Package 'WWR'

October 25, 2017

Type Package

Version 1.2.2
Date 2017-10-24
Title Weighted Win Loss Statistics and their Variances

Description

Calculate the (weighted) win loss statistics including the win ratio, win difference and win product and their variances, with which the p-
values are also calculated. The variance estimation is based on
Luo et al. (2015) doi:10.1111/biom.12225 and Luo et al. (2017) doi:10.1002/sim.7284. This package also calculates general win loss statistics with
user-specified win loss function with variance estimation based on
Bebu and Lachin (2016) doi:10.1093/biostatistics/kxv032.
This version corrected an error when outputting confidence interval for win difference.
Depends R (>=3.1.2)
Imports inline, stats
License GPL (>=2)
RoxygenNote 5.0.1
LazyData true
NeedsCompilation yes
Author Xiaodong Luo [aut, cre],
Junshan Qiu [ctb],
Steven Bai [ctb],
Hong Tian [ctb],
Mike Mikailov [ctb],
Sanofi [cph]
Maintainer Xiaodong Luo Xiaodong.Luo@sanofi.com
Repository CRAN
Date/Publication 2017-10-25 03:40:18 UTC

R topics documented:

WWR-package 2
genwr 3
winratio 10
wlogr2 12
wwratio 14
Index 17
WWR-package Weighted Win Loss Statistics and their Variances

Description

Calculate the (weighted) win loss statistics including the win ratio, win difference and win product and their variances, with which the p-values are also calculated. The variance estimation is based on Luo et al. (2015) doi:10.1111/biom.12225 and Luo et al. (2017) doi:10.1002/sim.7284. This package also calculates general win loss statistics with user-specified win loss function with variance estimation based on Bebu and Lachin (2016) doi:10.1093/biostatistics/kxv032. This version corrected an error when outputting confidence interval for win difference.

Details

The DESCRIPTION file:

Package:	WWR
Type:	Package
Version:	1.2 .2
Date:	$2017-10-24$
Title:	Weighted Win Loss Statistics and their Variances
Description:	Calculate the (weighted) win loss statistics including the win ratio, win difference and win product and their
Authors@R:	c(person(given="Xiaodong", family="Luo", email = "Xiaodong.Luo @sanofi.com", role =c("aut", "cre")), pe
Depends:	R (>=3.1.2)
Imports:	inline, stats
License:	GPL (>=2)
RoxygenNote:	5.0 .1
LazyData:	true
Author:	Xiaodong Luo [aut, cre], Junshan Qiu [ctb], Steven Bai [ctb], Hong Tian [ctb], Mike Mikailov [ctb], Sanofi [
Maintainer:	Xiaodong Luo <Xiaodong.Luo@ sanofi.com>

Index of help topics:

WWR-package	Weighted Win Loss Statistics and their
	Variances
genwr	General Win Loss Statistics
winratio	Win Loss Statistics

```
wlogr2 Log-rank statistics
wwratio Weighted Win Loss Statistics
```


Author(s)

NA
Maintainer: NA

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.

Bebu I. and Lachin J.M. 2016. Large sample inference for a win ratio analysis of a composite outcome based on prioritized components. Biostatistics, 17, 178-187.
Luo X., Qiu J., Bai S. and Tian H. 2017. Weighted win loss approach for analyzing prioritized outcomes. Statistics in Medicine, <doi: 10.1002/sim.7284>.

Description

Calculate the general win loss statistics and their corresponding variances under the global NULL hypothesis and under alterantive hypothesis based on Bebu and Lachin (2016) paper, which is a generalization of the win ratio of Pocock et al. (2012) and the win difference of Luo et al. (2015). This calculation needs the users to specify the win loss matrix.

Usage

genwr(aindex)

Arguments

aindex a numeric matrix of win loss indicators. Suppose there are group 1 and group 0 in the study with sample sizes n_{1} and n_{0} respectively. The matrix aindex is a $n_{1} \times n_{0}$ matrix with elements $C_{i j}: i=1, \ldots, n_{1}, j=1, \ldots, n_{0}$. The element $C_{i j}$ is equal to 1 if subject i in group 1 wins over subject j in group 0 on the most important outcome, $C_{i j}$ is equal to -1 if subject i in group 1 loses against subject j in group 0 on the most important outcome; $C_{i j}$ is equal to 2 if subject i in group 1 wins over subject j in group 0 on the second most important outcome after tie on the most important outcome, $C_{i j}$ is equal to -2 if subject i in group 1 loses against subject j in group 0 on the second most important outcome after tie on the most important outcome; $C_{i j}$ is equal to 3 if subject i in group 1 wins
over subject j in group 0 on the third most important outcome after tie on the first two most important outcomes, $C_{i j}$ is equal to -3 if subject i in group 1 loses against subject j in group 0 on the third most important outcome after tie on the first two most important outcomes; and so forth until all the outcomes have been used for comparison; then $C_{i j}$ is equal to 0 if an ultimate tie is resulted.

Details

General win loss statistics

Value

n1 Number of subjects in group 1
n0 Number of subjects in group 0
$\mathrm{n} \quad$ Total number of subjects in both groups
totalw Total number of wins in group 1
totall Total number of losses in group 1
tw
A vector of total numbers of wins in group 1 for each of the outcomes. Note that totalw=sum(tw), the first element is for the most important outcome, the second elemnet is for the second important outcome etc.
tl A vector of total numbers of losses in group 1 for each of the outcomes. Note that totall=sum(tl), the first element is for the most important outcome, the second elemnet is for the second important outcome etc.
xp
cwindex
The ratios between $t w$ and $t l$
clindex The loss contribution index defined as the ratio between $t l$ and totalw+totall
wr
vr
vr0
tr
The win contribution index defined as the ratio between tw and totalw+totall

Win ratio defined as totalw/totall
Asymptotic variance of the win ratio under alterantive hypothesis
Asymptotic variance of the win ratio under global null hypothesis
pr
standardized $\log (w r)$ using the variance vr
tr0
2 -sided p-value of tr
standardized $\log (w r)$ using the variance vr 0
pr0 $\quad 2$-sided p-value of tr0
wd Win difference defined as totalw-totall
vd Asymptotic variance of the win difference under alterantive hypothesis. The first element is the variance when the group assignment is considered as fixed, and the second element is the variance when the group assignment is considered as random, so the second element is slightly larger than the first element when with unequal allocations.
Asymptotic variance of the win difference under global null hypothesis
td
standardized wd using the variance vd
pd
2-sided p-values of td

td 0	standardized wd using the variance vd0
pd 0	2-sided p-value of td 0
wp	Win product defined as the product of $\mathrm{tw} / \mathrm{tl}$
vp	Asymptotic variance of the win product under alterantive hypothesis
$\mathrm{vp0}$	Asymptotic variance of the win product under global null hypothesis
tp	standardized $\log (\mathrm{wp})$ using the variancevp
pp	2-sided p-value of tp
$\mathrm{tp0}$	standardized $\log (\mathrm{wp})$ using the variancevp0
pp 0	2-sided p-value of tp 0

Author(s)

Xiaodong Luo

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.

Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.
Bebu I. and Lachin J.M. 2016. Large sample inference for a win ratio analysis of a composite outcome based on prioritized components. Biostatistics, 17, 178-187.

See Also

wlogr2,winratio,wwratio

Examples

```
##########################################################
## Example 1: survival (semi-competing risks) example
## with terminal event having higher priority
###########################################################
##############################
## Step 1: data generation
###############################
n<-200
rho<-0.5
b2<-0.0
b1<-0.0
bc<-1.0
lambda10<-0.1;lambda20<-0.08;lambdac0<-0.09
lam1<-rep(0,n);lam2<-rep(0,n);lamc<-rep(0,n)
z<-rep(0,n)
z[1:(n/2)]<-1
lam1<-lambda10*exp(-b1*z)
```

```
lam2<-lambda20*exp(-b2*z)
lamc<-lambdac0*exp(-bc*z)
tem<-matrix(0,ncol=3,nrow=n)
y2y<-matrix(0,nrow=n,ncol=3)
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
tem[,1]<--log(1-pnorm(y2y[,1]))/lam1
tem[,2]<--log(1-pnorm(y2y[,2]))/lam2
tem[,3]<--log(1-runif(n))/lamc
y1<-apply(tem,1,min)
y2<-apply(tem[,2:3],1,min)
d1<-as.numeric(tem[,1]<=y1)
d2<-as.numeric(tem[,2]<=y2)
###un-weighted win loss
wtest<-winratio(y1,y2,d1,d2,z)
summary(wtest)
i<-1 ##i=1,2,3,4
j<-1 ##j=1,2
###weighted win loss
wwtest<-wwratio(y1,y2,d1,d2,z,wty1=i,wty2=j)
summary(wwtest)
####general win loss
###Define the win loss function
comp<-function(y,x){
    y1i<-y[1];y2i<-y[2];d1i<-y[3];d2i<-y[4]
    y1j<-x[1];y2j<-x[2];d1j<-x[3];d2j<-x[4]
    w2<-0;w1<-0;12<-0;11<-0
    if (d2j==1 & y2i>=y2j) w2<-1
    else if (d2i==1 & y2j>=y2i) l2<-1
    if (w2==0 & l2==0 & d1j==1 & y1i>=y1j) w1<-1
    else if (w2==0 & l2==0 & d1i==1 & y1j>=y1i) l1<-1
    comp<-0
    if (w2==1) comp<-1
    else if (l2==1) comp<-(-1)
    else if (w1==1) comp<-2
    else if (l1==1) comp<-(-2)
    comp
}
###Use the user-defined win loss function to calculate the win loss matrix
y<-cbind(y1,y2,d1,d2)
yy1<-y[z==1,]
yy0<-y[z==0,]
n1<-sum(z==1)
```

```
n0<-sum(z==0)
bindex<-matrix(0,nrow=n1,ncol=n0)
for (i in 1:n1)for (j in 1:n0)bindex[i,j]<-comp(yy1[i,],yy0[j,])
###Use the calculated win loss matrix to calculate the general win loss statistics
bgwr<-genwr(bindex)
summary(bgwr)
####################################################################
# Note: if n>=1000 or the win loss function is complex,
# one may experience long runtime. One may instead use C, C++,
# Fortran, Python to code the win loss function.
# The following provides an example using Fortran 95 code to
# define the win loss matrix and then port it back to R
# using the package "inline"
###################################################################
#####################################################
# This is to install and load package "inline"
# so that we can compile user-defined
# win loss function
#
#install.packages("inline")
library("inline")
#################################################################
# You may also need to have rtools and gcc in the PATH
# The following code add these
# for the current R session ONLY
# Please remove the '#' in the following 6 lines.
#
#rtools <- "C:\Rtools\bin"
#gcc <- "C:\Rtools\gcc-4.6.3\bin"
#path <- strsplit(Sys.getenv("PATH"), ";")[[1]]
#new_path <- c(rtools, gcc, path)
#new_path <- new_path[!duplicated(tolower(new_path))]
#Sys.setenv(PATH = paste(new_path, collapse = ";"))
###############################################################
\#\#\#Define the win loss indicator by a user-supplied function
codex5 <- "
integer::i,j,indexij,d1i,d2i,d1j,d2j,w2,w1,l2,l1
double precision::y1i,y2i,y1j,y2j
do i=1,n1,1
    y1i=y(i,1);y2i=y(i,2);d1i=dnint(y(i,3));d2i=dnint(y(i,4))
    do j=1,n0,1
        y1j=x(j,1);y2j=x(j,2);d1j=dnint(x(j,3));d2j=dnint(x(j,4))
        w2=0;w1=0;12=0;11=0
        if (d2j==1 .and. y2i>=y2j) then
            w2=1
        else if (d2i==1 .and. y2j>=y2i) then
            12=1
```

```
    end if
    if (w2==0 .and. l2==0 .and. d1j==1 .and. y1i>=y1j) then
        w1=1
    else if (w2==0 .and. 12==0 .and. d1i==1 .and. y1j>=y1i) then
        l1=1
    end if
    aindex(i,j)=0
    if (w2==1) then
        aindex(i,j)=1
    else if (l2==1) then
        aindex (i,j)=-1
    else if (w1==1) then
        aindex(i,j)=2
    else if (l1==1) then
        aindex(i,j)=-2
        end if
    end do
end do
"
###End of defining the win loss indicator by a user-supplied function
###Convert the above code to Fortran 95 code and port it back to R
cubefnx5<-cfunction(sig = signature(n1="integer",n0="integer",p="integer",
    y="numeric",x="numeric", aindex="integer"),
    implicit = "none", dim = c("", "", "", "(n1,p)","(n0,p)","(n1,n0)"),
    codex5, language="F95")
###Use the above defined function to calculate the win loss indicators
y<-cbind(y1,y2,d1,d2)
yy1<-y[z==1,]
yy0<-y[z==0,]
n1<-sum(z==1)
n0<-sum(z==0)
options(object.size=1.0E+10)
##The following is the win loss indicator matrix
aindex<-matrix(cubefnx5(n1,n0,length(y[1,]), yy1,yy0,
matrix(0,nrow=n1,ncol=n0))$aindex,byrow=FALSE,ncol=n0)
###Use the win loss indicator matrix to calculate the general win loss statistics
agwr<-genwr(aindex)
summary(agwr)
```


\#

```
\#\# Example 2: Continuous outcome example
\#\# suppose there are two outcomes ( \(\mathrm{y} 1, \mathrm{y} 2\) ) following bivariate normal dist
\#\# y1 is more important than y 2 , when comparing with ( \(\mathrm{x} 1, \mathrm{x} 2\) ) from another subject
\#\# a win of first outcome if \(\mathrm{y} 1>\mathrm{x} 1+1\) and a loss if \(\mathrm{y} 1<\mathrm{x} 1-1\)
\#\# if tie, i.e. \(|y 1-x 1|<=1\), then a win of second outcome if \(y 2>x 2+0.5\)
\#\# and a loss if \(y 2<x 2-0.5\). The other scenarios are tie.
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\# Step 1: data generation
```

```
##############################
n<-300
rho<-0.5
b2<-2.5
b1<-2.0
z<-rep(0,n)
z[1:(n/2)]<-1
y2y<-matrix(0,nrow=n,ncol=3)
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
y1<-b1*z+y2y[,1]
y2<-b2*z+y2y[,2]
####general win loss
###Define the win loss indicator by a user-supplied function
codex6 <- "
integer::i,j,indexij,w2,w1,12,l1
double precision::y1i,y2i,y1j,y2j
do i=1,n1,1
    y1i=y(i,1);y2i=y(i,2)
    do j=1,n0,1
        y1j=x(j,1);y2j=x(j,2)
        w2=0;w1=0;12=0;11=0
        if (y1i>(y1j+1.0)) then
            w1=1
        else if (y1i< (y1j-1.0)) then
            l1=1
            end if
            if (w1==0 .and. l1==0 .and. y2i>(y2j+0.5)) then
                w2=1
            else if (w1==0 .and. l1==0 .and. y2i<(y2j-0.5)) then
                l2=1
            end if
            aindex(i,j)=0
            if (w1==1) then
                aindex(i,j)=1
            else if (l1==1) then
                aindex(i,j)=-1
            else if (w2==1) then
                aindex(i,j)=2
            else if (l2==1) then
                aindex(i,j)=-2
            end if
        end do
end do
"
###End of defining the win loss indicator by a user-supplied function
###Convert the above code to Fortran 95 code and port it back to R
```

```
cubefnx6<-cfunction(sig = signature(n1="integer",n0="integer",p="integer",
    y="numeric",x="numeric", aindex="integer"),
    implicit = "none", dim = c("", "", "", "(n1,p)","(n0,p)","(n1,n0)"),
    codex6, language="F95")
###Use the above defined function to calculate the win loss indicators
y<-cbind(y1,y2)
yy1<-y[z==1,]
yy0<-y[z==0,]
n1<-sum(z==1)
n0<-sum(z==0)
options(object.size=1.0E+10)
##The following is the win loss indicator matrix
aindex<-matrix(cubefnx6(n1,n0,length(y[1,]), yy1,yy0,
    matrix(0,nrow=n1,ncol=n0))$aindex,byrow=FALSE, ncol=n0)
###Use the win loss indicator matrix to calculate the general win loss statistics
agwr<-genwr(aindex)
summary(agwr)
```

```
winratio
```

Win Loss Statistics

Description

Calculate the win loss statistics of Pocock et al. (2012) and the corresponding variances, which are based on a U-statistic method of Luo et al. (2015)

Usage

winratio(y1,y2, d1, d2, z)

Arguments

y1
d1 a numeric vector of event indicators with 1 denoting the non-terminal event is observed and 0 denoting otherwise.
d2
a numeric vector of event times denoting the minimum of event times T_{1}, T_{2} and censoring time C, where the endpoint T_{2}, corresponding to the terminal event, is considered of higher clinical importance than the endpoint T_{1}, corresponding to the non-terminal event. Note that the terminal event may censor the nonterminal event, resulting in informative censoring.
y2 a numeric vector of event times denoting the minimum of event time T_{2} and censoring time C. Clearly, y2 is not smaller than y1.
a numeric vector of event indicators with 1 denoting the terminal event is ob- served and 0 denoting otherwise.Note that Luo et al. (2015) use a single indicator d so that $d=1$ if and only if $\mathrm{d} 1=1$ and $\mathrm{d} 2=1 ; d=2$ if and only if $\mathrm{d} 1=0$ and $\mathrm{d} 2=1 ; d=3$ if and only if $\mathrm{d} 1=0$ and $\mathrm{d} 2=0$; and $d=4$ if and only if $\mathrm{d} 1=1$ and $\mathrm{d} 2=0$.
a numeric vector of group indicators with 1 denoting the treatment group and 0 the control group.

Details

win loss statistics

Value

n1
n0
n
totalw

totall

tw
tl
xp
cwindex
clindex
wr
vr
tr
pr
wd
vd
td
pd
wp
vp
tp standardized $\log (\mathrm{wp})$
pp 2-sided p-value of tp

Author(s)

Xiaodong Luo

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.

See Also

wlogr2,wwratio

Examples

```
n<-300
rho<-0.5
b2<-0.2
b1<-0.5
bc<-1.0
lambda10<-0.1;lambda20<-0.08;lambdac0<-0.09
lam1<-rep(0,n);lam2<-rep(0,n);lamc<-rep(0,n)
z<-rep(0,n)
z[1:(n/2)]<-1
lam1<-lambda10*exp(-b1*z)
lam2<-lambda20*exp(-b2*z)
lamc<-lambdac0*exp(-bc*z)
tem<-matrix(0,ncol=3,nrow=n)
y2y<-matrix(0,nrow=n,ncol=3)
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
tem[,1]<--log(1-pnorm(y2y[,1]))/lam1
tem[,2]<--log(1-pnorm(y2y[,2]))/lam2
tem[,3]<--log(1-runif(n))/lamc
y1<-apply(tem,1,min)
y2<-apply(tem[,2:3],1,min)
d1<-as.numeric(tem[,1]<=y1)
d2<-as.numeric(tem[,2]<=y2)
wtest<-winratio(y1,y2,d1,d2,z)
summary(wtest)
```

wlogr2 Log-rank statistics

Description

This will calculate the log-rank and Gehan statistics along with their variances

Usage

wlogr2(y, d, z, wty = 1)

Arguments

y
d
z
wty

Value

wty Type of statistics, 1=Gehan, 2=log-rank
stat value of the stat
vstat estimated variance
tstat standardized test stat
pstat 2-sided p-value of the standardized test stat

Note

This provides Gehan test that is usually ignored

Author(s)

Xiaodong Luo

References

Gehan E.A. 1965. A generalized Wilcoxon test for comparing arbitrarily single-censored samples. Biometrika, 53, 203-223.
Peto R. and Peto J. 1972. Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society, Series A, 135, 185-207.

See Also

winratio,wwratio

Examples

```
n<-300
b<-0.2
bc<-1.0
lambda0<-0.1;lambdac0<-0.09
lam<-rep(0,n);lamc<-rep(0,n)
z<-rep(0,n)
z[1:(n/2)]<-1
lam<-lambda0*exp(-b*z)
```

```
lamc<-lambdac0*exp(-bc*z)
tem<-matrix(0,ncol=2,nrow=n)
tem[,1]<--log(1-runif(n))/lam
tem[,2]<--log(1-runif(n))/lamc
y<-apply(tem,1,min)
d<-as.numeric(tem[,1]<=y)
i<-1 ##i=1,2
wtest<-wlogr2(y,d,z,wty=i)
wtest
```

```
wwratio Weighted Win Loss Statistics
```


Description

Calculate weighted win loss statistics and their corresponding variances under the global NULL hypothesis based on Luo et al. (2017) paper, which is a generalization of the win ratio of Pocock et al. (2012) and the win difference of Luo et al. (2015)

Usage

wwratio(y1, y2, d1, d2, z, wty1 = 1, wty2 = 1)

Arguments

y1 a numeric vector of event times denoting the minimum of event times T_{1}, T_{2} and censoring time C, where the endpoint T_{2}, corresponding to the terminal event, is considered of higher clinical importance than the endpoint T_{1}, corresponding to the non-terminal event. Note that the terminal event may censor the nonterminal event, resulting in informative censoring.
y2 a numeric vector of event times denoting the minimum of event time T_{2} and censoring time C. Clearly, y2 is not smaller than y 1 .
d1 a numeric vector of event indicators with 1 denoting the non-terminal event is observed and 0 else.
d2 a numeric vector of event indicators with 1 denoting the terminal event is observed and 0 else.
z
a numeric vector of group indicators with 1 denoting the treatment group and 0 the control group.
wty1 a numeric vector of weight indicators for the non-terminal event with values 1 to 4 corresponding to weights used in Luo et al. (2017).
wty2 a numeric vector of weight indicators for the terminal event with values 1 to 2 corresponding to weights used in Luo et al. (2017).

Details

weighted win statistics

Value

n1 Number of subjects in group 1
n0 \quad Number of subjects in group 0
n
wty1
Total number of subjects in both groups
wty2 Weight for terminal event
totalw Total number of wins in group 1
totall Total number of losses in group 1
tw
A vector of total numbers of wins in group 1 for each of the two outcomes. Note that totalw=sum(tw), and the first element is for the terminal event and the second element is for the non-terminal event.
tl A vector of total numbers of losses in group 1 for each of the two outcomes. Note that totall=sum(tl), and the first element is for the terminal event and the second element is for the non-terminal event.
xp
The ratios between tw and tl
cwindex
The win contribution index defined as the ratio between tw and totalw+totall
clindex The loss contribution index defined as the ratio between $t l$ and totalw+totall
wr
vr estimated variance of weighted win ratio
tr standardized $\log (w r)$
pr $\quad 2$-sided p -value of tr
wd weighted win difference
vd estimated variance of weighted win difference
td standardized wd
pd 2-sided p-value of td
wp weighted win product
vp estimated variance of weighted win product
tp standardized $\log (\mathrm{wp})$
pp 2-sided p-value of tp

Author(s)

Xiaodong Luo

References

Pocock S.J., Ariti C.A., Collier T. J. and Wang D. 2012. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
Luo X., Tian H., Mohanty S. and Tsai W.-Y. 2015. An alternative approach to confidence interval estimation for the win ratio statistic. Biometrics, 71, 139-145.

Luo X., Qiu J., Bai S. and Tian H. 2017. Weighted win loss approach for analyzing prioritized outcomes. Statistics in Medicine, doi: 10.1002/sim. 7284.

See Also

wlogr2,winratio

Examples

```
n<-300
rho<-0.5
b2<-0.2
b1<-0.5
bc<-1.0
lambda10<-0.1;lambda20<-0.08;lambdac0<-0.09
lam1<-rep(0,n);lam2<-rep(0,n);lamc<-rep(0,n)
z<-rep(0,n)
z[1:(n/2)]<-1
lam1<-lambda10*exp(-b1*z)
lam2<-lambda20*exp(-b2*z)
lamc<-lambdac0*exp(-bc*z)
tem<-matrix(0,ncol=3,nrow=n)
y2y<-matrix(0,nrow=n,ncol=3)
y2y[,1]<-rnorm(n);y2y[,3]<-rnorm(n)
y2y[,2]<-rho*y2y[,1]+sqrt(1-rho^2)*y2y[,3]
tem[,1]<--log(1-pnorm(y2y[,1]))/lam1
tem[,2]<--log(1-pnorm(y2y[,2]))/lam2
tem[,3]<--log(1-runif(n))/lamc
y1<-apply(tem,1,min)
y2<-apply(tem[,2:3],1,min)
d1<-as.numeric(tem[,1]<=y1)
d2<-as.numeric(tem[,2]<=y2)
i<-1 ##i=1,2,3,4
j<-2 ##j=1,2
wtest<-wwratio(y1,y2,d1,d2,z,wty1=i,wty2=j)
summary(wtest)
```


Index

*Topic Gehan
wlogr2, 12
*Topic composite endpoint
genwr, 3
WWR-package, 2
*Topic general win ratio genwr, 3
$*$ Topic log-rank wlogr2, 12
$*$ Topic pairwise comparison
genwr, 3
winratio, 10
WWR-package, 2 wwratio, 14
*Topic weighted win ratio WWR-package, 2
*Topic weighted wwratio, 14
$*$ Topic win ratio
genwr, 3
winratio, 10
WWR-package, 2
wwratio, 14
genwr, 3
winratio, 5, 10, 13, 16
wlogr2, 5, 12, 12, 16
wwr (WWR-package), 2
WWR-package, 2
wwratio, 5, 12, 13, 14

