Package 'abcrlda'

May 28, 2020

Type Package

Title Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis

Version 1.0.3

Author Dmitriy Fedorov [aut, cre], Amin Zollanvari [aut], Aresh Dadlani [aut], Berdakh Abibullaev [aut]

Maintainer Dmitriy Fedorov <dmitriy.fedorov@nu.edu.kz>

Description

Offers methods to perform asymptotically bias-corrected regularized linear discriminant analysis (ABC_RLDA) for cost-sensitive binary classification. The bias-correction is an estimate of the bias term added to regularized discriminant analysis (RLDA) that minimizes the overall risk. The default magnitude of misclassification costs are equal and set to 0.5; however, the package also offers the options to set them to some predetermined values or, alternatively, take them as hyperparameters to tune.

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev (2019) <doi:10.1109/LSP.2019.2918485>.

Imports stats
License GPL-3

URL https://ieeexplore.ieee.org/document/8720003/,
https://dx.doi.org/10.1109/LSP.2019.2918485

Encoding UTF-8
LazyData true

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-28 04:20:02 UTC

2 abcrlda

R topics documented:

abcrlda	2
cross_validation	4
da_risk_estimator	5
grid_search	6
predict.abcrlda	8
risk_calculate	9

Index 11

abcrlda

Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification

Description

Constructs Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis.

Usage

```
abcrlda(x, y, gamma = 1, cost = c(0.5, 0.5), bias_correction = TRUE)
```

Arguments

У

x Input matrix or data.frame of dimension nobs x nvars; each row is an feature vector.

A numeric vector or factor of class labels. Factor should have either two levels or be a vector with two distinct values. If y is presented as a vector, it will be coerced into a factor. Length of y has to correspond to number of samples in x.

gamma Regularization parameter γ in the ABC-RLDA discriminant function given by:

$$W_{ABC}^{RLDA} = \gamma (x - \frac{\bar{x}_0 + \bar{x}_1}{2})^T H(\bar{x}_0 - \bar{x}_1) - \log(\frac{C_{01}}{C_{10}}) + \hat{\omega}_{opt}$$
$$H = (I_p + \gamma \hat{\Sigma})^{-1}$$

Formulas and derivations for parameters used in above equation can be found in the article under reference section.

Parameter that controls the overall misclassification costs. This is a vector of length 1 or 2 where the first value is C_{10} (represents the cost of assigning label 1 when the true label is 0) and the second value, if provided, is C_{01} (represents the

0.5), so both classes have equal misclassification costs If a single value is provided, it should be normalized to lie between 0 and 1 (but not including 0 or 1). This value will be assigned to C_{10} while C_{01} will be equal to $(1-C_{10})$.

cost of assigning label 0 when the true label is 1). The default setting is c(0.5,

cost

abcrlda 3

bias_correction

Takes in a boolean value. If bias_correction is TRUE, then asymptotic bias correction will be performed. Otherwise, (if bias_correction is FALSE) asymptotic bias correction will not be performed and the ABCRLDA is the classical RLDA. The default is TRUE.

Value

An object of class "abcrlda" is returned which can be used for class prediction (see predict()).

a Coefficient vector of a discriminant hyperplane: $W(\mathbf{x}) = \mathbf{a}^2 \mathbf{x}$	$\mathbf{x} + \mathbf{m}$.
--	-----------------------------

m Intercept of discriminant hyperplane: $W(x) = a^{2}x + m$.

vector of cost values that are used to construct ABC-RLDA.

ncost Normalized cost such that $C_{10} + C_{01} = 1$.

gamma Regularization parameter value used in ABC_RLDA discriminant function.

lev Levels corresponding to the labels in y.

Reference

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev, "Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification," in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1300-1304, Sept. 2019. doi: 10.1109/LSP.2019.2918485 URL: https://ieeexplore.ieee.org/document/8720003

See Also

```
Other functions in the package: cross_validation(), da_risk_estimator(), grid_search(), predict.abcrlda(), risk_calculate()
```

Examples

```
data(iris)
train_data <- iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                             iris[, ncol(iris)] == "versicolor"), 1:4]
train_label <- factor(iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                                      iris[, ncol(iris)] == "versicolor"), 5])
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = 0.75)</pre>
a <- predict(model, train_data)</pre>
# same params but more explicit
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(0.75, 0.25))</pre>
b <- predict(model, train_data)</pre>
# same class costs ratio
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(3, 1))</pre>
c <- predict(model, train_data)</pre>
# all this model will give the same predictions
all(a == b \& a == c \& b == c)
#' [1] TRUE
```

4 cross_validation

cross_validation

Cross Validation for separate sampling adjusted for cost.

Description

This function implements Cross Validation for separate sampling adjusted for cost.

Usage

```
cross_validation(
  Х,
  у,
  gamma = 1,
  cost = c(0.5, 0.5),
  nfolds = 10,
  bias_correction = TRUE
)
```

Arguments

Input matrix or data.frame of dimension nobs x nvars; each row is an feature Х vector.

A numeric vector or factor of class labels. Factor should have either two levels or be a vector with two distinct values. If y is presented as a vector, it will be coerced into a factor. Length of y has to correspond to number of samples in x.

Regularization parameter γ in the ABC-RLDA discriminant function given by:

$$W_{ABC}^{RLDA} = \gamma (x - \frac{\bar{x}_0 + \bar{x}_1}{2})^T H(\bar{x}_0 - \bar{x}_1) - \log(\frac{C_{01}}{C_{10}}) + \hat{\omega}_{opt}$$
$$H = (I_p + \gamma \hat{\Sigma})^{-1}$$

Formulas and derivations for parameters used in above equation can be found in the article under reference section.

Parameter that controls the overall misclassification costs. This is a vector of length 1 or 2 where the first value is C_{10} (represents the cost of assigning label 1 when the true label is 0) and the second value, if provided, is C_{01} (represents the cost of assigning label 0 when the true label is 1). The default setting is c(0.5,0.5), so both classes have equal misclassification costs

If a single value is provided, it should be normalized to lie between 0 and 1 (but not including 0 or 1). This value will be assigned to C_{10} while C_{01} will be equal to $(1 - C_{10})$.

Number of folds to use with cross-validation. Default is 10. In case of imbalanced data, nfolds should not be greater than the number of observations in smaller class.

У

gamma

cost

nfolds

da_risk_estimator 5

bias_correction

Takes in a boolean value. If bias_correction is TRUE, then asymptotic bias correction will be performed. Otherwise, (if bias_correction is FALSE) asymptotic bias correction will not be performed and the ABCRLDA is the classical RLDA. The default is TRUE.

Value

Returns list of parameters.

risk_cross Returns risk estimation where $\Re = \varepsilon_0 * C_{10} + \varepsilon_1 * C_{01}$ e_0 Error estimate for class 0. e_1 Error estimate for class 1.

Reference

Braga-Neto, Ulisses & Zollanvari, Amin & Dougherty, Edward. (2014). Cross-Validation Under Separate Sampling: Strong Bias and How to Correct It. Bioinformatics (Oxford, England). 30. 10.1093/bioinformatics/btu527. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296143/pdf/btu527.pdf

See Also

Other functions in the package: abcrlda(), da_risk_estimator(), grid_search(), predict.abcrlda(), risk_calculate()

Examples

da_risk_estimator

Double Asymptotic Risk Estimator

Description

This function implements the generalized (double asymptotic) consistent estimator of risk.

Usage

```
da_risk_estimator(object)
```

Arguments

object

An object of class "abcrlda".

grid_search

Value

Calculates risk based on estimated class error rates and misclassification costs

$$\Re = \varepsilon_0 * C_{10} + \varepsilon_1 * C_{01}$$

Reference

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev, "Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification," in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1300-1304, Sept. 2019. doi: 10.1109/LSP.2019.2918485 URL: https://ieeexplore.ieee.org/document/8720003

See Also

Other functions in the package: abcrlda(), cross_validation(), grid_search(), predict.abcrlda(), risk_calculate()

Examples

grid_search

Grid Search

Description

Performs grid search to estimate the optimal hyperparameters (gamma and cost) within specified space based on double asymptotic risk estimation or cross validation. Double asymptotic risk estimation is more efficient to compute because it uses closed form for risk estimation. For further details, refer to the article in the reference section.

$$\Re = \varepsilon_0 * C_{10} + \varepsilon_1 * C_{01}$$

$$\varepsilon_i = \Phi(\frac{(-1)^{i+1}(\hat{G}_i + \hat{\omega}_{opt}/\gamma)}{\sqrt{\hat{D}}})$$

Separate sampling cross-validation (see cross-validation function) was adapted to work with cost-based risk estimation.

grid_search 7

Usage

```
grid_search(
    x,
    y,
    range_gamma,
    range_cost,
    method = "estimator",
    nfolds = 10,
    bias_correction = TRUE
)
```

Arguments

x Input matrix or data.frame of dimension nobs x nvars; each row is an feature

vector.

y A numeric vector or factor of class labels. Factor should have either two levels

or be a vector with two distinct values. If y is presented as a vector, it will be coerced into a factor. Length of y has to correspond to number of samples in x.

range_gamma Vector of gamma values to check.

range_cost nobs x 1 vector (values should be between 0 and 1) or nobs x 2 matrix (each row

is cost pair value $c(C_{10}, C_{01})$) of cost values to check.

method Selects method to evaluete risk. "estimator" and "cross".

nfolds Number of folds to use with cross-validation. Default is 10. In case of imbal-

anced data, nfolds should not be greater than the number of observations in

smaller class.

bias_correction

Takes in a boolean value. If bias_correction is TRUE, then asymptotic bias correction will be performed. Otherwise, (if bias_correction is FALSE) asymptotic bias correction will not be performed and the ABCRLDA is the classical

RLDA. The default is TRUE.

Value

List of estimated parameters.

cost Cost value for which risk estimates are lowest during the search.

gamma Gamma regularization parameter for which risk estimates are lowest during the

search.

risk Lowest risk value estimated during grid search.

Reference

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev, "Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification," in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1300-1304, Sept. 2019. doi: 10.1109/LSP.2019.2918485 URL: https://ieeexplore.ieee.org/document/8720003

8 predict.abcrlda

Braga-Neto, Ulisses & Zollanvari, Amin & Dougherty, Edward. (2014). Cross-Validation Under Separate Sampling: Strong Bias and How to Correct It. Bioinformatics (Oxford, England). 30. 10.1093/bioinformatics/btu527. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4296143/pdf/btu527.pdf

See Also

Other functions in the package: abcrlda(), cross_validation(), da_risk_estimator(), predict.abcrlda(), risk_calculate()

Examples

```
data(iris)
train_data <- iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                          iris[, ncol(iris)] == "versicolor"), 1:4]
train_label <- factor(iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                                   iris[, ncol(iris)] == "versicolor"), 5])
cost_range <- seq(0.1, 0.9, by = 0.2)
gamma\_range <- c(0.1, 1, 10, 100, 1000)
gs <- grid_search(train_data, train_label,</pre>
                   range_gamma = gamma_range,
                   range_cost = cost_range,
                   method = "estimator")
model <- abcrlda(train_data, train_label,</pre>
                  gamma = gs$gamma, cost = gs$cost)
predict(model, train_data)
cost_range <- matrix(1:10, ncol = 2)</pre>
gamma_range <- c(0.1, 1, 10, 100, 1000)
gs <- grid_search(train_data, train_label,</pre>
                   range_gamma = gamma_range,
                   range_cost = cost_range,
                   method = "cross")
model <- abcrlda(train_data, train_label,</pre>
                  gamma = gs$gamma, cost = gs$cost)
predict(model, train_data)
```

predict.abcrlda

Class Prediction for abcrlda objects

Description

Classifies observations based on a given abcrlda object.

Usage

```
## S3 method for class 'abcrlda'
predict(object, newx, ...)
```

risk_calculate 9

Arguments

object An object of class "abcrlda".

newx Matrix of new values for x at which predictions are to be made.

... Argument used by generic function predict(object, x, ...).

Value

Returns factor vector with predictions (i.e., assigned labels) for each observation. Factor levels are inherited from the object variable.

Reference

A. Zollanvari, M. Abdirash, A. Dadlani and B. Abibullaev, "Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis for Cost-Sensitive Binary Classification," in IEEE Signal Processing Letters, vol. 26, no. 9, pp. 1300-1304, Sept. 2019. doi: 10.1109/LSP.2019.2918485 URL: https://ieeexplore.ieee.org/document/8720003

See Also

```
Other functions in the package: abcrlda(), cross_validation(), da_risk_estimator(), grid_search(), risk_calculate()
```

Examples

```
data(iris)
train_data <- iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                             iris[, ncol(iris)] == "versicolor"), 1:4]
train_label <- factor(iris[which(iris[, ncol(iris)] == "virginica" |</pre>
                                      iris[, ncol(iris)] == "versicolor"), 5])
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = 0.75)</pre>
a <- predict(model, train_data)</pre>
# same params but more explicit
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(0.75, 0.25))</pre>
b <- predict(model, train_data)</pre>
# same class costs ratio
model <- abcrlda(train_data, train_label, gamma = 0.5, cost = c(3, 1))</pre>
c <- predict(model, train_data)</pre>
# all this model will give the same predictions
all(a == b \& a == c \& b == c)
#' [1] TRUE
```

risk_calculate

Risk Calculate

Description

Estimates risk and error by applying a constructed classifier (an object of class abcrlda) to a given set of observations.

10 risk_calculate

Usage

```
risk_calculate(object, x_true, y_true)
```

Arguments

object An object of class "abcrlda".

x_true Matrix of values for x for which true class labels are known.

y_true A numeric vector or factor of true class labels. Factor should have either two

levels or be a vector with two distinct values. If y_true is presented as a vector, it will be coerced into a factor. Length of y_true has to correspond to number

of samples in x_test.

Value

A list of parameters where

```
actual_err0 Error rate for class 0.

actual_err1 Error rate for class 1.

actual_errTotal

Error rate overall.

actual_normrisk
```

Risk value normilized to be between 0 and 1.

actual_risk Risk value without normilization.

See Also

```
Other functions in the package: abcrlda(), cross_validation(), da_risk_estimator(), grid_search(), predict.abcrlda()
```

Examples

Index

```
abcrlda, 2, 5, 6, 8–10 cross_validation, 3, 4, 6, 8–10 da_risk_estimator, 3, 5, 5, 8–10 grid_search, 3, 5, 6, 6, 9, 10 predict.abcrlda, 3, 5, 6, 8, 8, 10 risk_calculate, 3, 5, 6, 8, 9, 9
```