Package ‘VariantScan’

June 30, 2022
Version 1.1.9
Date 2022-06-25
Title A Machine Learning Tool for Genetic Association Studies

Description Portable, scalable and highly computationally efficient tool for genetic association stud-
ies.”” VariantScan" provides a set of machine learning methods (Linear, Local Polynomial Re-
gression Fitting and Generalized Additive Model with Local Polynomial Smoothing)
for genetic association studies that test for disease or trait association with genetic variants
(biomarkers, e.g.,genomic (genetic loci), transcriptomic (gene expressions), epigenomic (methy-
lations), proteomic (proteins), metabolomic (metabolites)).

It is particularly useful when local associations and complex nonlinear associations exist.

Maintainer Xinghu Qin <gin.xinghu@163.com>

biocViews

Depends R (>=3.0)

License GPL (>=3)
SystemRequirements GNU make

URL https://github.com/xinghuq/VariantScan

BugReports https://github.com/xinghuq/VariantScan/issues
Imports stats,SNPRelate,caret,gam,ModelMetrics

VignetteBuilder knitr

NeedsCompilation no

RoxygenNote 6.1.1

Suggests knitr,testthat,rmarkdown,ggplot2

Author Xinghu Qin [aut, cre, cph] (<https://orcid.org/0000-0003-2351-3610>),
Tianzi Liu [aut],
Peilin Jia [aut]

Repository CRAN
Date/Publication 2022-06-30 11:50:06 UTC

https://github.com/xinghuq/VariantScan
https://github.com/xinghuq/VariantScan/issues
https://orcid.org/0000-0003-2351-3610

2 gamLoessScan

R topics documented:

gamloessScan e e e 2

GENMMAL vt e e e e e e e e e e e e e e e e e e 3

PCA . o o e e 5

VScan e 7

Index 11
gamLoessScan Variants (Biomarkers, e.g., genomic (genetic loci), transcriptomic

(gene expression), epigenomic (methylations), proteomic(protein),
metabolomic (metabolites) variants) Scanning and Association Tests
Using Generalized Additive Model with Local Polynomial Regression
(LOESS).

Description

Fitting a Generalized Additive Mixed Models (GAMM) with Local Polynomial Regression in as-
sociation testing.

Usage

gamLoessScan(genotype, traits, U, cv_method = "adaptive_cv",

model_metric = "RMSE", n_hyperparameter_search = 10,verbose=TRUE, ...)
Arguments

genotype Varants/genotypes matrix coding in reference allele (0,1,2) or variant count

traits Traits

u Covariates or confounding factors

cv_method Cross-validation

model_metric Model performance metrics, based on which the optimal model is determined.

n_hyperparameter_search
Number of hyperparameters for tuning

verbose whether print training messages.

other arguments passing to generalized additive mixed models (gam)

Details
Fits the specified generalized additive mixed model (GAMM) with LOESS smoothness.

Value

The weights of variants as well as their p-values

genmat 3

References

Wood S.N. (2006b) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC
Press.

Wang, Y. (1998) Mixed effects smoothing spline analysis of variance. J.R. Statist. Soc. B 60,
159-174.

Lin, X and Zhang, D. (1999) Inference in generalized additive mixed models by using smoothing
splines. JRSSB. 55(2):381-400.

Examples

not run

f <- system.file('extdata',package='VariantScan')
infile <- file.path(f, "siml.csv")
geno=read.csv(infile)

traitqg=genol,14]

genotype=geno[,-c(1:14)]

PCs=prcomp(genotype)

test=gamLoessScan(genotype =genotype,traits =(traitq),U=PCs$x[,1:2],n_hyperparameter_search=5)

genmat Get genotype matrix from genomic data

Description

Get genotype matrix from genomic data

Usage
genmat(genfile, sample.id = NULL, snp.id = NULL,
snpfirstdim = NA, .snpread = NA, with.id = FALSE, verbose = TRUE, ...)
S3 method for class 'genmat.bed'
genmat.bed(genfile, sample.id = NULL, snp.id = NULL,
snpfirstdim = NA, .snpread = NA, with.id = FALSE, verbose = TRUE, ...)
S3 method for class 'genmat.vcf'
genmat.vcf(genfile, sample.id = NULL, snp.id = NULL,
snpfirstdim = NA, .snpread = NA, with.id = FALSE, verbose = TRUE, ...)

S3 method for class 'genmat.gds'

genmat

genmat.gds(genfile, sample.id = NULL, snp.id = NULL,

snpfirstdim

Arguments

genfile

sample.id
snp.id

snpfirstdim

.snpread
with.id

verbose

Details

NA, .snpread = NA, with.id = FALSE, verbose = TRUE, ...)

Genetic datasets containg sample ID and SNP ID, format includes bed (plink),
vcf, or GDS file.

Sample ID
SNP ID

whether genotypes are stored in the individual-major mode (TRUE), (i.e, list all
SNPs for the first individual, and then list all SNPs for the second individual,
etc) or (FALSE) for snp-major mode; if NA, determine automatically

internal use
whether return "sample.id" and "snp.id".
whether printing information

more arguments

Effectively get genoptype matrix from various genotype formats, including bed, vcf, or gds.

Value

The function returns an integer matrix with values 0, 1, 2 or NA representing the number of ref-
erence allele when with.id=FALSE; or list(genotype, sample.id, snp.id) when with.id=TRUE. The
orders of sample and SNP IDs in the genotype matrix are actually consistent with sample.id and
snp.id in the GDS file, which may not be as the same as the arguments sampel.id and snp.id speci-

fied by users.

References

Zheng, X., & Weir, B. S. (2016). Eigenanalysis of SNP data with an identity by descent interpreta-
tion. Theoretical population biology, 107, 65-76.

Examples

inp=SNPRelate: : snpgdsExampleFileName ()

genomati=genmat.gds(inp)

pca

pca Principal Component Analysis (PCA) on whole genome data with

Description

Fast implementation of Principal Component Analysis (PCA) on whole genome data

Usage

pca(genfile, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,

algorithm = c("exact”, "randomized"),

eigen.cnt = ifelse(identical(algorithm, "randomized”), 16L, 32L),
num.thread = 1L, bayesian = FALSE, need.genmat = FALSE,

genmat.only = FALSE, eigen.method = c("DSPEVX", "DSPEV"),

aux.dim = eigen.cnt * 2L, iter.num = 10L, verbose = TRUE,...)

S3 method for class 'pca.bed'

pca.bed(genfile, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,

algorithm = c("exact”, "randomized"),

eigen.cnt = ifelse(identical(algorithm, "randomized”), 16L, 32L),
num.thread = 1L, bayesian = FALSE, need.genmat = FALSE,

genmat.only = FALSE, eigen.method = c("DSPEVX", "DSPEV"),

aux.dim = eigen.cnt * 2L, iter.num = 10L, verbose = TRUE,...)

S3 method for class 'pca.vcf'

pca.vcf(genfile, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,

algorithm = c("exact”, "randomized"),

eigen.cnt = ifelse(identical(algorithm, "randomized"”), 16L, 32L),
num.thread = 1L, bayesian = FALSE, need.genmat = FALSE,

genmat.only = FALSE, eigen.method = c("DSPEVX", "DSPEV"),

aux.dim = eigen.cnt * 2L, iter.num = 10L, verbose = TRUE,...)

S3 method for class 'pca.gds'

pca.gds(genfile, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,

algorithm = c("exact”, "randomized"),

eigen.cnt = ifelse(identical(algorithm, "randomized”), 16L, 32L),
num.thread = 1L, bayesian = FALSE, need.genmat = FALSE,

genmat.only = FALSE, eigen.method = c("DSPEVX", "DSPEV"),

aux.dim = eigen.cnt * 2L, iter.num = 10L, verbose = TRUE,...)

Arguments

genfile

sample.id
snp.id

autosome.only

remove.monosnp

maf
missing.rate

algorithm

eigen.cnt
num. thread
bayesian
need.genmat

genmat.only

eigen.method

pca

Genetic datasets containg sample ID and SNP ID, format includes bed (plink),
vcf, or GDS file.

a vector of sample id specifying selected samples; if NULL, all samples are used
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used

use autosomal SNPs only; if it is a numeric or character value, keep SNPs ac-
cording to the specified chromosome.

remove monomorphic SNPs
filter SNPs with ">= maf" only; if NaN, no MAF threshold
filter the SNPs with "<= missing.rate" only; if NaN, no missing threshold

"exact", traditional exact calculation; "randomized", fast PCA with randomized
algorithm introduced in Galinsky et al. 2016

output the number of eigenvectors; if eigen.cnt <= 0, then return all eigenvectors
the number of (CPU) cores used; if NA, detect the number of cores automatically
if TRUE, use bayesian normalization

if TRUE, return the genetic covariance matrix

return the genetic covariance matrix only, do not compute the eigenvalues and
eigenvectors

"DSPEVX" -compute the top eigen.cnt eigenvalues and eigenvectors using LA-
PACK::DSPEVX; "DSPEV" -to be compatible with SNPRelate_1.1.6 or earlier,
using LAPACK::DSPEV; "DSPEVX" is significantly faster than "DSPEV" if
only top principal components are of interest

aux.dim auxiliary dimension used in fast randomized algorithm
iter.num iteration number used in fast randomized algorithm
verbose if TRUE, show information
more arguments
Details

Efficient and fast implementation of PCA leveraging the advantage of Genomic Data Structure
(GDS) to accelerate computations on SNP data using parallel computing for multi-core symmetric
multiprocessing computer architectures. The minor allele frequency and missing rate for each SNP
passed in snp.id are calculated over all the samples in sample.id.

Value

Return a of of PCA results, including sample id, SNP id and PCs.

eigenval eigenvalues
eigenvect eigenvactors, "# of samples" x "eigen.cnt"
varprop variance proportion for each principal component

VScan 7

References

Zheng, X., Weir, B. S. (2016). Eigenanalysis of SNP data with an identity by descent interpretation.
Theoretical population biology, 107, 65-76.

Patterson N, Price AL, Reich D. (2006). Population structure and eigenanalysis. PLoS Genet.2(12):e190.

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. (2016). Fast
Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia.
Am J Hum Genet. 2016 Mar 3;98(3):456-72.

Examples

inp=SNPRelate: : snpgdsExampleFileName ()

pcal=pca.gds(inp, autosome.only=TRUE, remove.monosnp=TRUE, maf=0.01, missing.rate=0.1)

VScan Variants (Biomarkers, e.g., genomic (genetic loci), transcriptomic
(gene expression), epigenomic (methylations), proteomic(protein),
metabolomic (metabolites) variants) Scanning and Association Tests
Using Local Polynomial Fitting (Nonlinear Model) or Linear Model

Description

Performing association tests for QTLs in genome-wide association studies (GWAS,MWAS , EWAS PWAS)
using nonlinear (Local Polynomial Fitting) or liner model. When a nonlinear model loess smoother

is selected, the intercept is used as a null model to test and calculate the R square statistic, then the

R square is used as the weight for estimating the variant effect. In linear model, the beta value of

the linear model (Im) is used as the weight for estimating the effect size of a variant. This function

also applies to case-control studies, where the ROC is used to access the model performance.

Usage
VScan(x, y, U=NULL,methods = "loess"”,span = 0.65, family="gaussian”, ...)
Arguments
X Variant matrix, can be genomic (genetic loci), transcriptomic (gene expres-
sion), epigenomic (methylations), proteomic(protein), metabolomic (metabo-
lites) variants.
y Traits
U Covariates,confounding factors.e.g., age, sex, PCs.
methods Model fit methods, whether "loess" or "Im". If method is "loess", the model

will fit a local polynomial regression, if method is "Im", model will fit a linear
model.

8 VScan

span The local polynomial regression parameter alpha which controls the degree of
smoothing
family The local polynomial regression parameter. if "gaussian", the fitting is done

by least-squares, and if "symmetric" a re-descending M estimator is used with
Tukey’s biweight function. Can be abbreviated.

More arguments and parameters passing to loess and loess.control.

Details

Fast association testing and variant scanning (GWAS,MWAS,EWAS,PWAS) using nonlinear (local
polynomial fitting, loess) or liner model.When a nonlinear model loess smoother is selected, the
intercept is used as a null model to test and calculate the R square statistic, then this R square is
used as the weight for estimating the variant effect. In linear model, the beta value of the linear
model (Im) is used as the weight for estimating the effect size of a variant.

Biomarkers can be biallelic loci, gene expression, methylations or protein expression. Biallelic
markers have only two alleles, in GWAS, genotypes or the reference allele coypes are usually used
to test the assocation between phenotypes and genotypes. Most of the cases, linear model is powe-
ful enough to approximate the variant effect. However, if quantitive traits correspond to dynamic
gene/protein expression data, and the associations may not be adequately approximated by simple
linear model.

Local polynomial regression (LOESS) build on "classical" methods, such as linear and nonlinear
least squares regression. They address situations in which the classical procedures do not perform
well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity
of linear least squares regression with the flexibility of nonlinear regression. It does this by fitting
simple models to localized subsets of the data to build up a function that describes the deterministic
part of the variation in the data, point by point.

When fitting a local polynomial regression, the model is fitted locally. For the fit at point x, the fit is
made using points in a neighbourhood of x, weighted by their distance from x (with differences in
"parametric" variables being ignored when computing the distance). The size of the neighbourhood
is controlled by alpha (set by span or enp.target). For alpha < 1, the neighbourhood includes propor-
tion alpha of the points, and these have tricubic weighting (proportional to (1 - (dist/maxdist)*3)"3).
For alpha > 1, all points are used, with the "maximum distance"" assumed to be alpha”(1/p) times
the actual maximum distance for p explanatory variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric" a few iter-
ations of an M-estimation procedure with Tukey’s biweight are used. Be aware that as the initial
value is the least-squares fit, this need not be a very resistant fit.

Value

Thus function gives the weights and p-values of various QTLs

W W, the weigts of the variants

p_norm p values assuming the normal distribution. The W is converted by arcsine trans-
fromaton to normal distribution before estimating the p values

pvalue_chi p values assuming the Chisquare distribution with df= 1. The W is converted by
arcsine transfromaton to normal distribution before estimating the p values

VScan 9

Author(s)

qinxinghu@gmail.com

References

Opsomer, J. D., Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regres-
sion. The Annals of Statistics, 25(1), 186-211.

W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical
Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

Examples

load input data

f <- system.file('extdata',package='VariantScan')
infile <- file.path(f, "siml.csv")
geno=read.csv(infile)

traitg=genol,14]
genotype=geno[,-c(1:14)]

run loess scanning
loessW=VScan(x=genotype,y=(traitq),methods ="loess")

find association using 1m
1mW=VScan(x=genotype,y=(traitq),methods ="1m")

#hightlight the qtl

Loci<-rep("”Neutral”, 1000)
Loci[c(201,211,221,231,241,251,261,271,281,291)1<-"QT"
Selected_Loci<-Loci[-which(Loci=="Neutral”)]

Plot Manhattan plot

library(ggplot2)

gl=ggplot() +
geom_point(aes(x=which(Loci=="Neutral"),
y=-1log10(loessW$p_norm[-which(Loci!="Neutral”)])), col = "gray83") +
geom_point(aes(x=which(Loci!="Neutral"),
y=-log10(loessW$p_norm[-which(Loci=="Neutral”)]), colour = Selected_Loci)) +
xlab(”"SNPs") + ylab("-logl@(p-value)") +ylim(c(@,35))+theme_bw()

gl

g2=ggplot() +
geom_point(aes(x=which(Loci=="Neutral"),
y=-log10(1mW$p_norm[-which(Loci!="Neutral”)])), col = "gray83") +
geom_point(aes(x=which(Loci!="Neutral"),
y=-log10(1mW$p_norm[-which(Loci=="Neutral”)]), colour = Selected_Loci)) +
xlab(”"SNPs") + ylab("-logl@(p-value)") +ylim(c(@,35))+theme_bw()

10

g2

VScan

Index

* Association testing using local polynomial
fitting
VScan, 7
* Genotype matrix
genmat, 3
x* PCA
pca, 5
* gamLoessScan
gamLoessScan, 2

gamLoessScan, 2
genmat, 3

pca, 5

VScan, 7

11

	gamLoessScan
	genmat
	pca
	VScan
	Index

