Package 'VDSM'

April 16, 2021

Type Package

Title Visualization of Distribution of Selected Model

Version 0.1.1

Description Although model selection is ubiquitous in scientific discovery, the stability and uncertainty of the selected model is often hard to evaluate. How to characterize the random behavior of the model selection procedure is the key to understand and quantify the model selection uncertainty. This R package offers several graphical tools to visualize the distribution of the selected model. For exam-

ple, Gplot(), Hplot(), VDSM_scatterplot() and VDSM_heatmap(). To the best of our knowledge, this is the first attempt to visualize such a distribution. About what distribution of selected model is and how it work please see Qin,Y.and Wang,L. (2021) ``Visualization of Model Selection Uncertainty'' https://homepages.uc.edu/~qinyn/VDSM/VDSM.html.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports ggplot2, plyr, dplyr, grid, viridis, gridExtra, knitr, stats

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Linna Wang [aut, cre], Yichen Qin [aut]

Maintainer Linna Wang <wang219@mail.uc.edu>

Repository CRAN

Date/Publication 2021-04-16 09:00:02 UTC

R topics documented:

DSM_plot

DSM_plot	2
examplef	3
exampleX	4
Gplot	4
Groupinfo	5
Hplot	6
VDSM_heatmap	7
VDSM_scatterplot	8
VDSM_scatter_heat	10
1	11

Index

CheckInput

Check if the input is valid or not

Description

Input a valid matrix

Usage

CheckInput(X, f, p)

Arguments

Х	A m*p matrix which each row represents one unique model with the elements either 0 or 1.
f	A vector with m elements contain each model's frequency in X.
р	The number of variate in the model

Value

The standardized matrix

DSM_plot	DSM_plot plot the naive visualization of the distribution of selected
	model

Description

DSM_plot plot the naive visualization of the distribution of selected model

examplef

Usage

```
DSM_plot(
   X,
   f,
   p,
   Anchor.model = NULL,
   circlesize = NULL,
   linewidth = NULL,
   fontsize = NULL
)
```

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.
р	The number of variate in the model
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
circlesize	customize the size of the circle in the plot, default is 10.
linewidth	Customize the width of the line in the plot, default is 1.
fontsize	Customize the size of the font in the circles, default is 1.5.

Value

A summarized information of the grouped models.

Examples

```
data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
DSM_example1 = DSM_plot(X,f,p)
```

examplef

examplef

Description

This small data set contains the frequencies of thoes m=30 models in exampleX data set.

Usage

examplef

Format

One vector representing the information of f.

exampleX

exampleX

Description

This small data set contains m=30 unique models and p=8 variates.

Usage

exampleX

Format

One matrix containing the information of X.

Gplot

Gplot.

Description

Plotting Gplot.

Usage

```
Gplot(
   X,
   f,
   p,
   Anchor.model = NULL,
   xlim = NULL,
   ylim = NULL,
   circlesize = NULL,
   linewidth = NULL,
   fontsize = NULL
)
```

Groupinfo

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.
р	The number of variate in the model.
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
xlim	A vector with two elements which determine the range of x-axis in the plot.
ylim	A vector with two elements which determine the range of y-axis in the plot.
circlesize	customize the size of the circle in the plot, default is 10.
linewidth	Customize the width of the line in the plot, default is 1.
fontsize	Customize the size of the font in the circles, default is 1.5.

Value

A list with components

Gplot.info	The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.
MC.histogram	The frequency of model complexity.
HD.histogram	The frequency of Hamming distance.

Examples

```
data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
G_example1 = Gplot(X,f,p)
G_example2 = Gplot(X,f,p,xlim=c(0,7),ylim=c(3,8))
G_example3 = Gplot(X,f,p,xlim=c(0,7),ylim=c(3,8),circlesize=15,linewidth=2,fontsize=3)
```

Groupinfo	Group the models according to their Hamming distance and Model
	complexity to the anchor model

Description

Group the given models

Usage

Groupinfo(X, f, p, Anchor.model = NULL)

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.
р	The number of variate in the model
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.

Value

A summarized information of the grouped models.

Hplot Hplot.

Description

Plotting Hplot.

Usage

```
Hplot(
   X,
   f,
   p,
   Anchor.model = NULL,
   xlim = NULL,
   ylim = NULL,
   circlesize = NULL,
   linewidth = NULL,
   fontsize = NULL
)
```

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.
р	The number of variate in the model.
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
xlim	A vector with two elements which determine the range of x-axis in the plot.
ylim	A vector with two elements which determine the range of y-axis in the plot.
circlesize	customize the size of the circle in the plot, default is 10.
linewidth	Customize the width of the line in the plot, default is 1.
fontsize	Customize the size of the font in the circles, default is 1.5.

Value

A list with components

Hplot.info The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.

Hplus.histogram

The frequency of Hamming distance plus.

Hminus.histogram

The frequency of Hamming distance minus.

Examples

```
data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
H_example1 = Hplot(X,f,p)
H_example2 = Hplot(X,f,p,xlim=c(0,4),ylim=c(0,2))
H_example3 = Hplot(X,f,p,xlim=c(0,4),ylim=c(0,2),circlesize=15,linewidth=2,fontsize=3)
```

VDSM_heatmap VDSM-heatmap.

Description

Plotting the VDSM-heatmap.

Usage

```
VDSM_heatmap(
   X,
   f,
   p,
   Anchor.estimate,
   xlim = NULL,
   ylim = NULL,
   Anchor.model = NULL,
   fontsize = NULL
)
```

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.

р	The number of variate in the model.
Anchor.estimate	e
	An estimation for the anchor model.
xlim	A vector with two elements which determine the range of x-axis in the plot.
ylim	A vector with two elements which determine the range of y-axis in the plot.
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
fontsize	Customize the size of the font in the circles, default is 1.5.

Value

A list with components

Heatmap.info	The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the	
	group.	
Hplus.histogram		
	The frequency of Hamming distance plus.	
Hminus.weighted.histogram		
	The frequency of Hamming distance minus-weighted.	

Examples

```
data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
Anchor.estimate=c(3,2.5,2,1.5,1,0,0,0)
Heatmap_example1 = VDSM_heatmap(X,f,p,Anchor.estimate)
Heatmap_example2 = VDSM_heatmap(X,f,p,Anchor.estimate,fontsize=3)
Heatmap_example3 = VDSM_heatmap(X,f,p,Anchor.estimate,xlim=c(0,5),ylim=c(0,5),fontsize=3)
```

VDSM_scatterplot VDSM-Scatterplot.

Description

Plotting the VDSM-Scatterplot.

Usage

```
VDSM_scatterplot(
   X,
   f,
   p,
   Anchor.estimate,
```

VDSM_scatterplot

```
xlim = NULL,
ylim = NULL,
Anchor.model = NULL,
circlesize = NULL,
fontsize = NULL
```

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f	A vector with m elements which represent each model's frequency in X.
р	The number of variate in the model.
Anchor.estimate	
	An estimation for the anchor model.
xlim	A vector with two elements which determine the range of x-axis in the plot.
ylim	A vector with two elements which determine the range of y-axis in the plot.
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
circlesize	customize the size of the circle in the plot, default is 10.
fontsize	Customize the size of the font in the circles, default is 1.5.

Value

A list with components

```
Scatterplot.info
```

The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.

```
Hplus.histogram
```

The frequency of Hamming distance plus.

```
Hminus.weighted.histogram
```

The frequency of Hamming distance minus-weighted.

Examples

```
data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
Anchor.estimate=c(3,2.5,2,1.5,1,0,0,0)
Scatter_example1 = VDSM_scatterplot(X,f,p,Anchor.estimate)
Scatter_example2 = VDSM_scatterplot(X,f,p,Anchor.estimate,xlim=c(0,5),
ylim=c(0,8),circlesize=15,fontsize=2)
```

VDSM_scatter_heat VDSM-Scatter-heatmap-info

Description

Report VDSM-Scatter-heatmap-infomation

Usage

VDSM_scatter_heat(X, f, p, Anchor.estimate, Anchor.model = NULL)

Arguments

Х	A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.	
f	A vector with m elements which represent each model's frequency in X.	
р	The number of variate in the model	
Anchor.estimate		
	An estimation for the anchor model	
Anchor.model	A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.	

Value

A list of information which helps to plot VDSM-Scatter-heatmap.

Index

* datasets examplef, 3 exampleX, 4 CheckInput, 2 DSM_plot, 2 examplef, 3 exampleX, 4 Gplot, 4 Groupinfo, 5 Hplot, 6 VDSM_heatmap, 7 VDSM_scatter_heat, 10

VDSM_scatterplot, 8