Package 'abclass'

May 28, 2022

Title Angle-Based Large-Margin Classifiers Version 0.3.0 Description Multi-category angle-based large-margin classifiers. See Zhang and Liu (2014) <doi:10.1093/biomet/asu017> for details. **Depends** R (>= 3.5.0) Imports Rcpp, stats LinkingTo Rcpp, RcppArmadillo Suggests tinytest Copyright Eli Lilly and Company License GPL (>= 3) URL https://wwenjie.org/abclass, https://github.com/wenjie2wang/abclass BugReports https://github.com/wenjie2wang/abclass/issues **Encoding** UTF-8 RoxygenNote 7.1.2 NeedsCompilation yes Author Wenjie Wang [aut, cre] (<https://orcid.org/0000-0003-0363-3180>), Eli Lilly and Company [cph] Maintainer Wenjie Wang <wang@wwenjie.org> **Repository** CRAN Date/Publication 2022-05-28 18:10:02 UTC

R topics documented:

Index																						8	5
	predict.abclass .	 •	 	•		•	•		•	•	 •	•	•	 •	•	•		•	•	 	•	6)
	coef.abclass		 																	 		5	j
	abclass		 																	 		2	5
	abclass-package		 																	 		2	

```
abclass-package
```

Description

This package provides implementations of the multi-category angle-based classifiers (Zhang & Liu, 2014) with the large-margin unified machines (Liu, et al., 2011) for high-dimensional data.

References

Zhang, C., & Liu, Y. (2014). Multicategory Angle-Based Large-Margin Classification. *Biometrika*, 101(3), 625–640.

Liu, Y., Zhang, H. H., & Wu, Y. (2011). Hard or soft classification? large-margin unified machines. *Journal of the American Statistical Association*, 106(493), 166–177.

abclass

Angle-Based Classification

Description

Multi-category angle-based large-margin classifiers with regularization by the elastic-net penalty.

Usage

```
abclass(
 х,
 у,
  intercept = TRUE,
 weight = NULL,
 loss = c("logistic", "boost", "hinge-boost", "lum"),
 control = list(),
  . . .
)
abclass.control(
  lambda = NULL,
  alpha = 0.5,
  nlambda = 50,
  lambda_min_ratio = NULL,
  grouped = TRUE,
  group_weight = NULL,
  group_penalty = c("lasso", "scad", "mcp"),
  dgamma = 1,
  nfolds = 0,
  stratified_cv = TRUE,
```

abclass

```
alignment = c("fraction", "lambda"),
lum_a = 1,
lum_c = 1,
boost_umin = -5,
maxit = 1e+05,
epsilon = 0.001,
standardize = TRUE,
varying_active_set = TRUE,
verbose = 0,
....)
```

Arguments

X	A numeric matrix representing the design matrix. No missing valus are allowed. The coefficient estimates for constant columns will be zero. Thus, one should set the argument intercept to TRUE to include an intercept term instead of adding an all-one column to x.
У	An integer vector, a character vector, or a factor vector representing the response label.
intercept	A logical value indicating if an intercept should be considered in the model. The default value is TRUE and the intercept is excluded from regularization.
weight	A numeric vector for nonnegative observation weights. Equal observation weights are used by default.
loss	A character value specifying the loss function. The available options are "logistic" for the logistic deviance loss, "boost" for the exponential loss approximating Boosting machines, "hinge-boost" for hybrid of SVM and AdaBoost machine, and "lum" for largin-margin unified machines (LUM). See Liu, et al. (2011) for details.
control	A list of control parameters. See abclass.control() for details.
	Other control parameters passed to abclass.control.
lambda	A numeric vector specifying the tuning parameter <i>lambda</i> of elastic-net penalty. A data-driven <i>lambda</i> sequence will be generated and used according to speci- fied alpha, nlambda and lambda_min_ratio if this argument is NULL by default. The specified lambda will be sorted in decreasing order internally and only the unique values will be kept.
alpha	A numeric value in [0, 1] representing the mixing parameter <i>alpha</i> in elastic-net penalty.
nlambda	A positive integer specifying the length of the internally generated <i>lambda</i> sequence. This argument will be ignored if a valid lambda is specified. The default value is 50.
lambda_min_rat:	io
	A positive number specifying the ratio of the smallest lambda parameter to the largest lambda parameter. The default value is set to 1e-4 if the sample size is larger than the number of predictors, and 1e-2 otherwise.
grouped	A logicial value. Experimental flag to apply group Lasso.

group_weight	A numerical vector with nonnegative values representing the adaptive penalty factors for grouped lasso.
group_penalty	A character vector specifying the name of the group penalty.
dgamma	A positive number specifying the increment to the minimal gamma parameter for group SCAD or group MCP.
nfolds	A nonnegative integer specifying the number of folds for cross-validation. The default value is 0 and no cross-validation will be performed if nfolds < 2.
stratified_cv	A logical value indicating if the cross-validation procedure should be stratified by the response label. The default value is TRUE.
alignment	A character vector specifying how to align the lambda sequence used in the main fit with the cross-validation fits. The available options are "fraction" for allowing cross-validation fits to have their own lambda sequences and "lambda" for using the same lambda sequence of the main fit. The option "lambda" will be applied if a meaningful lambda is specified. The default value is "fraction".
lum_a	A positive number greater than one representing the parameter a in LUM, which will be used only if loss = "lum". The default value is 1.0.
lum_c	A nonnegative number specifying the parameter c in LUM, which will be used only if loss = "hinge-boost" or loss = "lum". The default value is 1.0.
boost_umin	A negative number for adjusting the boosting loss for the internal majorization procedure.
maxit	A positive integer specifying the maximum number of iteration. The default value is 10^5.
epsilon	A positive number specifying the relative tolerance that determines convergence. The default value is 1e-3.
standardize	A logical value indicating if each column of the design matrix should be stan- dardized internally to have mean zero and standard deviation equal to the sample size. The default value is TRUE. Notice that the coefficient estimates are always returned on the original scale.
varying_active	
	A logical value indicating if the active set should be updated after each cycle of coordinate-majorization-descent algorithm. The default value is TRUE for usually more efficient estimation procedure.
verbose	A nonnegative integer specifying if the estimation procedure should print out intermediate steps/results. The default value is 0 for silent estimation procedure.

Value

The function abclass() returns an object of class abclass representing a trained classifier; The function abclass.control() returns an object of class abclass.control representing a list of control parameters.

References

Zhang, C., & Liu, Y. (2014). Multicategory Angle-Based Large-Margin Classification. *Biometrika*, 101(3), 625–640.

Liu, Y., Zhang, H. H., & Wu, Y. (2011). Hard or soft classification? large-margin unified machines. *Journal of the American Statistical Association*, 106(493), 166–177.

coef.abclass

Examples

```
library(abclass)
set.seed(123)
## toy examples for demonstration purpose
## reference: example 1 in Zhang and Liu (2014)
ntrain <- 100 # size of training set</pre>
ntest <- 100 # size of testing set</pre>
p0 <- 5
          # number of actual predictors
p1 <- 5
               # number of random predictors
k <- 5
               # number of categories
n <- ntrain + ntest; p <- p0 + p1</pre>
train_idx <- seq_len(ntrain)</pre>
y <- sample(k, size = n, replace = TRUE)</pre>
                                                     # response
mu <- matrix(rnorm(p0 * k), nrow = k, ncol = p0) # mean vector</pre>
## normalize the mean vector so that they are distributed on the unit circle
mu <- mu / apply(mu, 1, function(a) sqrt(sum(a ^ 2)))</pre>
x0 <- t(sapply(y, function(i) rnorm(p0, mean = mu[i, ], sd = 0.25)))</pre>
x1 <- matrix(rnorm(p1 * n, sd = 0.3), nrow = n, ncol = p1)</pre>
x <- cbind(x0, x1)</pre>
train_x <- x[train_idx, ]</pre>
test_x <- x[- train_idx, ]</pre>
y <- factor(paste0("label_", y))</pre>
train_y <- y[train_idx]</pre>
test_y <- y[- train_idx]</pre>
## Regularization through ridge penalty
model1 <- abclass(train_x, train_y, nlambda = 5, nfolds = 3,</pre>
                   loss = "logistic", alpha = 0, lambda_min_ratio = 1e-2)
pred1 <- predict(model1, test_x)</pre>
table(test_y, pred1)
mean(test_y == pred1) # accuracy
## groupwise regularization via group lasso
model2 <- abclass(train_x, train_y, nlambda = 5, nfolds = 3,</pre>
                   grouped = TRUE, loss = "boost")
pred2 <- predict(model2, test_x)</pre>
table(test_y, pred2)
mean(test_y == pred2) # accuracy
```

coef.abclass

Coefficient Estimates of A Trained Angle-Based Classifier

Description

Extract coefficient estimates from an abclass object.

```
## S3 method for class 'abclass'
coef(object, selection = c("cv_min", "cv_1se", "all"), ...)
```

Arguments

object	An object of class abclass.
selection	A character value specifying how to select a particular set of coefficient esti- mates from the entire solution path. If the specified abclass object contains the cross-validation results, one may set selection to "cv_min" (or "cv_1se") for the estimates giving the smallest cross-validation error (or the set of esti- mates resulted from the largest <i>lambda</i> within one standard error of the smallest cross-validation error). The entire solution path will be returned in an array if selection = "all" or no cross-validation results are available in the input abclass object.
	Other arguments not used now.

Value

A vector representing the predictions or an array representing the entire solution path.

predict.abclass Prediction by A Trained Angle-Based Classifier

Description

Predict class labels or estimate conditional probabilities for the specified new data.

Usage

```
## S3 method for class 'abclass'
predict(
   object,
   newx,
   type = c("class", "probability"),
   selection = c("cv_min", "cv_1se", "all"),
   ...
)
```

Arguments

object	An object of class abclass.
newx	A numeric matrix representing the design matrix for predictions.
	A character value specifying the desired type of predictions. The available options are "class" for predicted labels and "probability" for class conditional probability estimates.

predict.abclass

selection	A character value specifying how to select a particular set of coefficient esti-
	mates from the entire solution path for the predictions. If the spcified abclass
	object contains the cross-validation results, one may set selection to "cv_min"
	(or "cv_1se") for predictions from the set of estimates having the smallest
	cross-validation error (or the set of estimates resulted from the largest lambda
	within one standard error of the smallest cross-validation error). The predic-
	tions for the entire solution path will be returned if selection = "all" or no
	cross-validation results are available in the input abclass object.

... Other arguments not used now.

Value

A vector representing the predictions or a list containing the predictions for each set of estimates along the solution path.

Examples

```
## see examples of `abclass()`.
```

Index

abclass, 2 abclass-package, 2

coef.abclass,5

predict.abclass,6