frame. The resulting data frame will have a number of columns equal to the length of the longest vector. For vectors with length less than this will fill the row with NAs. Note that this function will print a warning if this condition occurs.

Value

a data frame.

Author(s)

Jason Bryer jason@bryer.org

References

http://stackoverflow.com/questions/4227223/r-list-to-data-frame

Examples

```
    test1 <- list( c(a='a',b='b',c='c'), c(a='d',b='e',c='f'))
    as.data.frame(test1)
    test2 <- list( c('a','b','c'), c(a='d',b='e',c='f'))
    as.data.frame(test2)
    test3 <- list('Row1'=c(a='a',b='b',c='c'), 'Row2'=c(var1='d',var2='e',var3='f'))
    as.data.frame(test3)
    ## Not run:
    #This will print a warning.
    test4 <- list('Row1'=letters[1:5], 'Row2'=letters[1:7], 'Row3'=letters[8:14])
    as.data.frame(test4)
## End(Not run)
    test5 <- list(letters[1:10], letters[11:20])
    as.data.frame(test5)
    ## Not run:
    #This will throw an error.
    test6 <- list(list(letters), letters)
    as.data.frame(test6)
## End(Not run)
```

balance.plot
Balance plot for the given covariate.

Description

If the covariate is numeric, boxplots will be drawn with red points for the mean and green error bars for the standard error. For non-numeric covariates a barplot will be drawn.

Usage

balance.plot(x, covar, model, nstrata = attr(attr(tmatch, "triangle.psa"), "nstrata"), label = "Covariate", ylab = "", xlab = NULL, se.ratio = 2, print = TRUE, legend.position = "top", x.axis.labels, x.axis.angle $=-45, \ldots$)

Arguments

x
covar
model an integer between 1 and 3 indicating from which model the propensity scores will be used.

nstrata label number of strata to use. ylab label for the legend. xlab label of the y-axis. se.ratio label of the x-axis. print a multiplier for how large standard error bars will be. (for continuous variables). legend.position	the position of the legend. See theme.
x.axis.labels	labels for the x-axis.
x.axis.angle	angle for x-axis labels. parameters passed to plot.balance.plots.
...	

Details

A Friedman rank sum test will be performed for all covariate types, printed, and stored as an attribute to the returned object named friedman. If a continuous covariate a repeated measures ANOVA will also be performed, printed, and returned as an attribute named rmanova.

Value

a ggplot2 figure or a list of ggplot2 figures if covar is a data frame.

```
boxdiff.plot Returns a ggplot2 box plot of the differences.
```


Description

A boxplot of differences between each pair of treatments.

Usage

boxdiff.plot(tmatch, out, plot.mean = TRUE, ordering = attr(tmatch, "match.order"), ci.width $=0.5$)

Arguments

tmatch the results from trimatch.
out a vector of the outcome measure of interest.
plot.mean logical indicating whether the means should be plotted.
ordering specify the order for doing the paired analysis, that is analysis will be conducted as: ordering[1] - ordering[2], ordering[1] - ordering[3], and ordering[2] - ordering[3].
ci.width the width for the confidence intervals.

Value
a ggplot2 boxplot of the differences.
covariateBalance Calculate covariate effect size differences before and after stratification.

Description

This function is modified from the cv.bal.psa function in the PSAgrpahics package.

Usage

covariateBalance(covariates, treatment, propensity, strata = NULL, int $=$ NULL, tree $=$ FALSE, minsize $=2$, universal.psd $=$ TRUE, $\operatorname{trM}=0$, absolute.es $=$ TRUE, trt.value $=$ NULL, use.trt.var = FALSE, verbose $=$ FALSE, xlim $=$ NULL, plot.strata $=$ TRUE, ...)

Arguments

covariates treatment propensity	dataframe of interest binary vector of 0s and 1s (necessarily? what if character, or 1, 2?)
strata	PS scores from some method or other. either a vector of strata number for each row of covariate, or one number n in which case it is attempted to group rows by ps scores into n strata of size approximately 1/n. This does not seem to work well in the case of few specific propensity values, as from a tree. either a number m used to divide [0,1] into m equal length subintervals, or a vec- tor of cut points between 0 an 1 defining the subintervals (perhaps as suggested by loess.psa). In either case these subintervals define strata, so strata can be of any size. logical, if unique ps scores are few, as from a recursively partitioned tree, then
int	TRUE will force each ps value to define a stratum.
smallest allowable stratum-treatment size. If violated, strata is removed.	

Details

Note: effect sizes are calculated as treatment 1 - treatment 0 , or treatment B-treatment A.

Author(s)

Robert M. Pruzek RMPruzek@yahoo.com
James E. Helmreich James.Helmreich@Marist.edu
KuangNan Xiong harryxkn@yahoo.com
data.frame.to.list Convert a list of vectors to a data frame.

Description

This function will convert a list of vectors to a data frame. This function will handle three different types of lists of vectors. First, if all the elements in the list are named vectors, the resulting data frame will have have a number of columns equal to the number of unique names across all vectors. In cases where some vectors do not have names in other vectors, those values will be filled with NA.

Usage

data.frame.to.list(...)

Arguments

... other parameters passed to data. frame.

Details

The second case is when all the vectors are of the same length. In this case, the resulting data frame is equivalent to applying rbind across all elements.
The third case handled is when there are varying vector lengths and not all the vectors are named. This condition should be avoided. However, the function will attempt to convert this list to a data frame. The resulting data frame will have a number of columns equal to the length of the longest vector. For vectors with length less than this will fill the row with NAs. Note that this function will print a warning if this condition occurs.

Value

a data frame.

References

http://stackoverflow.com/questions/4227223/r-list-to-data-frame
distance.euclid Euclidean distance calculation.

Description

This method uses a simple Euclidean distance calculation for determining the distances between two matches. That is, |ps1-ps2|.

Usage

distance.euclid(x, grouping, id, groups, caliper, nmatch = Inf)

Arguments

x
grouping vector or factor identifying group membership.
id vector corresponding to unique identifer for each element in x and grouping.
groups vector of length two indicating the unique groups to calculate the distance between. The first element will be the rows, the second columns.
caliper a scaler indicating the caliper to use for matching within each step.
nmatch number of smallest distances to retain.

Value

a list of length equal to x. Each element of the list is a named numeric vector where the values correspond to the distance and the name to the id.

```
distances.plot Barplot for the sum of distances.
```


Description

Barplot for the sum of distances.

Usage

distances.plot(tmatch, caliper $=0.25$, label $=$ FALSE)

Arguments

tmatch	the results of trimatch.
caliper	a vector indicating where vertical lines should be drawn as a factor of the stan- dard deviation. Rosenbaum and Rubin (1985) suggested one quarter of one standard deviation.
label	label the bars that exceed the minimum caliper.

See Also

triangle.match
loess3.plot Loess plot for matched triplets.

Description

This function will create a ggplot2 figure with propensity scores on the x -axis and the outcome on the y-axis. Three Loess regression lines will be plotted based upon the propensity scores from model. Since each model produces propensity scores for two of the three groups, the propensity score for the third group in each matched triplet will be the mean of the other two. If model is not specified, the default will be to use the model that estimates the propensity scores for the first two groups in the matching order.

Usage

loess3.plot(tmatch, outcome, model, ylab = "Outcome", plot.connections = FALSE, connections.color = "black", connections.alpha = 0.2, plot.points = geom_point, points.alpha = 0.1, points.palette = "Dark2", ...)

Arguments

tmatch the results of trimatch.
outcome a vector representing the outcomes.
model an integer between 1 and 3 indicating from which model the propensity scores will be used.
ylab the label for the y-axis.
plot.connections
boolean indicating whether lines will be drawn connecting each matched triplet.
connections.color
the line color of connections.
connections.alpha
number between 0 and 1 representing the alpha levels for connection lines.
plot.points a ggplot2 function for plotting points. Usually geom_point or geom_jitter. If NULL no points will be drawn.
points.alpha number between 0 and 1 representing the alpha level for the points.
points.palette the color palette to use. See scale_colour_brewer and http://colorbrewer2. org/ for more information.
... other parameters passed to geom_smooth and stat_smooth.

Value

a ggplot2 figure.

```
maximumTreat This method will return at least one treatment from groups one and
    two within the caliper.
```


Description

This method will attempt to return enough rows to use each treatment (the first two groups in the matching order) at least once. Assuming treat 1 is the first group in the match order and treat 2 the second, all duplicate treat 1 rows are removed. Next, all treat 2 units not in present in after removing duplicate treat 1 units are identified. For each of those treat 2 units, the matched triplet with the smallest overall distances where treat2 is one of the mathched units is retained.

Usage

maximumTreat(tmatch, ...)

Arguments

tmatch initial results from trimatch that contains all possible matches within the specified caliper.
... currently unused.

```
merge.triangle.matches
```

Merges outcomes with the matched set.

Description

The y parameter should be a subset of the original data used.

Usage

```
## S3 method for class 'triangle.matches'
merge(x, y, ...)
```


Arguments

x	the result of trimatch
y	another data frame or vector to merge with.
\ldots	unused

Value

x with the additional column(s) added.
merge.triangle.psa Merges covariate(s) with the results of trips.

Description

The y parameter should be a subset of the original data used.

Usage

```
\#\# S3 method for class 'triangle.psa'
merge(x, y, ...)
```


Arguments

$x \quad$ the result of trips
$y \quad$ another data frame or vector to merge with.
... unused

Value

x with the additional column(s) added.
multibalance.plot Multiple covariate balance assessment plot.

Description

A graphic based upon cv.bal.psa function in the PSAgraphics package. This graphic plots the effect sizes for multiple covariates before and after propensity score adjustment.

Usage

multibalance.plot(tpsa, tmatch, grid = TRUE, cols)

Arguments

tpsa results of trips.
tmatch results of trimatch.
grid if TRUE, then a grid of three plots for each model will be displayed.
cols character vector of covariates (i.e. column names) from the original data to include in the plot. By default all covariates used in the logistic regression model are used.

Value

a ggplot2 figure.

Description

This file was originally prepared by Anders Corr (corr@fas.harvard.edu) who reports on December 8,2007 that the resulting numbers closely match with those reported in the published article. It was later modified by Jason Bryer (jason@bryer.org) to an R data object to be included in this package. See http://imai.princeton.edu/research/pscore.html for more information

Format

a data frame with 9,708 observations of 12 variables.

Author(s)

United States Department of Health and Human Services. Agency for Health Care Policy and Research

Source

http://imai.princeton.edu/research/pscore.html

References

National Center For Health Services Research, 1987. National Medical Expenditure Survey. Methods II. Questionnaires and data collection methods for the household survey and the Survey of American Indians and Alaska Natives. National Center for Health Services Research and Health Technology Assessment.
Imai, K., \& van Dyk, D.A. (2004). Causal Inference With General Treatment Regimes: Generalizing the Propensity Score, Journal of the American Statistical Association, 99(467), pp. 854-866.
Elizabeth Johnson, E., Dominici, F., Griswold, M., \& Zeger, S.L. (2003). Disease cases and their medical costs attributable to smoking: An analysis of the national medical expenditure survey. Journal of Econometrics, 112.

OneToN

 This method will use a M1-to-M2-to-1 matching.
Description

In this method, M2 corresponds to the number of times a treat 1 unit can be matched with a treat 2 unit. The M1 parameter corresponds to the number of times a treat 1 unit can be used in total.

Usage

OneToN(tmatch, M1 = 2, M2 = 1, ...)

Arguments

tmatch initial results from trimatch that contains all possible matches within the specified caliper.
M1 a scaler indicating the number of unique subjects in group one to retain. This applies only to the first group in the matching order.
M2 a scaler indicating the number of unique matches to retain. This applies to the first two groups in the matching order.
... currently unused.
parallel.plot
Parallel coordinate plot for the three groups and dependent variable.

Description

Creates a ggplot2 figure of a parallel coordinate plot.

Usage

parallel.plot(tmatch, outcome)

Arguments

tmatch results from trimatch.
outcome vector of the outcome
perpPt Internal method for plotting. Finds a point d distance from x, y

Description

Internal method for plotting. Finds a point d distance from x, y

Usage

$\operatorname{perpPt}(x, y, d=0.05)$

Arguments

x	x coordinate
y	y coordinate
d	the distance

```
plot.balance.plots Prints a grid of balance plots.
```


Description

Prints a grid of balance plots.

Usage

\#\# S3 method for class 'balance.plots'
plot(x, rows, cols, byrow = TRUE, plot.sequence = seq_along(bplots), ...)

Arguments

x
rows if covar is a data frame of covariates, the number of rows in the grid of figures.
cols if covar is a data frame of covariates, the number of columns in the grid of figures.
byrow
plot. sequence the sequence (or subset) of plots to draw.
... currently unused.
plot.triangle.matches Triangle plot drawing matched triplets.

Description

This plot function adds a layer to plot.triangle.psa drawing matched triplets. If p is supplied, this function will simply draw on top of the pre-existing plot, otherwise plot.triangle.psa will be called first.

Usage

\#\# S3 method for class 'triangle.matches'
plot (x, sample = 0.05,
rows = sample(nrow(tmatch), nrow(tmatch) * sample), line.color = "black",
line.alpha = 0.5, point.color = "black", point.size $=3, p, \ldots$)

Arguments

x
sample an number between 0 and 1 representing the percentage of matched triplets to draw.
rows an integer vector corresponding to the rows in tmatch to draw.
line.color the line color.
line.alpha the alpha for the lines.
point.color color of matched triplet points.
point.size point size for matched triplets.
p a ggplot to add the match lines. If NULL, then plot.triangle.psa.
... other parameters passed to plot.triangle.psa.

Details

If this function calls plot.triangle.psa, it will only draw line segments and points for those data rows that were used in the matching procedure. That is, data elements not matched will be excluded from the figure. To plot all segments and points regardless if used in matching, set $p=\operatorname{plot}(t p s a)$.

Value

a ggplot2 graphic.

See Also

plot.triangle.psa
triangle.match

```
plot.triangle.psa Triangle plot.
```


Description

Triangle plot showing the fitted values (propensity scores) for three different models.

Usage

```
## S3 method for class 'triangle.psa'
plot(x, point.alpha = 0.3, point.size = 1.5,
    legend.title = "Treatment", text.size = 4, draw.edges = FALSE,
    draw.segments = TRUE, edge.alpha = 0.2, edge.color = "grey",
    edge.labels = c("Model 1", "Model 2", "Model 3"), sample = c(1), ...)
```


Arguments

x	the results from trips.
point.alpha	alpha level for points.
point.size	point size.
legend.title	title for the legend.
text.size	text size.
draw.edges	draw edges of the triangle.
draw.segments	draw segments connecting points across two models.
edge.alpha	alpha level for edges if drawn.
edge.color	the color for edges if drawn.
edge.labels	the labels to use for each edge of the triangle.
sample	a vector of length 1 or 3 representing the sample of points to plot. The position of each element corresponds to the groups as returned by attr(tpsa, 'groups').
	If equal to one, all points will be plotted. Values less than one will plot a percentage of points. Values greater than one exactly that number of points will be plotted.
	currently unused.

Value

ggplot2 figure

See Also

triangle.psa
print.balance.plots Print the results of balance. plot for a data frame of covariates.

Description

Print the results of balance. plot for a data frame of covariates.

Usage

\#\# S3 method for class 'balance.plots'
print(x, ...)

Arguments

$\begin{array}{ll}x & \text { the results of balance.plot when a data frame is specified. } \\ \ldots & \text { parameters passed to plot.balance.plots and summary.balance.plots. }\end{array}$
print.triangle.plot Print method for plot.triangle.psa. The primary purpose is to suppress the "Removed n rows containing missing values" warning printed by ggplot2.

Description

Print method for plot.triangle.psa. The primary purpose is to suppress the "Removed n rows containing missing values" warning printed by ggplot2.

Usage

```
\#\# S3 method for class 'triangle.plot'
    print(x, ...)
```


Arguments

x a plot from plot.triangle.psa. ... other parameters passed to ggplot2.

```
print.trimatch.summary
```

 Prints the results of summary.triangle.matches.

Description

This is an S 3 generic function to print the results of summary.triangle.matches.

Usage

\#\# S3 method for class 'trimatch.summary'
print(x, ...)

Arguments

$x \quad$ results of summary.triangle.matches.
... multiple results of summary.triangle.matches. These must be named. For example, "Method 1 " = summary (tmath, outcome).

Description

Internal method for plotting. Position along the left side segment

Usage

segment1 (d)

Arguments

d
the distance
segment2 Internal method for plotting. Position along the right side segment

Description

Internal method for plotting. Position along the right side segment

Usage

segment2(d)

Arguments

d the distance

| star \quad Returns significance level. |
| :--- | :--- |

Description

Returns the significance level as stars, or NA if a non-numeric value is passed in.

Usage

$\operatorname{star}(x)$

Arguments

x
p-value.
summary. balance. plots Prints a summary table of the test statistics of each balance plot.

Description

The balance.plot function will create a grid of balance plots if a data frame is provided. The returned object is a list of ggplot2 figures with the statistical tests (i.e. Friedmen Rank Sum tests and if a continuous variable, repeated measures ANOVA as well) saved as attributes. This function will return a data frame combining all of those results.

```
Usage
    ## S3 method for class 'balance.plots'
    summary(object, ...)
```


Arguments

object the results of balance.plot when a data frame is specified.
... currently unused.

Value

a data frame

```
summary.triangle.matches
```

Provides a summary of the matched triplets including analysis of outcome measure if provided.

Description

If an outcome measure is provided this function will perform a Freidman Rank Sum Test and repeated measures ANOVA. If either test has a statistically significant difference (as determined by the value of the p parameter), a Pairwise Wilcoxon Rank Sum Test will also be provided.

```
Usage
    ## S3 method for class 'triangle.matches'
    summary(object, outcome, p = 0.05,
        ordering = attr(object, "match.order"), ...)
```


Arguments

object result of trimatch.
outcome vector representing the outcome measure.
p threshold of the p value to perform a
ordering specify the order for doing the paired analysis, that is analysis will be conducted as: ordering[1] - ordering[2], ordering[1] - ordering[3], and ordering[2] - ordering[3].
... parameters passed to other statistical tests.

Value

a trimatch.summary object.

See Also

friedman.test, ezANOVA, pairwise.wilcox.test

```
summary.triangle.psa Prints the summary results of the logistic regression models.
```


Description

The trips function estimates three separate logistic regression models for each pair of groups. This function will print a combined table of the three summaries.

Usage

```
## S3 method for class 'triangle.psa'
summary(object, ...)
```


Arguments

object the results of trips.
... currently unused.
summary. unmatched Provides a summary of unmatched subjects.

Description

Will return as a list and print the percentage of total unmatched rows and percent by treatment.

Usage

\#\# S3 method for class 'unmatched'
summary (object, digits $=3, \ldots$)

Arguments

object	results of unmatched
digits	number of digits to print.
\ldots	currently unused.

Value

a list of summary results.

```
trimatch Creates matched triplets.
```


Description

Create matched triplets by minimizing the total distance between matched triplets within a specified caliper.

Usage

trimatch(tpsa, caliper $=0.25$, nmatch $=c(15)$, match.order, exact, method $=$ maximumTreat, ...)

Arguments

tpsa the results from trips
caliper a vector of length one or three indicating the caliper to use for matching within each step. This is expressed in standardized units such that .25 means that matches must be within .25 of one standard deviation to be kept, otherwise the match is dropped.
\(\left.$$
\begin{array}{ll}\text { nmatch } & \begin{array}{l}\text { number of closest matches to retain before moving to next edge. This can be } \\
\text { Inf in which case all matches within the caliper will be retained through to the } \\
\text { next step. For large datasets, evaluating all possible matches within the caliper } \\
\text { could be time consuming. }\end{array}
$$

match.order

character vector of length three indicating the order in which the matching al-

gorithm will processes. The default is to use start with the group the middle

number of subjects, followed by the smallest, and then the largest.\end{array}\right\}\)| a vector or data frame of representing covariates for exact matching. That is, |
| :--- |
| matched triplets will first be matched exactly on these covariates before evalu- |
| ating distances. |\quad| This is a function that specifies which matched triplets will be retained. If NULL, |
| :--- |
| all matched triplets within the specified caliper will be returned (equivalent to |
| caliper matching in two group matching). The default is maximumTreat that |
| attempts include each treatment at least once. Another option is OneToN which |
| mimicks the one-to-n matching where treatments are matched to multiple con- |
| trol units. |

Details

The trips function will estimate the propensity scores for three models. This method will then find the best matched triplets based upon minimizing the summed differences between propensity scores across the three models. That is, the algorithm works as follows:

- The first subject from model 1 is selected.
- The nmatch[1] smallest distances are selected using propensity scores from model 1.
- For each of the matches identified, the subjects propensity score from model 2 is retrieved.
- The nmatch[2] smallest distances are selected using propensity score from model 3.
- For each of those matches identified, the subjects propensity score from model 2 is retrieved.
- The distances is calculated from the first and last subjects propensity scores from model 2.
- The three distances are summed.
- The triplet with the smallest overall distance is selected and returned.

Examples

```
## Not run:
data(turoing)
formu <- ~ Gender + Ethnicity + Military + ESL + EdMother + EdFather + Age +
    Employment + Income + Transfer + GPA
tpsa <- trips(tutoring, tutoring$treat, formu)
tmatch <- trimatch(tpsa, status=FALSE)
## End(Not run)
```


Description

Internal method. This version does not use the exact matching. Instead, this function should be called separately for each grouping.

Usage

trimatch.apply2(tpsa, caliper, nmatch, match.order, sd1, sd2, sd3)

Arguments

tpsa the results from trips
caliper a vector of length one or three indicating the caliper to use for matching within each step. This is expressed in standardized units such that .25 means that matches must be within .25 of one standard deviation to be kept, otherwise the match is dropped.
nmatch number of closest matches to retain before moving to next edge. This can be Inf in which case all matches within the caliper will be retained through to the next step. For large datasets, evaluating all possible matches within the caliper could be time consuming.
match.order character vector of length three indicating the order in which the matching algorithm will processes. The default is to use start with the group the middle number of subjects, followed by the smallest, and then the largest.
sd1 standard deviation for propensity scores from model 1.
sd2 standard deviation for propensity scores from model 2.
sd3 standard deviation for propensity scores from model 3.
trips Estimates propensity scores for three groups

Description

The propensity score is

$$
e(X)=P(W=1 \mid X)
$$

This function will estimate the propensity scores for each pair of groups (e.g. two treatments and one control).

Usage

trips(thedata, treat, formu $=\sim$., groups $=$ unique(treat), nstrata $=5$, method = "logistic", ...)

Arguments

thedata the data frame.
treat vector or factor indicating the treatment/control assignment for thedata. Length must be equal to nrow(thedata).
formu the logistic regression formula. Note that the dependent variable should not be specified and will be modified.
groups a vector of exactly length three corresponding the values in treat for each control/treatment.
nstrata the number of strata marks to plot on the edge.
method the method to use to estimate the propensity scores. Current options are logistic or randomForest.
... other parameters passed to glm.

Details

$$
\begin{aligned}
& P S_{1}=e\left(X_{T_{1} C}\right)=\operatorname{Pr}\left(z=1 \mid X_{T_{1} C}\right) \\
& P S_{2}=e\left(X_{T_{2} C}\right)=\operatorname{Pr}\left(z=1 \mid X_{T_{2} C}\right) \\
& P S_{3}=e\left(X_{T_{2} T_{1}}\right)=\operatorname{Pr}\left(z=1 \mid X_{T_{2} T_{1}}\right)
\end{aligned}
$$

Examples

```
## Not run:
data(tutoring)
formu <- ~ Gender + Ethnicity + Military + ESL + EdMother + EdFather + Age +
    Employment + Income + Transfer + GPA
tpsa <- trips(tutoring, tutoring$treat, formu)
head(tpsa)
## End(Not run)
```

Results from a study examining the effects of tutoring services on course grades.

Description

- treat Treatment indicator.
- Course The course id the student was enrolled in.
- Grade The course grade the student earned $(4=\mathrm{A}, 3=\mathrm{B}, 2=\mathrm{C}, 1=\mathrm{D}, 0=\mathrm{F}$ or W$)$.
- Gender Gender of the student.
- Ethnicity Ethnicity of the student, either White, Black, or Other.
- Military Is the student an active military student.
- ESL English second language student.
- EdMother Education level of the mother ($1=$ did not finish high school; $2=$ high school grad; $3=$ some college; $4=$ earned associate degree; $5=$ earned baccalaureate degree; $6=$ Earned Master's degree; $7=$ earned doctorate).
- EdFather Education level of the father (levels same as EdMother).
- Age Age at the start of the course.
- Employment Employment level at college enrollment $(1=\mathrm{No} ; 2=$ part-time; $3=$ full-time $)$.
- Income Household income level at college enrollment ($1=<25 \mathrm{~K} ; 2=<35 \mathrm{~K} ; 3=<45 \mathrm{~K} ; 4=$ $<55 \mathrm{~K} ; 5=<70 \mathrm{~K} ; 6=<85 \mathrm{~K} ; 7=<100 \mathrm{~K} ; 8=<120 \mathrm{~K} ; 9=>120 \mathrm{~K}$).
- Transfer Number of transfer credits at the start of the course.
- GPA GPA as of the start of the course.
- GradeCode Letter grade.
- Level Level of the course, either Lower or Upper.
- ID Randomly assigned student ID.

Format

a data frame with 17 variables.

Description

This function returns a subset of trips that were not matched by trimatch. All data frame methods work with the returned object but special summary function will provided relevant information.

Usage

unmatched(tmatch)

Arguments

tmatch the results of trimatch.

Value

a data frame of unmatched rows.

Index

```
*Topic analysis
    TriMatch-package, 2
*Topic datasets
    nmes, }1
    tutoring, 25
*Topic matching
    TriMatch-package, 2
*Topic propensity
    TriMatch-package, 2
*Topic psa
    TriMatch-package, 2
*Topic score
    TriMatch-package, 2
as.data.frame.list,3
balance.plot, 4, 14, 16, 19
boxdiff.plot,5
covariateBalance,6
cv.bal.psa, 6, 11
data.frame, 3,7
data.frame.to.list,7
distance.euclid,8
distances.plot,8
ezANOVA,20
friedman.test,20
geom_jitter,9
geom_point,9
geom_smooth, }
glm, 24
loess3.plot, }
maximumTreat, 10,22
merge.triangle.matches, 10
merge.triangle.psa,11
```

multibalance.plot, 11
nmes, 12
OneToN, 12, 22
pairwise.wilcox.test, 20
parallel.plot, 13
perpPt, 13
plot.balance.plots, 5, 14, 16
plot.triangle.matches, 14
plot.triangle.psa, 14, 15, 15, 17
print.balance.plots, 16
print.triangle.plot, 17
print.trimatch.summary, 17
scale_colour_brewer, 9
segment1, 18
segment2, 18
star, 18
stat_smooth, 9
summary.balance.plots, 16, 19
summary.triangle.matches, 17, 19
summary.triangle.psa, 20
summary. unmatched, 21
theme, 5
TriMatch (TriMatch-package), 2
trimatch, 4, 5, 8-11, 13, 20, 21, 26
TriMatch-package, 2
trimatch.apply2, 23
trips, 11, 16, 20-23, 23, 26
tutoring, 25
unmatched, 21,26

