
Package ‘abess’
March 22, 2022

Type Package

Title Fast Best Subset Selection

Version 0.4.5

Date 2022-03-22

Maintainer Jin Zhu <zhuj37@mail2.sysu.edu.cn>

Description Extremely efficient toolkit for solving the best subset selection prob-
lem <arXiv:2110.09697>. This package is its R interface. The package implements and general-
izes algorithms designed in <doi:10.1073/pnas.2014241117> that exploits a novel sequencing-
and-splicing technique to guarantee exact support recovery and globally optimal solution in poly-
nomial times for linear model. It also supports best subset selection for logistic regression, Pois-
son regression, Cox proportional hazard model, Gamma regression, multiple-response regres-
sion, multinomial logistic regression, ordinal regression, (sequential) principal component analy-
sis, and robust principal component analysis. The other valuable features such as the best sub-
set of group selection <arXiv:2104.12576> and sure independence screen-
ing <doi:10.1111/j.1467-9868.2008.00674.x> are also provided.

License GPL (>= 3) | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.1.0)

Imports Rcpp, MASS, methods, Matrix

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.1.2

SystemRequirements C++11

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/abess-team/abess,

https://abess-team.github.io/abess/,

https://abess.readthedocs.io

BugReports https://github.com/abess-team/abess/issues

1

https://arxiv.org/abs/2110.09697
https://doi.org/10.1073/pnas.2014241117
https://arxiv.org/abs/2104.12576
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://github.com/abess-team/abess
https://abess-team.github.io/abess/
https://abess.readthedocs.io
https://github.com/abess-team/abess/issues

2 R topics documented:

NeedsCompilation yes

Author Jin Zhu [aut, cre] (<https://orcid.org/0000-0001-8550-5822>),
Liyuan Hu [aut],
Junhao Huang [aut],
Kangkang Jiang [aut],
Yanhang Zhang [aut],
Zezhi Wang [aut],
Borui Tang [aut],
Shiyun Lin [aut],
Junxian Zhu [aut],
Canhong Wen [aut],
Heping Zhang [aut] (<https://orcid.org/0000-0002-0688-4076>),
Xueqin Wang [aut] (<https://orcid.org/0000-0001-5205-9950>),
spectra contributors [cph] (Spectra implementation)

Repository CRAN

Date/Publication 2022-03-22 10:10:24 UTC

R topics documented:

abess.default . 3
abesspca . 10
abessrpca . 14
coef.abess . 18
coef.abesspca . 19
coef.abessrpca . 19
deviance.abess . 20
extract . 21
generate.data . 22
generate.matrix . 25
generate.spc.matrix . 26
plot.abess . 28
plot.abesspca . 29
plot.abessrpca . 30
predict.abess . 30
print.abess . 31
print.abesspca . 32
print.abessrpca . 33
trim32 . 33

Index 35

https://orcid.org/0000-0001-8550-5822
https://orcid.org/0000-0002-0688-4076
https://orcid.org/0000-0001-5205-9950

abess.default 3

abess.default Adaptive best subset selection (for generalized linear model)

Description

Adaptive best-subset selection for regression, (multi-class) classification, counting-response, censored-
response, positive response, multi-response modeling in polynomial times.

Usage

Default S3 method:
abess(

x,
y,
family = c("gaussian", "binomial", "poisson", "cox", "mgaussian", "multinomial",

"gamma", "ordinal"),
tune.path = c("sequence", "gsection"),
tune.type = c("gic", "ebic", "bic", "aic", "cv"),
weight = NULL,
normalize = NULL,
c.max = 2,
support.size = NULL,
gs.range = NULL,
lambda = 0,
always.include = NULL,
group.index = NULL,
init.active.set = NULL,
splicing.type = 2,
max.splicing.iter = 20,
screening.num = NULL,
important.search = NULL,
warm.start = TRUE,
nfolds = 5,
foldid = NULL,
cov.update = FALSE,
newton = c("exact", "approx"),
newton.thresh = 1e-06,
max.newton.iter = NULL,
early.stop = FALSE,
ic.scale = 1,
num.threads = 0,
seed = 1,
...

)

S3 method for class 'formula'
abess(formula, data, subset, na.action, ...)

4 abess.default

Arguments

x Input matrix, of dimension n × p; each row is an observation vector and each
column is a predictor/feature/variable. Can be in sparse matrix format (inherit
from class "dgCMatrix" in package Matrix).

y The response variable, of n observations. For family = "binomial" should
have two levels. For family="poisson", y should be a vector with positive in-
teger. For family = "cox", y should be a Surv object returned by the survival
package (recommended) or a two-column matrix with columns named "time"
and "status". For family = "mgaussian", y should be a matrix of quanti-
tative responses. For family = "multinomial" or "ordinal", y should be a
factor of at least three levels. Note that, for either "binomial", "ordinal" or
"multinomial", if y is presented as a numerical vector, it will be coerced into a
factor.

family One of the following models: "gaussian" (continuous response), "binomial"
(binary response), "poisson" (non-negative count), "cox" (left-censored re-
sponse), "mgaussian" (multivariate continuous response), "multinomial" (multi-
class response), "ordinal" (multi-class ordinal response), "gamma" (positive
continuous response). Depending on the response. Any unambiguous substring
can be given.

tune.path The method to be used to select the optimal support size. For tune.path =
"sequence", we solve the best subset selection problem for each size in support.size.
For tune.path = "gsection", we solve the best subset selection problem with
support size ranged in gs.range, where the specific support size to be consid-
ered is determined by golden section.

tune.type The type of criterion for choosing the support size. Available options are "gic",
"ebic", "bic", "aic" and "cv". Default is "gic".

weight Observation weights. When weight = NULL, we set weight = 1 for each obser-
vation as default.

normalize Options for normalization. normalize = 0 for no normalization. normalize =
1 for subtracting the means of the columns of x and y, and also normalizing
the columns of x to have

√
n norm. normalize = 2 for subtracting the mean of

columns of x and scaling the columns of x to have
√
n norm. normalize = 3

for scaling the columns of x to have
√
n norm. If normalize = NULL, normalize

will be set 1 for "gaussian" and "mgaussian", 3 for "cox". Default is normalize
= NULL.

c.max an integer splicing size. Default is: c.max = 2.

support.size An integer vector representing the alternative support sizes. Only used for
tune.path = "sequence". Default is 0:min(n,round(n/(log(log(n))log(p)))).

gs.range A integer vector with two elements. The first element is the minimum model
size considered by golden-section, the later one is the maximum one. Default is
gs.range = c(1,min(n,round(n/(log(log(n))log(p))))).

lambda A single lambda value for regularized best subset selection. Default is 0.

always.include An integer vector containing the indexes of variables that should always be in-
cluded in the model.

abess.default 5

group.index A vector of integers indicating the which group each variable is in. For variables
in the same group, they should be located in adjacent columns of x and their
corresponding index in group.index should be the same. Denote the first group
as 1, the second 2, etc. If you do not fit a model with a group structure, please
set group.index = NULL (the default).

init.active.set

A vector of integers indicating the initial active set. Default: init.active.set
= NULL.

splicing.type Optional type for splicing. If splicing.type = 1, the number of variables to
be spliced is c.max, ..., 1; if splicing.type = 2, the number of variables to be
spliced is c.max, c.max/2, ..., 1. (Default: splicing.type = 2.)

max.splicing.iter

The maximum number of performing splicing algorithm. In most of the case,
only a few times of splicing iteration can guarantee the convergence. Default is
max.splicing.iter = 20.

screening.num An integer number. Preserve screening.num number of predictors with the
largest marginal maximum likelihood estimator before running algorithm.

important.search

An integer number indicating the number of important variables to be splicing.
When important.search� p variables, it would greatly reduce runtimes. De-
fault: important.search = 128.

warm.start Whether to use the last solution as a warm start. Default is warm.start = TRUE.

nfolds The number of folds in cross-validation. Default is nfolds = 5.

foldid an optional integer vector of values between 1, ..., nfolds identifying what fold
each observation is in. The default foldid = NULL would generate a random
foldid.

cov.update A logical value only used for family = "gaussian". If cov.update = TRUE, use
a covariance-based implementation; otherwise, a naive implementation. The
naive method is more computational efficient than covariance-based method
when p >> n and important.search is much large than its default value.
Default: cov.update = FALSE.

newton A character specify the Newton’s method for fitting generalized linear mod-
els, it should be either newton = "exact" or newton = "approx". If newton =
"exact", then the exact hessian is used, while newton = "approx" uses diago-
nal entry of the hessian, and can be faster (especially when family = "cox").

newton.thresh a numeric value for controlling positive convergence tolerance. The Newton’s
iterations converge when |dev − devold|/(|dev|+ 0.1) < newton.thresh.

max.newton.iter

a integer giving the maximal number of Newton’s iteration iterations. Default
is max.newton.iter = 10 if newton = "exact", and max.newton.iter = 60 if
newton = "approx".

early.stop A boolean value decide whether early stopping. If early.stop = TRUE, algo-
rithm will stop if the last tuning value less than the existing one. Default:
early.stop = FALSE.

6 abess.default

ic.scale A non-negative value used for multiplying the penalty term in information cri-
terion. Default: ic.scale = 1.

num.threads An integer decide the number of threads to be concurrently used for cross-
validation (i.e., tune.type = "cv"). If num.threads = 0, then all of available
cores will be used. Default: num.threads = 0.

seed Seed to be used to divide the sample into cross-validation folds. Default is seed
= 1.

... further arguments to be passed to or from methods.

formula an object of class "formula": a symbolic description of the model to be fit-
ted. The details of model specification are given in the "Details" section of
"formula".

data a data frame containing the variables in the formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

Details

Best-subset selection aims to find a small subset of predictors, so that the resulting model is expected
to have the most desirable prediction accuracy. Best-subset selection problem under the support size
s is

min
β
−2 logL(β) s.t. ‖β‖0 ≤ s,

where L(β) is arbitrary convex functions. In the GLM case, logL(β) is the log-likelihood function;
in the Cox model, logL(β) is the log partial-likelihood function. The best subset selection problem
is solved by the splicing algorithm in this package, see Zhu (2020) for details. Under mild condi-
tions, the algorithm exactly solve this problem in polynomial time. This algorithm exploits the idea
of sequencing and splicing to reach a stable solution in finite steps when s is fixed. The parameters
c.max, splicing.type and max.splicing.iter allow user control the splicing technique flexi-
bly. On the basis of our numerical experiment results, we assign properly parameters to the these
parameters as the default such that the precision and runtime are well balanced, we suggest users
keep the default values unchanged. Please see this online page for more details about the splicing
algorithm.

To find the optimal support size s, we provide various criterion like GIC, AIC, BIC and cross-
validation error to determine it. More specifically, the sequence of models implied by support.size
are fit by the splicing algorithm. And the solved model with least information criterion or cross-
validation error is the optimal model. The sequential searching for the optimal model is somehow
time-wasting. A faster strategy is golden section (GS), which only need to specify gs.range. More
details about GS is referred to Zhang et al (2021).

It is worthy to note that the parameters newton, max.newton.iter and newton.thresh allows
user control the parameter estimation in non-guassian models. The parameter estimation procedure
use Newton method or approximated Newton method (only consider the diagonal elements in the
Hessian matrix). Again, we suggest to use the default values unchanged because the same reason
for the parameter c.max.

abess support some well-known advanced statistical methods to analyze data, including

https://abess-team.github.io/abess/articles/v10-algorithm.html

abess.default 7

• sure independent screening: helpful for ultra-high dimensional predictors (i.e., p � n). Use
the parameter screening.num to retain the marginally most important predictors. See Fan et
al (2008) for more details.

• best subset of group selection: helpful when predictors have group structure. Use the parame-
ter group.index to specify the group structure of predictors. See Zhang et al (2021) for more
details.

• l2 regularization best subset selection: helpful when signal-to-ratio is relatively small. Use the
parameter lambda to control the magnitude of the regularization term.

• nuisance selection: helpful when the prior knowledge of important predictors is available. Use
the parameter always.include to retain the important predictors.

The arbitrary combination of the four methods are definitely support. Please see online vignettes
for more details about the advanced features support by abess.

Value

A S3 abess class object, which is a list with the following components:

beta A p-by-length(support.size) matrix of coefficients for univariate family,
stored in column format; while a list of length(support.size) coefficients
matrix (with size p-by-ncol(y)) for multivariate family.

intercept An intercept vector of length length(support.size) for univariate family;
while a list of length(support.size) intercept vector (with size ncol(y)) for
multivariate family.

dev the deviance of length length(support.size).

tune.value A value of tuning criterion of length length(support.size).

nobs The number of sample used for training.

nvars The number of variables used for training.

family Type of the model.

tune.path The path type for tuning parameters.

support.size The actual support.size values used. Note that it is not necessary the same as
the input if the later have non-integer values or duplicated values.

edf The effective degree of freedom. It is the same as support.size when lambda
= 0.

best.size The best support size selected by the tuning value.

tune.type The criterion type for tuning parameters.

tune.path The strategy for tuning parameters.

screening.vars The character vector specify the feature selected by feature screening. It would
be an empty character vector if screening.num = 0.

call The original call to abess.

Author(s)

Jin Zhu, Junxian Zhu, Canhong Wen, Heping Zhang, Xueqin Wang

https://abess-team.github.io/abess/articles/v07-advancedFeatures.html

8 abess.default

References

A polynomial algorithm for best-subset selection problem. Junxian Zhu, Canhong Wen, Jin Zhu,
Heping Zhang, Xueqin Wang. Proceedings of the National Academy of Sciences Dec 2020, 117
(52) 33117-33123; doi: 10.1073/pnas.2014241117

Certifiably Polynomial Algorithm for Best Group Subset Selection. Zhang, Yanhang, Junxian Zhu,
Jin Zhu, and Xueqin Wang (2021). arXiv preprint arXiv:2104.12576.

abess: A Fast Best Subset Selection Library in Python and R. Jin Zhu, Liyuan Hu, Junhao Huang,
Kangkang Jiang, Yanhang Zhang, Shiyun Lin, Junxian Zhu, Xueqin Wang (2021). arXiv preprint
arXiv:2110.09697.

Sure independence screening for ultrahigh dimensional feature space. Fan, J. and Lv, J. (2008),
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70: 849-911. doi: 10.1111/
j.14679868.2008.00674.x

Targeted Inference Involving High-Dimensional Data Using Nuisance Penalized Regression. Qiang
Sun & Heping Zhang (2020). Journal of the American Statistical Association, doi: 10.1080/01621459.2020.1737079

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

Examples

library(abess)
n <- 100
p <- 20
support.size <- 3

################ linear model ################
dataset <- generate.data(n, p, support.size)
abess_fit <- abess(dataset[["x"]], dataset[["y"]])
helpful generic functions:
print(abess_fit)
coef(abess_fit, support.size = 3)
predict(abess_fit,

newx = dataset[["x"]][1:10,],
support.size = c(3, 4)

)
str(extract(abess_fit, 3))
deviance(abess_fit)
plot(abess_fit)
plot(abess_fit, type = "tune")

################ logistic model ################
dataset <- generate.data(n, p, support.size, family = "binomial")
allow cross-validation to tuning
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "binomial", tune.type = "cv"
)
abess_fit

https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1080/01621459.2020.1737079

abess.default 9

################ poisson model ################
dataset <- generate.data(n, p, support.size, family = "poisson")
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "poisson", tune.type = "cv"
)
abess_fit

################ Cox model ################
dataset <- generate.data(n, p, support.size, family = "cox")
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "cox", tune.type = "cv"
)

################ Multivariate gaussian model ################
dataset <- generate.data(n, p, support.size, family = "mgaussian")
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "mgaussian", tune.type = "cv"
)
plot(abess_fit, type = "l2norm")

################ Multinomial model (multi-classification) ################
dataset <- generate.data(n, p, support.size, family = "multinomial")
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "multinomial", tune.type = "cv"
)
predict(abess_fit,

newx = dataset[["x"]][1:10,],
support.size = c(3, 4), type = "response"

)

################ Ordinal regression ################
dataset <- generate.data(n, p, support.size, family = "ordinal", class.num = 4)
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

family = "ordinal", tune.type = "cv"
)
coef <- coef(abess_fit, support.size = abess_fit[["best.size"]])[[1]]
predict(abess_fit,

newx = dataset[["x"]][1:10,],
support.size = c(3, 4), type = "response"

)

########## Best group subset selection #############
dataset <- generate.data(n, p, support.size)
group_index <- rep(1:10, each = 2)
abess_fit <- abess(dataset[["x"]], dataset[["y"]], group.index = group_index)
str(extract(abess_fit))

################ Golden section searching ################
dataset <- generate.data(n, p, support.size)
abess_fit <- abess(dataset[["x"]], dataset[["y"]], tune.path = "gsection")
abess_fit

10 abesspca

################ Feature screening ################
p <- 1000
dataset <- generate.data(n, p, support.size)
abess_fit <- abess(dataset[["x"]], dataset[["y"]],

screening.num = 100
)
str(extract(abess_fit))

################ Sparse predictor ################
require(Matrix)
p <- 1000
dataset <- generate.data(n, p, support.size)
dataset[["x"]][abs(dataset[["x"]]) < 1] <- 0
dataset[["x"]] <- Matrix(dataset[["x"]])
abess_fit <- abess(dataset[["x"]], dataset[["y"]])
str(extract(abess_fit))

################ Formula interface ################
data("trim32")
abess_fit <- abess(y ~ ., data = trim32)
abess_fit

abesspca Adaptive best subset selection for principal component analysis

Description

Adaptive best subset selection for principal component analysis

Usage

abesspca(
x,
type = c("predictor", "gram"),
sparse.type = c("fpc", "kpc"),
cor = FALSE,
kpc.num = NULL,
support.size = NULL,
gs.range = NULL,
tune.path = c("sequence", "gsection"),
tune.type = c("gic", "aic", "bic", "ebic", "cv"),
nfolds = 5,
foldid = NULL,
ic.scale = 1,
c.max = NULL,
always.include = NULL,
group.index = NULL,

abesspca 11

screening.num = NULL,
splicing.type = 1,
max.splicing.iter = 20,
warm.start = TRUE,
num.threads = 0,
...

)

Arguments

x A matrix object. It can be either a predictor matrix where each row is an obser-
vation and each column is a predictor or a sample covariance/correlation matrix.
If x is a predictor matrix, it can be in sparse matrix format (inherit from class
"dgCMatrix" in package Matrix).

type If type = "predictor", x is considered as the predictor matrix. If type = "gram",
x is considered as a sample covariance or correlation matrix.

sparse.type If sparse.type = "fpc", then best subset selection performs on the first prin-
cipal component; If sparse.type = "kpc", then best subset selection would
be sequentially performed on the first kpc.num number of principal compo-
nents. If kpc.num is supplied, the default is sparse.type = "kpc"; otherwise,
is sparse.type = "fpc".

cor A logical value. If cor = TRUE, perform PCA on the correlation matrix; other-
wise, the covariance matrix. This option is available only if type = "predictor".
Default: cor = FALSE.

kpc.num A integer decide the number of principal components to be sequentially consid-
ered.

support.size It is a flexible input. If it is an integer vector. It represents the support sizes to
be considered for each principal component. If it is a list object containing
kpc.num number of integer vectors, the i-th principal component consider the
support size specified in the i-th element in the list. Only used for tune.path
= "sequence". The default is support.size = NULL, and some rules in details
section are used to specify support.size.

gs.range A integer vector with two elements. The first element is the minimum model
size considered by golden-section, the later one is the maximum one. Default is
gs.range = c(1,min(n,round(n/(log(log(n))log(p))))).

tune.path The method to be used to select the optimal support size. For tune.path =
"sequence", we solve the best subset selection problem for each size in support.size.
For tune.path = "gsection", we solve the best subset selection problem with
support size ranged in gs.range, where the specific support size to be consid-
ered is determined by golden section.

tune.type The type of criterion for choosing the support size. Available options are "gic",
"ebic", "bic", "aic" and "cv". Default is "gic". tune.type = "cv" is avail-
able only when type = "predictor".

nfolds The number of folds in cross-validation. Default is nfolds = 5.
foldid an optional integer vector of values between 1, ..., nfolds identifying what fold

each observation is in. The default foldid = NULL would generate a random
foldid.

12 abesspca

ic.scale A non-negative value used for multiplying the penalty term in information cri-
terion. Default: ic.scale = 1.

c.max an integer splicing size. The default of c.max is the maximum of 2 and max(support.size)
/ 2.

always.include An integer vector containing the indexes of variables that should always be in-
cluded in the model.

group.index A vector of integers indicating the which group each variable is in. For variables
in the same group, they should be located in adjacent columns of x and their
corresponding index in group.index should be the same. Denote the first group
as 1, the second 2, etc. If you do not fit a model with a group structure, please
set group.index = NULL (the default).

screening.num An integer number. Preserve screening.num number of predictors with the
largest marginal maximum likelihood estimator before running algorithm.

splicing.type Optional type for splicing. If splicing.type = 1, the number of variables to
be spliced is c.max, ..., 1; if splicing.type = 2, the number of variables to be
spliced is c.max, c.max/2, ..., 1. Default: splicing.type = 1.

max.splicing.iter

The maximum number of performing splicing algorithm. In most of the case,
only a few times of splicing iteration can guarantee the convergence. Default is
max.splicing.iter = 20.

warm.start Whether to use the last solution as a warm start. Default is warm.start = TRUE.
num.threads An integer decide the number of threads to be concurrently used for cross-

validation (i.e., tune.type = "cv"). If num.threads = 0, then all of available
cores will be used. Default: num.threads = 0.

... further arguments to be passed to or from methods.

Details

Adaptive best subset selection for principal component analysis (abessPCA) aim to solve the non-
convex optimization problem:

− arg min
v
v>Σv, s.t. v>v = 1, ‖v‖0 ≤ s,

where s is support size. Here, Σ is covariance matrix, i.e.,

Σ =
1

n
X>X.

A generic splicing technique is implemented to solve this problem. By exploiting the warm-
start initialization, the non-convex optimization problem at different support size (specified by
support.size) can be efficiently solved.

The abessPCA can be conduct sequentially for each component. Please see the multiple principal
components Section on the website for more details about this function. For abesspca function,
the arguments kpc.num control the number of components to be consider.

When sparse.type = "fpc" but support.size is not supplied, it is set as support.size = 1:min(ncol(x),100)
if group.index = NULL; otherwise, support.size = 1:min(length(unique(group.index)),100).
When sparse.type = "kpc" but support.size is not supplied, then for 20\ it is set as min(ncol(x),100)
if group.index = NULL; otherwise, min(length(unique(group.index)),100).

https://abess-team.github.io/abess/articles/v08-sPCA.html

abesspca 13

Value

A S3 abesspca class object, which is a list with the following components:

coef A p-by-length(support.size) loading matrix of sparse principal components
(PC), where each row is a variable and each column is a support size;

nvars The number of variables.

sparse.type The same as input.

support.size The actual support.size values used. Note that it is not necessary the same as the
input if the later have non-integer values or duplicated values.

ev A vector with size length(support.size). It records the cumulative sums of
explained variance at each support size.

tune.value A value of tuning criterion of length length(support.size).

kpc.num The number of principal component being considered.

var.pc The variance of principal components obtained by performing standard PCA.

cum.var.pc Cumulative sums of var.pc.

var.all If sparse.type = "fpc", it is the total standard deviations of all principal com-
ponents.

pev A vector with the same length as ev. It records the percent of explained variance
(compared to var.all) at each support size.

pev.pc It records the percent of explained variance (compared to var.pc) at each sup-
port size.

tune.type The criterion type for tuning parameters.

tune.path The strategy for tuning parameters.

call The original call to abess.

It is worthy to note that, if sparse.type == "kpc", the coef, support.size, ev, tune.value, pev
and pev.pc in list are list objects.

Note

Some parameters not described in the Details Section is explained in the document for abess be-
cause the meaning of these parameters are very similar.

Author(s)

Jin Zhu, Junxian Zhu, Ruihuang Liu, Junhao Huang, Xueqin Wang

References

A polynomial algorithm for best-subset selection problem. Junxian Zhu, Canhong Wen, Jin Zhu,
Heping Zhang, Xueqin Wang. Proceedings of the National Academy of Sciences Dec 2020, 117
(52) 33117-33123; doi: 10.1073/pnas.2014241117

Sparse principal component analysis. Hui Zou, Hastie Trevor, and Tibshirani Robert. Journal of
computational and graphical statistics 15.2 (2006): 265-286. doi: 10.1198/106186006X113430

https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1198/106186006X113430

14 abessrpca

See Also

print.abesspca, coef.abesspca, plot.abesspca.

Examples

library(abess)

predictor matrix input:
head(USArrests)
pca_fit <- abesspca(USArrests)
pca_fit
plot(pca_fit)

covariance matrix input:
cov_mat <- stats::cov(USArrests) * (nrow(USArrests) - 1) / nrow(USArrests)
pca_fit <- abesspca(cov_mat, type = "gram")
pca_fit

robust covariance matrix input:
rob_cov <- MASS::cov.rob(USArrests)[["cov"]]
rob_cov <- (rob_cov + t(rob_cov)) / 2
pca_fit <- abesspca(rob_cov, type = "gram")
pca_fit

K-component principal component analysis
pca_fit <- abesspca(USArrests,

sparse.type = "kpc",
support.size = 1:4

)
coef(pca_fit)
plot(pca_fit)
plot(pca_fit, "coef")

select support size via cross-validation
n <- 500
p <- 50
support_size <- 3
dataset <- generate.spc.matrix(n, p, support_size, snr = 20)
spca_fit <- abesspca(dataset[["x"]], tune.type = "cv", nfolds = 5)
plot(spca_fit, type = "tune")

abessrpca Adaptive best subset selection for robust principal component analysis

Description

Decompose a matrix into the summation of low-rank matrix and sparse matrix via the best subset
selection approach

abessrpca 15

Usage

abessrpca(
x,
rank,
support.size = NULL,
tune.path = c("sequence", "gsection"),
gs.range = NULL,
tune.type = c("gic", "aic", "bic", "ebic"),
ic.scale = 1,
lambda = 0,
always.include = NULL,
group.index = NULL,
c.max = NULL,
splicing.type = 2,
max.splicing.iter = 1,
warm.start = TRUE,
important.search = NULL,
max.newton.iter = 1,
newton.thresh = 0.001,
num.threads = 0,
seed = 1,
...

)

Arguments

x A matrix object.

rank A positive integer value specify the rank of the low-rank matrix.

support.size An integer vector representing the alternative support sizes. Only used for
tune.path = "sequence". Strongly suggest its minimum value larger than min(dim(x)).

tune.path The method to be used to select the optimal support size. For tune.path =
"sequence", we solve the best subset selection problem for each size in support.size.
For tune.path = "gsection", we solve the best subset selection problem with
support size ranged in gs.range, where the specific support size to be consid-
ered is determined by golden section.

gs.range A integer vector with two elements. The first element is the minimum model
size considered by golden-section, the later one is the maximum one. Default is
gs.range = c(1,min(n,round(n/(log(log(n))log(p))))).

tune.type The type of criterion for choosing the support size. Available options are "gic",
"ebic", "bic" and "aic". Default is "gic".

ic.scale A non-negative value used for multiplying the penalty term in information cri-
terion. Default: ic.scale = 1.

lambda A single lambda value for regularized best subset selection. Default is 0.

always.include An integer vector containing the indexes of variables that should always be in-
cluded in the model.

16 abessrpca

group.index A vector of integers indicating the which group each variable is in. For variables
in the same group, they should be located in adjacent columns of x and their
corresponding index in group.index should be the same. Denote the first group
as 1, the second 2, etc. If you do not fit a model with a group structure, please
set group.index = NULL (the default).

c.max an integer splicing size. Default is: c.max = 2.

splicing.type Optional type for splicing. If splicing.type = 1, the number of variables to
be spliced is c.max, ..., 1; if splicing.type = 2, the number of variables to be
spliced is c.max, c.max/2, ..., 1. (Default: splicing.type = 2.)

max.splicing.iter

The maximum number of performing splicing algorithm. In most of the case,
only a few times of splicing iteration can guarantee the convergence. Default is
max.splicing.iter = 20.

warm.start Whether to use the last solution as a warm start. Default is warm.start = TRUE.
important.search

An integer number indicating the number of important variables to be splicing.
When important.search� p variables, it would greatly reduce runtimes. De-
fault: important.search = 128.

max.newton.iter

a integer giving the maximal number of Newton’s iteration iterations. Default
is max.newton.iter = 10 if newton = "exact", and max.newton.iter = 60 if
newton = "approx".

newton.thresh a numeric value for controlling positive convergence tolerance. The Newton’s
iterations converge when |dev − devold|/(|dev|+ 0.1) < newton.thresh.

num.threads An integer decide the number of threads to be concurrently used for cross-
validation (i.e., tune.type = "cv"). If num.threads = 0, then all of available
cores will be used. Default: num.threads = 0.

seed Seed to be used to divide the sample into cross-validation folds. Default is seed
= 1.

... further arguments to be passed to or from methods.

Details

Adaptive best subset selection for robust principal component analysis aim to find two latent matri-
ces L and S such that the original matrix X can be appropriately approximated:

x = L+ S +N,

where L is a low-rank matrix, S is a sparse matrix, N is a dense noise matrix. Generic splicing
technique can be employed to solve this problem by iteratively improve the quality of the estimation
of S.

For a given support set Ω, the optimization problem:

min
S
‖x− L− S‖2F s.t. Sij = 0for(i, j) ∈ Ωc,

still a non-convex optimization problem. We use the hard-impute algorithm proposed in one of
the reference to solve this problem. The hard-impute algorithm is an iterative algorithm, people

abessrpca 17

can set max.newton.iter and newton.thresh to control the solution precision of the optimization
problem. (Here, the name of the two parameters are somehow abused to make the parameters cross
functions have an unified name.) According to our experiments, we assign properly parameters to
the two parameter as the default such that the precision and runtime are well balanced, we suggest
users keep the default values unchanged.

Value

A S3 abessrpca class object, which is a list with the following components:

S A list with length(support.size) elements, each of which is a sparse matrix
estimation;

L The low rank matrix estimation.

nobs The number of sample used for training.

nvars The number of variables used for training.

rank The rank of matrix L.

loss The loss of objective function.

tune.value A value of tuning criterion of length length(support.size).

support.size The actual support.size values used. Note that it is not necessary the same as the
input if the later have non-integer values or duplicated values.

tune.type The criterion type for tuning parameters.

call The original call to abessrpca.

Note

Some parameters not described in the Details Section is explained in the document for abess be-
cause the meaning of these parameters are very similar.

At present, l2 regularization and group selection are not support, and thus, set lambda and group.index
have no influence on the output. This feature will coming soon.

References

A polynomial algorithm for best-subset selection problem. Junxian Zhu, Canhong Wen, Jin Zhu,
Heping Zhang, Xueqin Wang. Proceedings of the National Academy of Sciences Dec 2020, 117
(52) 33117-33123; doi: 10.1073/pnas.2014241117

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. 2011. Robust principal compo-
nent analysis? Journal of the ACM. 58, 3, Article 11 (May 2011), 37 pages. doi: 10.1145/
1970392.1970395

Mazumder, Rahul, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
learning large incomplete matrices. The Journal of Machine Learning Research 11 (2010): 2287-
2322.

https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1145/1970392.1970395

18 coef.abess

Examples

library(abess)
n <- 30
p <- 30
true_S_size <- 60
true_L_rank <- 2
dataset <- generate.matrix(n, p, support.size = true_S_size, rank = true_L_rank)
res <- abessrpca(dataset[["x"]], rank = true_L_rank, support.size = 50:70)
print(res)
coef(res)
plot(res, type = "tune")
plot(res, type = "loss")
plot(res, type = "S")

coef.abess Extract Model Coefficients from a fitted "abess" object.

Description

This function provides estimated coefficients from a fitted "abess" object.

Usage

S3 method for class 'abess'
coef(object, support.size = NULL, sparse = TRUE, ...)

Arguments

object An "abess" project.

support.size An integer vector specifies the coefficient fitted at given support.size. If
support.size = NULL, then all coefficients would be returned. Default: support.size
= NULL.

sparse A logical value, specifying whether the coefficients should be presented as sparse
matrix or not. Default: sparse = TRUE.

... Other arguments.

Value

A coefficient matrix when fitting an univariate model including gaussian, binomial, poisson, and
cox; otherwise, a list containing coefficient matrices. For a coefficient matrix, each row is a variable,
and each column is a support size.

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

coef.abesspca 19

coef.abesspca Extract Sparse Loadings from a fitted "abesspca" object.

Description

This function provides estimated coefficients from a fitted "abesspca" object.

Usage

S3 method for class 'abesspca'
coef(object, support.size = NULL, kpc = NULL, sparse = TRUE, ...)

Arguments

object An "abesspca" project.

support.size An integer vector specifies the coefficient fitted at given support.size. If
support.size = NULL, then all coefficients would be returned. Default: support.size
= NULL. This parameter is omitted if sparse.type = "kpc".

kpc An integer vector specifies the coefficient fitted at given principal component. If
kpc = NULL, then all coefficients would be returned. Default: kpc = NULL. This
parameter is omitted if sparse.type = "fpc".

sparse A logical value, specifying whether the coefficients should be presented as sparse
matrix or not. Default: sparse = TRUE.

... Other arguments.

Value

A matrix with length(support.size) columns. Each column corresponds to a sparse loading for
the first principal component, where the number of non-zeros entries depends on the support.size.

See Also

print.abesspca, coef.abesspca, plot.abesspca.

coef.abessrpca Extract sparse component from a fitted "abessrpca" object.

Description

This function provides estimated coefficients from a fitted "abessrpca" object.

Usage

S3 method for class 'abessrpca'
coef(object, support.size = NULL, sparse = TRUE, ...)

20 deviance.abess

Arguments

object An "abessrpca" project.

support.size An integer vector specifies the sparse matrix fitted at given support.size to be
returned. If support.size = NULL, then the sparse matrix with the least tuning
value would be returned. Default: support.size = NULL.

sparse A logical value, specifying whether the coefficients should be presented as sparse
matrix or not. Default: sparse = TRUE.

... Other arguments.

Value

A list with length(support.size) number of dgCMatrix, each of which is the estimation the
sparse component.

deviance.abess Extract the deviance from a fitted "abess" object.

Description

Similar to other deviance methods, which returns deviance from a fitted "abess" object.

Usage

S3 method for class 'abess'
deviance(object, type = c("standard", "gic", "ebic", "bic", "aic"), ...)

Arguments

object A "abess" object.

type The type of deviance. One of the following: "standard", "gic", "ebic",
"bic" and "aic". Default is "standard".

... additional arguments

Value

A numeric vector.

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

extract 21

extract Extract one model from a fitted "abess" object.

Description

Extract the fixed-support-size model’s information such as the selected predictors, coefficient esti-
mation, and so on.

Usage

extract(object, support.size = NULL, ...)

S3 method for class 'abess'
extract(object, support.size = NULL, ...)

Arguments

object An "abess" project.

support.size An integer value specifies the model size fitted at given support.size. If
support.size = NULL, then the model with the best tuning value would be re-
turned. Default: support.size = NULL.

... Other arguments.

Value

A list object including the following components:

beta A p-by-1 matrix of sparse matrix, stored in column format.

intercept The fitted intercept value.

support.size The support.size used in the function.

support.beta The support.size-length vector of fitted coefficients on the support set.

support.vars The character vector gives variables in the support set.

tune.value The tuning value of the model.

dev The deviance of the model.

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

22 generate.data

generate.data Generate simulated data

Description

Generate simulated data under the generalized linear model and Cox proportional hazard model.

Usage

generate.data(
n,
p,
support.size = NULL,
rho = 0,
family = c("gaussian", "binomial", "poisson", "cox", "mgaussian", "multinomial",

"gamma", "ordinal"),
beta = NULL,
cortype = 1,
snr = 10,
sigma = NULL,
weibull.shape = 1,
uniform.max = 1,
y.dim = 3,
class.num = 3,
seed = 1

)

Arguments

n The number of observations.

p The number of predictors of interest.

support.size The number of nonzero coefficients in the underlying regression model. Can be
omitted if beta is supplied.

rho A parameter used to characterize the pairwise correlation in predictors. Default
is 0.

family The distribution of the simulated response. "gaussian" for univariate quantita-
tive response, "binomial" for binary classification response, "poisson" for
counting response, "cox" for left-censored response, "mgaussian" for mul-
tivariate quantitative response, "mgaussian" for multi-classification response,
"ordinal" for ordinal response.

beta The coefficient values in the underlying regression model. If it is supplied,
support.size would be omitted.

cortype The correlation structure. cortype = 1 denotes the independence structure, where
the covariance matrix has (i, j) entry equals I(i 6= j). cortype = 2 denotes
the exponential structure, where the covariance matrix has (i, j) entry equals

generate.data 23

rho|i−j|. codecortype = 3 denotes the constant structure, where the non-diagonal
entries of covariance matrix are rho and diagonal entries are 1.

snr A numerical value controlling the signal-to-noise ratio (SNR). The SNR is de-
fined as as the variance of xβ divided by the variance of a gaussian noise:
V ar(xβ)

σ2 . The gaussian noise ε is set with mean 0 and variance. The noise is
added to the linear predictor η = xβ. Default is snr = 10. Note that this argu-
ments’s effect is overridden if sigma is supplied with a non-null value.

sigma The variance of the gaussian noise. Default sigma = NULL implies it is deter-
mined by snr.

weibull.shape The shape parameter of the Weibull distribution. It works only when family =
"cox". Default: weibull.shape = 1.

uniform.max A parameter controlling censored rate. A large value implies a small censored
rate; otherwise, a large censored rate. It works only when family = "cox".
Default is uniform.max = 1.

y.dim Response’s Dimension. It works only when family = "mgaussian". Default:
y.dim = 3.

class.num The number of class. It works only when family = "multinomial". Default:
class.num = 3.

seed random seed. Default: seed = 1.

Details

For family = "gaussian", the data model is

Y = Xβ + ε.

The underlying regression coefficient β has uniform distribution [m, 100m] andm = 5
√

2log(p)/n.

For family= "binomial", the data model is

Prob(Y = 1) = exp(Xβ + ε)/(1 + exp(Xβ + ε)).

The underlying regression coefficient β has uniform distribution [2m, 10m] andm = 5
√

2log(p)/n.

For family = "poisson", the data is modeled to have an exponential distribution:

Y = Exp(exp(Xβ + ε)).

The underlying regression coefficient β has uniform distribution [2m, 10m] andm =
√

2log(p)/n/3.

For family = "gamma", the data is modeled to have a gamma distribution:

Y = Gamma(Xβ + ε+ 10, shape),

where shape is shape parameter in a gamma distribution. The underlying regression coefficient β
has uniform distribution [2m, 100m] and m =

√
2log(p)/n.

For family = "ordinal", the data is modeled to have an ordinal distribution.

For family = "cox", the model for failure time T is

T = (− log(U/ exp(Xβ)))1/weibull.shape,

24 generate.data

where U is a uniform random variable with range [0, 1]. The centering time C is generated from
uniform distribution [0, uniform.max], then we define the censor status as δ = I(T ≤ C) and
observed time asR = min{T,C}. The underlying regression coefficient β has uniform distribution
[2m, 10m], where m = 5

√
2log(p)/n.

For family = "mgaussian", the data model is

Y = Xβ + E.

The non-zero values of regression matrix β are sampled from uniform distribution [m, 100m] and
m = 5

√
2log(p)/n.

For family= "multinomial", the data model is

Prob(Y = 1) = exp(Xβ + E)/(1 + exp(Xβ + E)).

The non-zero values of regression coefficient β has uniform distribution [2m, 10m] and m =
5
√

2log(p)/n.

In the above models, ε ∼ N(0, σ2) and E ∼MVN(0, σ2 × Iq×q), where σ2 is determined by the
snr and q is y.dim.

Value

A list object comprising:

x Design matrix of predictors.

y Response variable.

beta The coefficients used in the underlying regression model.

Author(s)

Jin Zhu

Examples

Generate simulated data
n <- 200
p <- 20
support.size <- 5
dataset <- generate.data(n, p, support.size)
str(dataset)

generate.matrix 25

generate.matrix Generate matrix composed of a sparse matrix and low-rank matrix

Description

Generate simulated matrix that is the superposition of a low-rank component and a sparse compo-
nent.

Usage

generate.matrix(
n,
p,
rank = NULL,
support.size = NULL,
beta = NULL,
snr = Inf,
sigma = NULL,
seed = 1

)

Arguments

n The number of observations.

p The number of predictors of interest.

rank The rank of low-rank matrix.

support.size The number of nonzero coefficients in the underlying regression model. Can be
omitted if beta is supplied.

beta The coefficient values in the underlying regression model. If it is supplied,
support.size would be omitted.

snr A positive value controlling the signal-to-noise ratio (SNR). A larger SNR im-
plies the identification of sparse matrix is much easier. Default snr = Inf en-
forces no noise exists.

sigma A numerical value supplied the variance of the gaussian noise. Default sigma =
NULL implies it is determined by snr.

seed random seed. Default: seed = 1.

Details

The low rank matrix L is generated by L = UV , where U is an n-by-rank matrix and V is a
rank-by-p matrix. Each element in U (or V) are i.i.d. drawn from N(0, 1/n).

The sparse matrix S is an n-by-rank matrix. It is generated by choosing a support set of size
support.size uniformly at random. The non-zero entries in S are independent Bernoulli (-1, +1)
entries.

26 generate.spc.matrix

The noise matrix N is an n-by-rank matrix, the elements in N are i.i.d. gaussian random variable
with standard deviation σ.

The SNR is defined as as the variance of vectorized matrix L+ S divided by σ2.

The matrix x is the superposition of L, S, N :

x = L+ S +N.

Value

A list object comprising:

x An n-by-p matrix.

L The latent low rank matrix.

S The latent sparse matrix.

Author(s)

Jin Zhu

Examples

Generate simulated data
n <- 30
p <- 20
dataset <- generate.matrix(n, p)

stats::heatmap(as.matrix(dataset[["S"]]),
Rowv = NA,
Colv = NA,
scale = "none",
col = grDevices::cm.colors(256),
frame.plot = TRUE,
margins = c(2.4, 2.4)

)

generate.spc.matrix Generate matrix with sparse principal component

Description

Generate simulated matrix that its principal component are sparse linear combination of its columns.

generate.spc.matrix 27

Usage

generate.spc.matrix(
n,
p,
support.size = 3,
snr = 20,
sigma = NULL,
sparse.loading = NULL,
seed = 1

)

Arguments

n The number of observations.

p The number of predictors of interest.

support.size A integer specify the number of non-zero entries in the first column of loading
matrix.

snr A positive value controlling the signal-to-noise ratio (SNR). A larger SNR im-
plies the identification of sparse matrix is much easier. Default snr = Inf en-
forces no noise exists.

sigma A numerical vector with length p specify the standard deviation of each columns.
Default sigma = NULL implies it is determined by snr. If it is supplied, support.size
would be omit.

sparse.loading A p-by-p sparse orthogonal matrix. If it is supplied, support.size would be
omit.

seed random seed. Default: seed = 1.

Details

The methods for generating the matrix is detailedly described in the APPENDIX A: Data generation
Section in Schipper et al (2021).

Value

A list object comprising:

x An n-by-p matrix.

coef The sparse loading matrix used to generate x.

support.size A vector recording the number of non-zero entries in each .

References

Model selection techniques for sparse weight-based principal component analysis. de Schipper,
Niek C and Van Deun, Katrijn. Journal of Chemometrics. 2021. doi: 10.1002/cem.3289.

https://doi.org/10.1002/cem.3289

28 plot.abess

plot.abess Creat plot from a fitted "abess" object

Description

Produces a coefficient/deviance/tuning-value plot for a fitted "abess" object.

Usage

S3 method for class 'abess'
plot(
x,
type = c("coef", "l2norm", "dev", "dev.ratio", "tune"),
label = FALSE,
...

)

Arguments

x A "abess" object.
type The type of terms to be plot in the y-axis. One of the following: "coef" (i.e.,

coefficients), "l2norm" (i.e., L2-norm of coefficients), "dev" (i.e., deviance),
and "tune" (i.e., tuning value). Default is "coef".

label A logical value. If label = TRUE (the default), label the curves with variable
sequence numbers.

... Other graphical parameters to plot

Value

No return value, called for side effects.

Note

If family = "mgaussian", family = "ordinal" or family = "multinomial", a coefficient plot is
produced for each dimension of multivariate response.

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

Examples

dataset <- generate.data(100, 20, 3)
abess_fit <- abess(dataset[["x"]], dataset[["y"]])
plot(abess_fit)
plot(abess_fit, type = "l2norm")
plot(abess_fit, type = "dev")
plot(abess_fit, type = "tune")

plot.abesspca 29

plot.abesspca Creat plot from a fitted "abess" object

Description

Produces a coefficient/deviance/tuning-value plot for a fitted "abess" object.

Usage

S3 method for class 'abesspca'
plot(x, type = c("pev", "coef", "tune"), label = FALSE, ...)

Arguments

x A "abess" object.

type The type of terms to be plot in the y-axis. One of the following: "pev" (i.e., per-
cent of explained variance), "coef" (i.e., coefficients), and "tune" (i.e., tuning
value). Default is "coef".

label A logical value. If label = TRUE (the default), label the curves with variable
sequence numbers.

... Other graphical parameters to plot

Value

No return value, called for side effects.

Note

If family = "mgaussian" or family = "multinomial", a coefficient plot is produced for each di-
mension of multivariate response.

See Also

print.abesspca, coef.abesspca, plot.abesspca.

Examples

abess_fit <- abesspca(USArrests, support.size = 1:4, sparse.type = "kpc")
plot(abess_fit)
plot(abess_fit, type = "coef")
plot(abess_fit, type = "tune")

30 predict.abess

plot.abessrpca Creat plot from a fitted "abessrpca" object

Description

Produces a sparse-matrix/loss/tuning-value plot for a fitted "abessrpca" object.

Usage

S3 method for class 'abessrpca'
plot(x, type = c("S", "loss", "tune"), support.size = NULL, label = TRUE, ...)

Arguments

x A "abessrpca" object.

type The plot type. One of the following: "S" (i.e., a heatmap for the sparse matrix
estimation), "loss" (i.e., a support.size versus loss plot), and "tune" (i.e., , a
support.size versus tuning value plot). Default is "coef".

support.size An integer vector specifies the sparse matrix fitted at given support.size to be
returned. If support.size = NULL, then the sparse matrix with the least tuning
value would be returned. Default: support.size = NULL.

label A logical value. If label = TRUE (the default), label the curves with variable
sequence numbers.

... Other graphical parameters to plot or stats::heatmap function

Value

No return value, called for side effects.

predict.abess Make predictions from a fitted "abess" object.

Description

Make predictions from a fitted "abess" object.

Usage

S3 method for class 'abess'
predict(object, newx, type = c("link", "response"), support.size = NULL, ...)

print.abess 31

Arguments

object An "abess" project.

newx New data used for prediction. If omitted, the fitted linear predictors are used.

type type = "link" gives the linear predictors for "binomial", "poisson" or "cox"
models; for "gaussian" models it gives the fitted values. type = "response"
gives the fitted probabilities for "binomial" and "ordinal", fitted mean for
"poisson" and the fitted relative-risk for "cox"; for "gaussian", type = "response"
is equivalent to type = "link".

support.size An integer value specifies the model size fitted at given support.size. If
support.size = NULL, then the model with the best tuning value would be re-
turned. Default: support.size = NULL.

... Additional arguments affecting the predictions produced.

Value

The object returned depends on the types of family.

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

print.abess Print method for a fitted "abess" object

Description

Prints the fitted model and returns it invisibly.

Usage

S3 method for class 'abess'
print(x, digits = max(5, getOption("digits") - 5), ...)

Arguments

x A "abess" object.

digits Minimum number of significant digits to be used.

... additional print arguments

Details

Print a data.frame with three columns: the first column is support size of model; the second
column is deviance of model; the last column is the tuning value of the certain tuning type.

32 print.abesspca

Value

No return value, called for side effects

See Also

print.abess, predict.abess, coef.abess, extract.abess, plot.abess, deviance.abess.

print.abesspca Print method for a fitted "abesspca" object

Description

Prints the fitted model and returns it invisibly.

Usage

S3 method for class 'abesspca'
print(x, digits = max(5, getOption("digits") - 5), ...)

Arguments

x A "abesspca" object.

digits Minimum number of significant digits to be used.

... additional print arguments

Details

Print a data.frame with three columns: the first column is support size of model; the second
column is the explained variance of model; the last column is the percent of explained variance of
model.

Value

No return value, called for side effects

See Also

print.abesspca, coef.abesspca, plot.abesspca.

print.abessrpca 33

print.abessrpca Print method for a fitted "abessrpca" object

Description

Prints the fitted model and returns it invisibly.

Usage

S3 method for class 'abessrpca'
print(x, digits = max(5, getOption("digits") - 5), ...)

Arguments

x A "abessrpca" object.

digits Minimum number of significant digits to be used.

... additional print arguments

Details

Print a data.frame with three columns: the first column is support size of model; the second
column is the explained variance of model; the last column is the percent of explained variance of
model.

Value

No return value, called for side effects

trim32 The Bardet-Biedl syndrome Gene expression data

Description

Gene expression data (500 gene probes for 120 samples) from the microarray experiments of mam-
malianeye tissue samples of Scheetz et al. (2006).

Format

A data frame with 120 rows and 501 variables, where the first variable is the expression level of
TRIM32 gene, and the remaining 500 variables are 500 gene probes.

34 trim32

Details

In this study, laboratory rats (Rattus norvegicus) were studied to learn about gene expression and
regulation in the mammalian eye. Inbred rat strains were crossed and tissue extracted from the eyes
of 120 animals from the F2 generation. Microarrays were used to measure levels of RNA expression
in the isolated eye tissues of each subject. Of the 31,000 different probes, 18,976 were detected at a
sufficient level to be considered expressed in the mammalian eye. For the purposes of this analysis,
we treat one of those genes, Trim32, as the outcome. Trim32 is known to be linked with a genetic
disorder called Bardet-Biedl Syndrome (BBS): the mutation (P130S) in Trim32 gives rise to BBS.

Note

This data set contains 120 samples with 500 predictors. The 500 predictors are features with maxi-
mum marginal correlation to Trim32 gene.

References

T. Scheetz, k. Kim, R. Swiderski, A. Philp, T. Braun, K. Knudtson, A. Dorrance, G. DiBona, J.
Huang, T. Casavant, V. Sheffield, E. Stone. Regulation of gene expression in the mammalian eye
and its relevance to eye disease. Proceedings of the National Academy of Sciences of the United
States of America, 2006.

Index

abess, 13, 17
abess (abess.default), 3
abess.default, 3
abesspca, 10
abessrpca, 14

coef.abess, 8, 18, 18, 20, 21, 28, 31, 32
coef.abesspca, 14, 19, 19, 29, 32
coef.abessrpca, 19

deviance.abess, 8, 18, 20, 20, 21, 28, 31, 32

extract, 21
extract.abess, 8, 18, 20, 21, 28, 31, 32

formula, 6

generate.data, 22
generate.matrix, 25
generate.spc.matrix, 26

plot.abess, 8, 18, 20, 21, 28, 28, 31, 32
plot.abesspca, 14, 19, 29, 29, 32
plot.abessrpca, 30
predict.abess, 8, 18, 20, 21, 28, 30, 31, 32
print.abess, 8, 18, 20, 21, 28, 31, 31, 32
print.abesspca, 14, 19, 29, 32, 32
print.abessrpca, 33

trim32, 33

35

	abess.default
	abesspca
	abessrpca
	coef.abess
	coef.abesspca
	coef.abessrpca
	deviance.abess
	extract
	generate.data
	generate.matrix
	generate.spc.matrix
	plot.abess
	plot.abesspca
	plot.abessrpca
	predict.abess
	print.abess
	print.abesspca
	print.abessrpca
	trim32
	Index

