
WebAnalytics
WEB APPLICATIONS
PERFORMANCE
OPTIMISATION
April 23, 2022

© Greg Hunt 2022

Web Applications

Contents

1 Introduction 2
1.1 DMAIC . 2

2 Define the Problem 4
2.1 Identify Performance Objectives . 4
2.2 Target Response Times . 5

2.2.1 Use Percentiles Not Means for Response Time . 5
2.2.2 How much do Tenths of a Second Matter? . 6

3 Measure the Problem 7
3.1 Measure the Symptoms . 8
3.2 Measure the System . 8

3.2.1 Time Components . 8

4 Analyse the Problem 11
4.1 Hygiene . 12
4.2 Some Things to Look For . 12
4.3 Prioritising the Fixes . 18

5 Improve Performance 20

6 Control the System Performance 23

7 Notes on Load Testing 24
7.1 Define the Test Workload . 24

7.1.1 Testing Transaction Combinations . 25

Page 1 of 26
© Greg Hunt 2022

Web Applications

Chapter 1
Introduction
This is a guide for people who do not deal with performance optimisation very often. For most developers
and most small to medium web application systems its a problem that occurs at intervals and it is one that
is difficult to get to grips with. This guide is about how to address performance problems systematically
and about what factors to look at.

There are two ways that people usually approach performance problems. One is to try as many fixes as
possible as quickly as possible, this is the throw-spaghetti-at-the-wall-and-see-if-it-sticks approach, and
it will either work, or not, meaning that you end up with a more or less working system or you end up with
spaghetti everywhere in addition to the original problem. This is the most common approach. Throwing
spaghetti feels like the right approach when you have management getting excited about a problem, but
if the first set of fixes don’t work they will get more excitable. The other approach, a systematic problem
solving approach, is arguably more boring and is slower at the beginning, particularly if the problem is very
obvious, but is more reliable over time. Demonstrating an approach that provides predictable improvement
will buy you more time to think through the solution.

This paper is about how to identify where problems are, how to work out what changes will provide some
benefit, and how to check that you got the benefit you expected from the changes that you made. It refers
to the CRAN WebAnalytics package as part of a structured problem solving approach, but the general
principles can be applied using other tools. The WebAnalyics package focusses on the initial problem
measurement in systems that do not have complex (and expensive) monitoring infrastructure supporting
them, and is also useful for analysis of long term changes in performance that may be difficult to carry out
with more complex tools.

A useful model for structuring this type of problem solving is the Six Sigma DMAIC model. The key idea in
DMAIC, and the key difference from a lot of this type of activity in practice, is the focus on measurement.

1.1 DMAIC
DMAIC is a cycle consisting of:

Define: be very clear about what the problem is. Make sure that you have identified all of the symptoms.
Do not discard symptoms because they do not appear to be related to the problem.

Measure: remedial action must be based on measurement and analysis. The temptation to start to fix
problems is often very strong, but it has to be resisted until measurement has been done, analysis
indicates which fixes have the highest return on effort, and the fixes have been prioritised.

Analyse: identify the problems, the underlying technical causes of the problems and the mechanisms by
which delays are introduced. An output of the analysis is an understanding of what you are going
to get from improvements and how they are likely to interact with other parts of the system.

Improve: apply changes to the system and measure what you achieved.

Page 2 of 26
© Greg Hunt 2022

Web Applications

Control: maintain the system to ensure that the problems do not recur and continue to carry out regular
measurement.

Define

M
easure

Analyse

Im
pr

ov
e

Control

Performance problem solving iterates because understanding performance is iterative: the process starts
with clarifying top-level problems and breaking them down to technology problems which are themselves
broken down into their components, each one of which requires one or more cycles of measurement.
Complex systems will also typically have multiple problems and the relative importance of problems
changes as they are resolved. For example if you have high concurrency as a result of a poorly per-
forming transaction, this may have the side effect of causing database contention or IO contention and
may make pre-existing race conditions appear more frequently. When you fix that concurrency problem, a
different problem may become visible and the priorities are likely to change. For these reasons, priorities
should be re-evaluated after each iteration, with new measurements and analyses carried out to support
them.

Page 3 of 26
© Greg Hunt 2022

Web Applications

Chapter 2
Define the Problem
Start by collecting known problems with the system, those that are clearly performance and capacity re-
lated and also those that appear not to be, those that have been formally recorded and those that are
more vaguely described. Performance problems in an application can trigger odd symptoms and defects
can cause performance problems. Are there application logic defects that the performance problem sur-
faces? Are there logging problems? Are there error handling problems? Once there is a view of the
problem space, the targets can be defined and ranked: what do we have to achieve and what should
we achieve. You fix the bugs regardless of whether they are obviously part of the performance problem.
You fix the logging and error handling because you will need them later and they make problem analysis
easier. The performance objective will usually be some combination of improving response time, fitting
an application to a processor, RAM and IO budget and making the application work as well as possible
for its users. All of these interact, the better the response time you achieve, the less hardware that will
need to be dedicated to the application and the less annoyingly variable the response time is likely to be.

2.1 Identify Performance Objectives
Very often the objectives for optimisation or remediation are left fuzzy, but making people happy in a
crisis is not an actionable goal and does not provide guidance for prioritising work or for stopping an
iterative improvement process. On the other hand, delivering unspecified but measurable improvement
in some number of areas as part of an on-going process of improvement is a perfectly reasonable aim.
The objective and the problem need to be matched. This process is probably going to be repeated some
number of times with problems being dealt with and new goals or more clear goals being defined. The
ideal operational model involves splitting the work into an acute-phase activity to reach some agreed
immediate goals followed by an on-going and probably fairly low-level and low cost optimisation and
maintenance activity. The reason for this is that system performance changes as data and workload
evolve, even without changes to the software. Staying on top of that evolution and making regular small
improvements to performance ensures that existing irritations are gradually removed and that the system
does not accumulate new ones.

There are really only two kinds of performance objective: meeting some quantitative system specification
or reducing user pain for some definition of “pain”. Improving response time, fitting an application into
a hardware budget, improving scalability, or reducing variability in response time could all fall into either
category, they are the next level-down in the problem solving process. Prioritisation for pain-reduction work
will include reducing the occurrence of large outliers as much as it is given to reducing times overall; it
requires some understanding of how users react to performance and the immediate objectives will need to
be re-visited frequently. For a quantitative objective, there needs to be an understanding of the interaction
of system components (a model, more or less explicit depending on the complexity of the system and the
experience of the people doing the work) and a clear awareness of the options and probability of success.

There are a few points that should be kept in mind:

• The first is that elapsed time is a proxy for system resource consumption. While the user is waiting
for a response, the running transaction is consuming system capacity of some kind. This may be

Page 4 of 26
© Greg Hunt 2022

Web Applications

CPU or IO, but it can also be locking bandwidth or delays associated with memory. This means that
for most system designs, system load correlates with transaction elapsed time. Reduce one and
you reduce the other.

• Another key idea is that the relationship between response time and resource consumption is not
linear. Elapsed time rises sharply, non-linearly, when some component of the system capacity be-
comes overloaded: small changes in load 1 can cause large changes in response time. This is why
some transaction-level problems are not visible in development (with no competition for resources)
or at low levels of load, but emerge quickly as soon as the load rises high enough to cause contention
for some component of the system’s capacity. Load can result in contention for resources and con-
tention has a cost, so reducing load can reduce contention which in turn can reduce load. This
occurs most obviously when memory demand causes paging, but is also the case with database or
application locking, database log contention, garbage collection or too high processor demand.

• System remediation is likely to require multiple production changes. Trying to avoid deployments by
bundling everything into a single release risks significant work being spent on fixes which may not
work and depends on no new issues being discovered.

2.2 Target Response Times
Often, system specifications and vendor contracts will specify system response times in a fairly loose way
- mean response times measured in seconds are common, mean response times calculated over defined
intervals are better and also common, with the mean usually being the response time that the client wants
to see as the most common time, perhaps with some more or less random extra amount added for luck.

What environment the times are measured in may or may not be specified, load test environments tend to
be very well behaved, outlier values in production will usually be larger than those in in a test environment.
Ideally performance targets do not include WAN times because these can be variable, but if they are
included, there will need to be specification of request/response sizes and agreed transfer times.

Sadly, the client doesn’t get what they want from either way of specifying the response time. The mean
will be somewhere above the 50th percentile (more than half of the times will be under the mean) but that
says almost nothing about the distribution of high times.

2.2.1 Use Percentiles Not Means for Response Time
The problem with mean values is that they do not represent variability, and they hide outliers. A mean
response time of 3 seconds can be achieved by a system with 90% of requests taking 1 second and
10% taking 21 seconds, which is probably not what is wanted. This kind of distribution is actually quite
common for a system with significant performance problems. This was the problem seen in a large retail
site, a small percentage of transactions were displaying very poor response times and the majority were
processing very quickly. The mean response time in that system was something like 3.5 seconds with
the poorly performing transactions (a subset of product searches, about 1% of the total) taking 30 to 300
seconds to complete. Contractually that system’s performance was within tolerances, performance was
specified as a daily mean response time, but in practice it was a major problem.

How should response times be represented? This depends which side of the fence you are on. As a
software supplier, a mean response time calculated over 24 hours or a week or a month will look just
fine and represent a fairly low risk. As an end user, you want the response time to be small and the

1can it?

Page 5 of 26
© Greg Hunt 2022

Web Applications

variability of the response times to be both minimised, and to be understandable. For example users are
unsurprised if a report containing a substantial amount of data does not appear instantly, but are likely to
wonder what is going on if a login page takes more than a fraction of a second to display. It is reasonable
to define separate categories of transaction performance: interactive transactions, transactions that have
time made up mostly of communication with slow external systems, and reports, for example, but the
categories will depend on the system, the budget (guaranteed very high performance is expensive) and
the business need.

Percentiles do not suffer quite so badly from the same problems as mean values. The promise that they
make, that a user will see a defined percentage of responses will take less than whatever the threshold
is, remains true over any reasonable interval and can be experienced by the user directly. What a mean
value means to a user over an hour, a day or a week is harder to see. A workable approach is to define
a target response time for an application and specify that as a percentile of the overall response times.
A 90th percentile of 3 seconds means that one in ten transactions can exceed 3 seconds. This does
not consider the mean, just that 90% of transactions must complete in under 3 seconds. Sometimes
a maximum response time is specified as well, but in practice that threshold cannot be guaranteed for
complex applications in a production environment, and is usually entirely achievable in a test environment,
so it acts as a check on production performance more than a meaningful target in test.

There is still the problem of dilution of outliers, but quantifying what is acceptable or actionable in pro-
duction is very difficult because transient events in the environment (Internet or WAN) can cause delays
outside of the control of the application, leading to large response time variables.

2.2.2 How much do Tenths of a Second Matter?
As a side note, there is a commonly accepted myth that users are sensitive to response time differences
of a few tenths of a second. In the general case this is demonstrably not true. A number of those studies
were funded by CDN suppliers who have a vested interest in the answer. User expectation influences
preparedness to wait. If you scroll through an Instagram feed and it seems slow to display pictures,
delays of a noticeable fraction of a second, you’ll stop eventually. Measurement on a large scale retail site
showed that people browsing the site during a sale were not affected by up to tens of seconds of variability
in response time. People did not abandon their session on the website and their shopping cart at higher
rates compared with periods with low variability of response time and the number of pages browsed in
a session did not go down. This suggests that either all of the visitors to the site go there with a very
specific mission (when response time was poor as well as when response time was good), or they were
not put off by the delay enough to stop using the site. Many of the studies talking about the need for fast
response ask users what they would like, which of course is instant response, and do not measure what
people actually accept.

Page 6 of 26
© Greg Hunt 2022

Web Applications

Chapter 3
Measure the Problem
There are two kinds of measurement, measurement of the symptoms, and later, after analysis, more
detailed measurement of the system to find the cause of the symptoms. There is a degree of overlap
between symptom measurement and cause measurement. In measuring the symptoms you are looking
for quantitative data that corresponds with the problem reports which will be needed to track progress. For
performance problems this is usually elapsed time, and assuming that the system performed acceptably in
development, the problem is likely to be in the application not in the client or network. Begin by checking
that there are no known page rendering time delays in the application that could be being reported as
problem. Measurement at the browser is harder than measurement at the server, particularly for Internet-
facing applications.

The WebAnalytics Package provides a number of views of system performance that help with character-
ising the performance and identifying which transactions contribute to the problem. The top level view
is:

With a variety of more detailed data available after that.

Page 7 of 26
© Greg Hunt 2022

Web Applications

3.1 Measure the Symptoms
People are bad at identifying performance problems, they miss instances of good performance, tend
to over-state some problems and under-state others and complex patterns are missed completely, what
they are good at doing is identifying their own pain. People react to unpredictable response times more
badly than they do to consistent but slow response times. Quantitative measurement of the behaviour is
necessary to make sense of this, and the first level of measurement, done in detail, must be the response
time of the system. This measurement is then used to prioritise remediation and to identify what gets
measured and analysed next. It is also used as a baseline to compare fixes with.

For a web application the place to start is the response times of the requests as seen at the system front-
end, the web server. Network infrastructure problems can cause response time problems for clients, but
these are not common and will become obvious once the server response time is measured (there is no
reason to start by looking at the unlikely problems).

There are many tools for measuring performance, the WebAnalytics package is oriented toward those
applications that do not have supporting monitoring infrastructure and uses data from Web Server logs
which are usually already being written, so adding the elapsed time counter to them has effectively zero
overhead. The package also provides a highly detailed comparison of baseline and current data, making
identification of changes very easy.

It is desirable to also report on error types and rates by time, this can be quite easily done using some
simple Unix utility scripts (bash, sed etc) or Powershell scripting over event logs or system logs, and R.
Where performance problem drive error rates this type of reporting is useful as feedback to management
on progress with fixing problems.

3.2 Measure the System
Its not actually necessary to measure everything that might be the problem at once, An analytical ap-
proach, identifying and adding up the times of components and works well. The overheads of something
like Windows Perfmon collecting and logging a few counters are usually overstated, monitoring tools like
DynaTrace and AppDynamics can impose a high overhead on a system and this can be a severe problem
for very heavily loaded systems. The best approach, if you don’t have a detailed monitoring tool in place is
to identify where the problem is and then collect statistics in just that area. Summary statistics collection
using Perfmon on a five second interval will represent no more than one percent or so of the capacity of
a smallish system. Similarly on Linux vmstat or iostat on a 1 second interval logging to a file represents
a negligible overhead and provides a useful summary of resource consumption.

Keep in mind that you will most likely need to do this again. Some of the measurement will go on being
useful indefinitely when you get to maintenance of the system’s performance. Being able to use logs that
are generated as a matter of course, like web server logs, or adding elapsed time and workload logging
to key processes in an application, particularly relevant to scheduled batch processes, will make future
cycles of investigation much easier.

3.2.1 Time Components
The time components that are likely to be interesting are:

• Client time - DNS lookup, rendering, Javascript processing time - this is client specific and for any
one transaction is likely to be more or less constant, its not impacted by concurrency or usually by

Page 8 of 26
© Greg Hunt 2022

Web Applications

back-end server performance. It can be measured using the developer tools now provided by many
web browsers. Javascript components fetched from or interacting with third party servers are one
potential source of problems, these can have intermittently very poor performance that users will
see as poor application responsiveness. Unless there is some reason to think otherwise, treat this
as a constant overhead.

• Network time - for a public-facing web application this will include home network time, ISP network
time, network between ISPs, the time across the network that the application is embedded in and
the network time across the DMZ that the application is hosted in. The behaviour of these networks
in combination is complex and they must be regarded as unreliable, resulting in hugely variable
performance that often cannot be effectively diagnosed. It is frustrating to have a problem raised
saying that an important external user experienced poor response time at a point in time (and have in
that case partial DynaTrace data supplied), but not be able to find any evidence of it in the response
times of the system itself. In that case it appeared to be a transient network issue somewhere
between the system and that user’s home PC. In a corporate WAN environment these factors are
less important, but they are not absent.

It is possible for network infrastructure problems to impact performance, and these can be isolated
by checking metrics at the devices themselves (packet drops, retransmits), measuring response
time across different network segments to avoid specific network devices, and running traces using
tools like Wireshark. This type of problem is often application data rate or response size related but
is possibly also triggered by external factors like network backups or can be the result of randomly
failing hardware. We still occasionally see full and half duplex type problems but these are rare now.

• Web Proxy or Web Server time - often there will be a reverse proxy or web server acting as a front-
end to the application and this provides a useful point to collect elapsed time measurements. This
the point where you are likely to have good control over the system performance. For IIS the elapsed
time is the time between the arrival of the first byte of the request and the last TCP send or the ACK to
that send (depending on the IIS version), for Apache it is the time between reading and interpreting
the request line, and the last send of the response, an immaterial difference between the two unless
there are very severe problems with the network such as contention, or the request is extremely
large. Note that the timestamp recorded in the IIS log is the time that the response send completed,
for Apache version 1 it is the time that the request was completed and for Apache 2 it is the time of
receipt of the request, for long running transactions and analysis of concurrent transactions this can
make a difference to how you interpret the data.

• Web Application Server time - if time measured at this point is not the majority of the elapsed time
of a request then may be something wrong with the infrastructure. In an IIS-based system this is
the web server.

• Memory Management - garbage collected heaps in both Java and .Net can have significant impact
on system response time and throughput, but parallel garbage collection has reduced the severity
of that problem. Understanding the overheads and introduced pause times is however still very
important. The trade-offs between full collections and young generation collections may not work in
the expected way, for systems with a high proportion of long lived large objects it may be desirable
to minimise the size of the young generation space.

• Back-end systems time - database or web service time. Database time is usually a large fraction
of the application server time and it is useful to be able to account for total SQL time. SQL Server
profiler can be used to collect this type of information and traces from Oracle are also available. SQL
Server has a number of interesting delay related performance counters and the Oracle Enterprise
Manager ARM reports have top lists and delay metrics available too, but the same information can
be got from the V$ statistics tables with a little extra work.

Page 9 of 26
© Greg Hunt 2022

Web Applications

• Storage IO time - typically database IO, this is one area where IO delay or contention (database log
contention or log IO saturation) can have a large effect on performance. On Windows this is best
identified through seconds per write and seconds per read counters along with reads and writes
per second. The disk data rate counters can also be used to identify contention which sets in as
the IO channel becomes congested due to to high a transaction or data rate. On Linux, iostat can
be used to obtain similar information but in both cases care needs to be taken in interpreting the
percentage utilisation metric whose definition originated in a period when disks were not capable of
parallel operations.

Page 10 of 26
© Greg Hunt 2022

Web Applications

Chapter 4
Analyse the Problem
The main questions are: "what matters?" and "what is most likely to pay-off?". Is the problem system
wide or localised to a number of transactions? How much improvement do you need and where? Are
you likely to get enough improvement out of the problem areas you have identified? Keep in mind that
fixing very high cost transactions will improve the performance of other transactions, but you need to be
able to identify the mechanism that connects the performance of the transactions in question. For that
connection you need a model of the system. This can be as simple as a back-of-envelope calculation of
x number of requests cost y CPU each so total CPU demand over a period is Z which is comfortably, or
not, less than the CPU available, or it may include estimates of costs (CPU, IO) across the technology
stack with some queueing modelling applied (the PDQ-R queuing package is useful for this) and a more
sophisticated view of peak load.

The saying, that "all models are wrong but some are useful" applies. A model will fail in a number of ways:
poor inputs - you don’t know what the workload really is over short intervals because the mean transaction
costs over a sort interval can be a long way from the mean overall and the transaction rate can be very
unpredictable, or an incomplete model - contention will do funny things to the service demand, pushing it
up in some areas and pulling it down in others and missing parts may be more important than expected.
What you do get from modelling is an understanding of the ballpark that the system lands in and you can
do some sensitivity modelling from there: are you dead already? What range of transaction costs can
the system sustain? What range of request rates can the system sustain? What parts of the system are
at risk if there is a pile-up of work in the system? What is the transaction cost proportional to? Some
examples of problematic systems only understandable though having at least a mental model of what is
going on:

• transaction cost proportional to the number of users - a fat-client system with an update notification
system that caused transactions to be re-executed by each client. The incremental throughput of
each added client rose quickly initially and then fell, eventually becoming negative. This was a COTS
package, the behaviour was uncovered through analysis of incremental throughput as clients were
added and the fix required changes to the application.

• a system dependent on a very high cache hit ratio on infrequently accessed pages (cost of uncached
requests was many times the cost of cached requests) but the cache was not distributed, so adding
servers to handle the workload increased the system load by lowering the cache hit ratio, resulting
in worse and worse performance as the cluster was expanded. This was a COTS package with
extensive customisation, a small number of requests displayed two response times, one, most of
the requests completing very quickly with a smaller number orders of magnitude larger. In this case,
the system load would fall over time as the cache was populated. The pages were rewritten to make
them faster to create, make them more cacheable, and a process was added to pre-populate the
cache.

• a system where transactions were received through a web server, passed to an application server
and then routed back to the web server to serve objects that were incorporated into the pages in
the application server (web server load was a multiple of the external request rate and contention
in the web server meant that the multiple secondary or back-end requests would not be completed,
preventing more work from entering the system, a case of contention causing run-away contention).

Page 11 of 26
© Greg Hunt 2022

Web Applications

• there are numerous examples of systems where a high IO-cost database access (a table scan on a
not very large table) is not visible until the system goes into production. In development the response
time is slow but not extremely slow and the database caches the table data after a burst of high IO. In
production the database buffer pools are not so empty and concurrent hits on that access path cause
a multiple of the development environment’s response time. If you are unlucky, the transactions run
often enough that the data is fetched over and over, slowing down later fetches so that they overlap
with following fetches, in the worst case the transaction may be running continually. In a Microsoft
CRM example, this effect combined with a much higher than expected request rate from another
service caused the response time of that transaction to grow to about 20 to 40 times the time seen
in production. The fix in this case was to improve the response time though better database table
indexing and to cache the results of the service call for a period of time so that rapidly arriving
requests were served quickly and did not load down the database.

Having measured the system behaviour and identified the areas needing improvement through consider-
ation of a model of the system, the top-level performance problems can be broken down into lower-level,
more technology oriented problems that can then be themselves measured and analysed. If there is a
system-wide problem, look at things like heap management (garbage collection), database log contention,
slow IO, excessive CPU demand and related issues. If the problem is localised to a handful of transactions
then look for commonalities between them (similar slow database accesses, database object contention,
common code) and estimate how big a benefit you might get from improving them. Is it big enough? How
much improvement do you need?

4.1 Hygiene
There is a great deal of material around about the design of web pages to maximise their performance
including compression, minification, caching, the use of CDNs and the like. Some of those are just good
practice, they are hygiene issues that may have been incorporated during development. There is a good
deal about writing clean efficient code, and that type of hygiene also needs to be applied but at the
moment that you are trying to optimise the application, the time for wholesale code change is past. Many
development teams attempt to deal with performance problems by applying good code hygiene after the
fact, applying changes that "everyone knows" will improve performance. Sometimes that works, but that
approach tends to waste time because it isn’t based on an assessment of how big the pay-off is. While
good hygiene helps avoids illnesses, you’re unlikely to get better by washing your hands more when you
are sick.

4.2 Some Things to Look For
The kinds of behaviours that you should look for are:

• Which are the High Response Time Transactions?

This question is basically, which transactions are a problem. Simply selecting transactions that have
the highest elapsed times will usually identify these.

Page 12 of 26
© Greg Hunt 2022

Web Applications

This table from the WebAnalytics package shows which transactions have high 95th percentile re-
sponse times along with their total elapsed time and request counts. URLs with high values for all
of these metrics, like the 21 second 95th percentile response time transaction that occurs nearly
8,000 times and is responsible for 46,000 seconds of wait time is a good startting point.

• Which are the high total delay/cost transactions?

Optimising slow transactions that are hardly used is not a good use of time and not all transactions
can have their performance improved without a lot of effort or redesign. Comparing the slow trans-
actions with the transactions that consume take significant time in total gives you a set of targets to
work on that have some chance of providing a good ROI for the development effort. For a resource
constrained system, small optimisations of very high frequency transactions can provide some re-
lief, but keep in mind that a system under stress is likely to have some amount of unmet demand
that will move the problem to another part of the system when the constraints are removed.

The top list for aggregate response time shows that there are other transactions, beside the 21
second response instance, those at 6 and 10 second 95th percentile response times, that may be

Page 13 of 26
© Greg Hunt 2022

Web Applications

worth investigating to remove workload form the system.

• Does Response Time Change Over Time?

Do the performance problems occur as random incidents during the day or do they occur regularly?
Is there a time of day when they tend to happen? Network backups can have significant effects on
overall systems performance, but will impact high disk IO or high network IO transactions more than
others.

The graph above indicates that there are rare excursions in the response time of that that do not
seem to be cyclical. The report can be re-run filtering data down to individual days to look for daily
patterns.

• Are there Multiple Identifiable Response Times for a Single Transaction?

Developers may be certain that a transaction performs fine in development but is inexplicably slower
in the production environment. Being able to say that there are two, or three, or more distinct
response times for a transactions can help with understanding how many code paths there are and
whether they have all been tested and optimised in development.

Page 14 of 26
© Greg Hunt 2022

Web Applications

This transaction appears to have distinct response times at about 0.5 seconds, 3.5 seconds, 8.5
seconds and around 17 seconds. It is quite possible that developers are not explicitly aware of the
path with the 17 second response time.

• How does response time respond to transaction concurrency?

High contention, high concurrency environments will perform poorly, but before a system reaches
that point it is possible to identify problems with transaction concurrency by identifying the way
that response times rise as transaction concurrency rises. In an environment with low contention
response time should remain flat as the transaction rate rises until the system starts to see rising
concurrency, at which point response time will start to rise faster and faster.

This example is from a WebAnaytics report for an application with some serious contention issues
due to very inefficient SQL. Even at a very low level of concurrency and very good response time,
the transaction time is visibly rising with rising concurrency. Under load the system experienced
severe problems as a result of that SQL combined with an unexpectedly high transaction rate from
another system.

Page 15 of 26
© Greg Hunt 2022

Web Applications

0.00 0.05 0.10 0.15

10
0

20
0

30
0

40
0

Degree of Parallelism and Response Time

excluding response of Static Content Requests, including status Success
Mean Degree of Parallelism

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

• How does response time respond to network load?

As with transaction concurrency above, network contention shows up in the same way. This is less
likely these days since network bandwidths tend to be relatively large, but the potential for contention
is still there. Comparing data rate with the response time of static content requests (which require
very little CPU or IO) can indicate problems.

The graph below is the WebAnalytics report graph of static response time compared with network
load. The time does not seem to increase significantly as network data rate rises. It is not unusual for
very low request rate or concurrency level times to be highly variable. Long delays between requests
allow cached data to be aged out or connections deallocated, requiring more time for reinitialising
the network connectivity.

Page 16 of 26
© Greg Hunt 2022

Web Applications

0.00 0.05 0.10 0.15

10
20

30
40

Degree of Parallelism and Response Time

including only response of Static Content Requests, including status Redirect
Mean Degree of Parallelism

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

• Poor error handling can look like poor performance.

Catch blocks that silently swallow errors, or missing catch blocks in some environments (IIS appli-
cations are a recurring problem) can result in delays being introduced or in unexpected behaviours.
Effective, well structured error handling and error logging is essential and it is necessary to review
the code for problems in this area and to fix them early in the remediation process.

• Variable response or throughput is a side-effect of resource contention.

A system that is under stress will display more variability in response times than an un-stressed one
will. Whether outliers in response times are interesting depends on whether they are occurring in a
system with known capacity contention or whether there is no known reason for them.

Adding concurrency is sometimes attractive, but is often not an answer, optimise SQL, optimise or remove
application processing, and model the workload before considering parallelism.

Page 17 of 26
© Greg Hunt 2022

Web Applications

• In a system that is limited by CPU capacity, adding parallelism, or too high a level of parallelism will
make the system perform more badly and will add complexity. In one case some time ago a team
was using 24 threads in a 4 core database system, reducing the parallelism to degree 4 helped
considerably in the short term, but rewriting the code to make the database access more efficient
was the longer term solution.

• In an IO bound system, adding parallelism can help provided that the IO subsystem can sustain the
required combination of data rate and degree of parallelism, eventually the system becomes CPU
bound or you run out of IO data rate

Too high a level of parallelism in either case will damage performance.

4.3 Prioritising the Fixes
The objective will always be to demonstrate some improvement quickly, so prioritising to get the best
payoff with the least effort is critical. You should have an idea of what benefit you could get from some
change. If you know what the cost of a transaction is, then you can make some educated guess (estimate)
of how much improvement you can get. As a thought experiment, set the cost of the transaction to zero,
does that provide enough benefit to meaningfully affect the problem? How much of the cost do you need
to remove? How much of the measured elapsed time do you need to remove and is that realistic? How
much of the time involved is due to contention? Sometimes a simple queueing model is useful for thinking
about this.

The list below of things to focus on is in order of importance.

• Good error handling is non-negotiable and should be given a high priority in the parts of the system
that have problems. Its not uncommon to find that there are unidentified errors occurring in a system
that is under a lot of stress. This may look like an odd thing to put at the top of the list, but incorrect
error handling may be a source of poorly described or currently unrecognised problems. Finding
and clarifying user problems early in the process is vital to getting resolution of the problems as
quickly as possible.

• Pick a number of transactions with both a high response time and a high total elapsed time to fix
first. Pick a number of them because not everything that is slow can be speeded up quickly and you
will need some quick results. Getting the most elapsed time out of the system will be important if
the system is heavily loaded in some area (database IO is a common example). That will stabilise
the performance of other transactions in the system. Iterate over the set of high elapsed/high total
impact URLs, picking candidates and fixing what you can until you are dealing with relatively rare
transaction problems.

• Pick the least scalable transactions. The WebAnalytics package’s report template includes some
concurrency/scalability graphs for the overall system but does not graph concurrency for all transac-
tions because the calculation is quite slow. It is a simple matter to either filter the input data (quickest)
or to add the concurrency graph to the URL report section (likely to be very, very slow). Where there
are transactions (or jobs) that are processing variable size batches of data, and you have some
variability in the batch sizes, comparing time cost per record with record count provides a view of
how performance responds to batch size. A properly constructed system, including database, will
show a more or less constant cost per record over a very wide range of record counts. Scalability
optimisation was carried out on a major government batch processing system over a period and by
the end almost all of the processing, except for processes that accounted for only a few minutes per
day, were operating with an approximately constant per-record cost and a reduction in processing
time of about 80%, a reduction in daily processing time from 20 hours to 4.

Page 18 of 26
© Greg Hunt 2022

Web Applications

• Tackle the transactions that you know are hard or risky to optimise, last.

Page 19 of 26
© Greg Hunt 2022

Web Applications

Chapter 5
Improve Performance
What the code or infrastructure changes are is not the focus of this paper, what they are depends on the
technology and the analysis. This is about measurement. Have you go to where you need to be?

Once the changes have been developed and deployed, comparison of the performance baseline with the
revised code will show whether you are getting the improvement you expected from the changes that have
been made. If the performance improvement is not what you were expecting, the analysis is likely to be
wrong and needs to be revisited, possibly with some new measurement.

Page 20 of 26
© Greg Hunt 2022

Web Applications

The data above is comparing response times before and after a system release that included some per-
formance optimisation. The total wait comparison table below shows that the highest and second highest
total delay transactions have had their 95th percentile times significantly reduced, taking out about 18%
of the total processing time in the system.

The URLs in that table, as they are in all tables, are hyperlinks to the detail page for that URL where
the result of the optimisation can be seen, reducing the 100th percentile time by nearly 100 seconds.
Comparisons with baseline times are generated for all URLs

Page 21 of 26
© Greg Hunt 2022

Web Applications

At this point the objectives and pain sources should be reviewed. Priorities may change.

For a pure optimisation process, not one aiming to hit a numeric performance target but aiming to provide
overall improvement, how do you know that you are finished? The saying that "better is the enemy of
good" is particularly true of performance optimisation, but it needs to be modified slightly to: "better is
the enemy of finishing". If the problem is one of reducing end-user pain then there will always be more
that can be done, there will always be some transaction displaying high response times or large vari-
ability. The model suggested earlier, an intense acute problem solving phase followed by an on-going
low intensity remediation program is useful and the remediation can be folded into the regular work of a
development team. For more straight-forward contractual requirements meeting an agreed threshold is
all that is required.

Page 22 of 26
© Greg Hunt 2022

Web Applications

Chapter 6
Control the System Performance
This part is unlike the earlier parts, it is an on-going activity. It is also about avoiding doing major problem
solving by solving small problems.

System performance changes over time as data sizes change, as business processes evolve and as func-
tion is added or changed. Users are often reluctant to report the merely annoying, or the inconsistent as a
defect. A statement like "sometimes this transaction is slow" is not likely to be accepted as a valid defect in
the same way that an intermittent fault is likely to be responded to by the developers with something along
the lines of "works for me" or "unable to reproduce". For many mature systems, performance problems
accumulate and grow slowly over time, either though system change or increasing irritation of the user
population and often development teams are unresponsive or slow to respond, in part because they don’t
know how to respond. This can lead to an accumulation of long standing problems being regarded sud-
denly as a crisis, much to the surprise of the team. An on-going performance management process, or
better, a quality management process, including using tools like WebAnalytics to measure performance,
a process that takes problems and addresses them as part of normal development activity, not as defect
repair, avoids that type of crisis.

For Application Maintenance Services engagements there is often an undertaking to improve the system
as part of on-going maintenance, but usually neither quality nor performance management are carried out,
despite being the most obvious things to do to meet that obligation. On-going improvement makes fixes
cheaper because implementation of fixes as an emergency drags in additional resources (a direct cost),
the repair has to be done at awkward times (likely to be a direct cost) and it impacts other activities (an
opportunity cost) and it reduces client trust (another opportunity cost), whereas progressive improvement
of this type can be fitted around normal maintenance and development work. It leads to fewer surprises
and the relationship with the business owner is better, there is higher trust. Having them say "I don’t think
we need regular catch ups any more, just let me know if there is a problem we should talk about" or "its
the least of my worries these days" indicates a preparedness to let the team manage the system.

Generating regular summaries of system performance and circulating them along with a few lines of text
about what was seein in the last week or month, even if the summaries are not often read, helps to
maintain that trust and it helps keep the maintenance team honest (someone has to look at the data to
write the summary).

For on-going performance management, the detailed comparisons of frequencies and distributions of
response times for before and after changes in the previous chapter are used to monitor changes over
time. Regular review of daily scatter plots for transient performance excursions can indicate whether
performance issues are present below the level of a major problem. Post-release or load test performance
data can be used as a baseline to detect changes over time in performance and the PDF report can be
used to document both the initial state and the improvement. If logs are retained, and they are usually only
a few MB of tens of MB per day, they can be used to compare performance between specific points in time:
"is this Easter’s performance different to last year’s?" , "is performance during end of month processing
degrading over time?", "are all Fridays like this?", questions that are difficult if not impossible to answer
with other tools.

Page 23 of 26
© Greg Hunt 2022

Web Applications

Chapter 7
Notes on Load Testing
Demonstrating performance using a load test is a useful thing to do, but it is likely to produce different,
faster, results compared with a production environment. Load testing is part of performance management.
Performance metrics can be collected from development and functional test environments (even if they
are lower capacity than production) and used to identify potential performance problems. A transaction
running by itself, even in a low capacity environment, should perform well. If it doesn’t, it can’t magically
perform well in a production environment with some amount of contention making its performance worse.
Simply collecting logs from development and test environments and feeding them into the WebAnalytics
package enables you to identify poorly performing transactions before formal performance test begins.
This will hold down the amount of fixing or rework that comes out of performance and load testing and
enables simpler load test scripts to be written.

A workload definition will form the basis of a load test for a new system or for a significant release. The
key point is to provide a more or less realistic combination of transactions in the system while balancing
that against the complexity of the scripting.

Any existing load test should be reviewed, and for simple systems the possibility of building a simple load
test should be considered. The workload will need revision to ensure that it matches current production
behaviour. The WebAnalytics workload table can be used to compare request frequencies by URL in
production (the baseline) and test (the current data) workload.

7.1 Define the Test Workload
The next part of the problem, and this applies to both load test and production, is what is the workload
that the response times should be measured against. This is usually easy for a production system, you
already know what the workload is. For a new system it may not be possible to know precisely what the
production workload will look like, the transaction mix will be uncertain, the number of concurrent users will
be unclear, the daily peaks will be unclear. Often the workload is specified in terms of business processes
or throughput per day, week, month or even year and it is necessary to estimate the transaction rate. This
is usually more tractable than people think. Transaction concurrency (leaving aside a DDOS) is limited by
the number of staff and the number of potential users in the general population, for any business process
these are knowable numbers - for freight, how many parcels are in flight and how often do people check?

Page 24 of 26
© Greg Hunt 2022

Web Applications

For courts, how many court cases are there? For a retail website, how many customers does the company
have for its current business? Completely open-ended user populations and transaction rates are very
unlikely, and if you genuinely have that then the requirement is to provide linear scalability (addressed
below) and a high degree of elasticity in the infrastructure.

Typical office-hours business transaction patterns have morning and afternoon peak transaction rates that
represent a ratio of between two and about five over the daily average. Whether that is true for any one
application depends on many factors, but these ratios work well enough as a starting point. Longer term
cycles in workload: weekly (Fridays and Mondays), monthly, quarterly, annual, biennial sales, annual
license renewals, Christmas, Easter, and Idul Fitri holidays, and the like can be factored in to derive a
reasonable daily workload. Government services websites and retail websites have peaks that correspond
with breaks in the working day and the early evening with usage tapering off into the night. Given all
that however, peak transaction rates (not necessarily concurrency levels) will be much higher over short
intervals and the target workload will be a small multiple of the short term projected peak transaction rate
that has been worked out from all of these factors. Its not terribly precise, but it does provide a reasonable
ball-park workload.

Estimation of think time is always somewhat fraught, the think time metric determines the throughout
of the total business system, staff number and computer system response time and think time are the
three things that determine how much work can be processed in a period of time. This is typically two
to five seconds for business transaction processing systems. Measurement of this from production data
depends on the existence of a user or session identifier.

7.1.1 Testing Transaction Combinations
The objective of a load test should not just be to push some number of transactions through the system in
an interval, but also to explore what happens when combinations of transactions run together to discover
locking or other types of contention. This is very difficult to test manually because there may be very
specific sequences and overlaps that trigger problems. There needs to be some degree of intentional
randomness introduced into the test to avoid transactions falling into cyclical patterns. This can be intro-
duced using a random delay timer (preferably a Poisson delay representing the think time with a large
lambda value) which may be combined with random selection of different process scenarios in the script.
A load test with some probabilistic behaviour has a better chance of finding these overlaps than manual
testing will.

Don’t try to test everything, load test scripting is expensive and maintaining it even more so. A very
complex, very comprehensive load test script will not be maintained and the effort will be wasted when
something smaller and less comprehensive, but focussed on the high frequency parts of the workload will
be as effective and be more able to be reused in the future. Many transactions or code paths through
transactions are used quite rarely, and provided that they perform reasonably well in development (that is,
they respond in under the target response time when run alone) then they will be tolerable in production
even if their performance is actually not very good. The objective must be to exercise the most common
business scenarios and the most common transactions and ensure that those perform well. Identifying
and fixing things that are used rarely should be a lower priority than the core business process. Keep in
mind that developers may not be able to identify all of the code paths that they have constructed, and its
not uncommon for the known code paths through a transaction to perform well but for there to be a poorly
performing one that emerges under load.

The WebAnalytics package includes a report of URL frequencies and cumulative percentages that can
be used to identify the key transactions to be included in the load testing of a production system or to
adjust a load test to correspond with the real world load. The cumulative percentages help in identifying
how much of the workload is covered and enables exclusion of very low frequency transactions. Typically,

Page 25 of 26
© Greg Hunt 2022

Web Applications

even for very complex systems with hundreds of URLs, a small number of URLS (likely to be a few tens)
account for 80% to 90% of the requests.

The table above is from a fairly large system with nearly 2000 distinct URLs, but 80% coverage is provided
by 32 URLs. Scripting will need to exercise more than that, and balancing the scripts so that they provide
the right counts and proportions is an iterative process. Keep in mind that a test script covering 2000
URLs is likely to be impossibly expensive, time consuming and a maintenance nightmare for all but the
largest commercial package development teams.

Page 26 of 26
© Greg Hunt 2022

