# Package 'abundant' 

January 4, 2022
Type Package
Title High-Dimensional Principal Fitted Components and Abundant Regression
Version 1.2
Date 2022-01-04
Author Adam J. Rothman
Maintainer Adam J. Rothman [arothman@umn.edu](mailto:arothman@umn.edu)
Depends R (>=2.10), glasso
Description Fit and predict with the high-dimensional principal fitted components model. This model is described by Cook, Forzani, and Rothman (2012) [doi:10.1214/11-AOS962](doi:10.1214/11-AOS962).
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-04 15:30:19 UTC

## $R$ topics documented:

abundant-package ..... 1
fit.pfc ..... 2
pred.response ..... 5
Index ..... 7
abundant-package Abundant regression and high-dimensional principal fitted compo-
nents

## Description

Fit and predict with the high-dimensional principal fitted components model.

## Details

The main functions are fit.pfc, pred.response.

## Author(s)

Adam J. Rothman
Maintainer: Adam J. Rothman [arothman@umn.edu](mailto:arothman@umn.edu)

## References

Cook, R. D., Forzani, L., and Rothman, A. J. (2012). Estimating sufficient reductions of the predictors in abundant high-dimensional regressions. Annals of Statistics 40(1), 353-384.
fit.pfc Fit a high-dimensional principal fitted components model using the method of Cook, Forzani, and Rothman (2012).

## Description

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ denote the $n$ measurements of the predictor and response, where $x_{i} \in R^{p}$ and $y_{i} \in R$. The model assumes that these measurements are a realization of $n$ independent copies of the random vector $(X, Y)^{\prime}$, where

$$
X=\mu_{X}+\Gamma \beta\left\{f(Y)-\mu_{f}\right\}+\epsilon
$$

$\mu_{X} \in R^{p} ; \Gamma \in R^{p \times d}$ with rank $d ; \beta \in R^{d \times r}$ with rank $d ; f: R \rightarrow R^{r}$ is a known vector valued function; $\mu_{f}=E\{f(Y)\} ; \epsilon \sim N_{p}(0, \Delta)$; and $Y$ is independent of $\epsilon$. The central subspace is $\Delta^{-1} \operatorname{span}(\Gamma)$.
This function computes estimates of these model parameters by imposing constraints for identifiability. The mean parameters $\mu_{X}$ and $\mu_{f}$ are estimated with $\bar{x}=n^{-1} \sum_{i=1}^{n} x_{i}$ and $\bar{f}=$ $n^{-1} \sum_{i=1}^{n} f\left(y_{i}\right)$. Let $\widehat{\Phi}=n^{-1} \sum_{i=1}^{n}\left\{f\left(y_{i}\right)-\bar{f}\right\}\left\{f\left(y_{i}\right)-\bar{f}\right\}^{\prime}$, which we require to be positive definite. Given a user-specified weight matrix $\widehat{W}$, let

$$
(\widehat{\Gamma}, \widehat{\beta})=\arg \min _{G \in R^{p \times d}, B \in R^{d \times r}} \sum_{i=1}^{n}\left[x_{i}-\bar{x}-G B\left\{f\left(y_{i}\right)-\bar{f}\right\}\right]^{\prime} \widehat{W}\left[x_{i}-\bar{x}-G B\left\{f\left(y_{i}\right)-\bar{f}\right\}\right]
$$

subject to the constraints that $G^{\prime} \widehat{W} G$ is diagonal and $B \widehat{\Phi} B^{\prime}=I$. The sufficient reduction estimate $\widehat{R}: R^{p} \rightarrow R^{d}$ is defined by

$$
\widehat{R}(x)=\left(\widehat{\Gamma}^{\prime} \widehat{W} \widehat{\Gamma}\right)^{-1} \widehat{\Gamma}^{\prime} \widehat{W}(x-\bar{x})
$$

## Usage

```
fit.pfc(X, y, r=4, d=NULL, F.user=NULL, weight.type=c("sample", "diag", "L1"),
    lam. vec=NULL, kfold=5, silent=TRUE, qrtol=1e-10, cov.tol=1e-4,
    cov.maxit=1e3, NPERM=1e3, level=0.01)
```


## Arguments

X
y
$r$
d
weight.type The type of weight matrix estimate $\widehat{W}$ to use. Let $\widehat{\Delta}$ be the observed residual sample covariance matrix for the multivariate regression of X on $f(\mathrm{Y})$ with $n-$ $r-1$ scaling. There are three options for $\widehat{W}$ :

- weight.type="sample" uses a Moore-Penrose generalized inverse of $\widehat{\Delta}$ for $\widehat{W}$, when $p \leq n-r-1$ this becomes the inverse of $\widehat{\Delta}$;
- weight. type="diag" uses the inverse of the diagonal matrix with the same diagonal as $\widehat{\Delta}$ for $\widehat{W}$;
- weight. type="L1" uses the L1-penalized inverse of $\widehat{\Delta}$ described in equation (5.4) of Cook, Forzani, and Rothman (2012). In this case, lam.vec and $d$ must be specified by the user. The glasso algorithm of Friedman et al. (2008) is used through the R package glasso.
lam. vec A vector of candidate tuning parameter values to use when weight.type="L1". If this vector has more than one entry, then kfold cross validation will be performed to select the optimal tuning parameter value.
kfold The number of folds to use in cross-validation to select the optimal tuning parameter when weight.type="L1". Only used if lam.vec has more than one entry.
silent Logical. When silent=FALSE, progress updates are printed.
qrtol The tolerance for calls to qr.solve().
cov.tol The convergence tolerance for the QUIC algorithm used when weight.type="L1".
cov.maxit The maximum number of iterations allowed for the QUIC algorithm used when weight.type="L1".
NPERM The number of permutations to used in the sequential permutation testing procedure to select $d$. Only used when d is unspecified.
level The significance level to use to terminate the sequential permutation testing procedure to select $d$.


## Details

See Cook, Forzani, and Rothman (2012) more information.

## Value

A list with

| Gamhat | this is $\widehat{\Gamma}$ described above. |
| :--- | :--- |
| bhat | this is $\widehat{\beta}$ described above. |
| Rmat | this is $\widehat{W} \widehat{\Gamma}\left(\widehat{\Gamma}^{\prime} \widehat{W} \widehat{\Gamma}\right)^{-1}$. |
| What | this is $\widehat{W}$ described above. |
| d | this is $d$ described above. |
| r | this is $r$ described above. |
| GWG | this is $\widehat{\Gamma}^{\prime} \widehat{W} \widehat{\Gamma}$ |

fc a matrix with $n$ rows and $r$ columns where the $i$ th row is $f\left(y_{i}\right)-\bar{f}$.
Xc a matrix with $n$ rows and $p$ columns where the $i$ th row is $x_{i}-\bar{x}$.
$y \quad$ the vector of $n$ response measurements.
$\mathrm{mx} \quad$ this is $\bar{x}$ described above.
$\mathrm{mf} \quad$ this is $\bar{f}$ described above.
best.lam this is selected tuning parameter value used when weight.type="L1", will be NULL otherwise.
lam.vec this is the vector of candidate tuning parameter values used when weight.type="L1", will be NULL otherwise.
err.vec this is the vector of validation errors from cross validation, one error for each entry in lam.vec. Will be NULL unless weight.type="L1" and lam.vec has more than one entry.
test.info a dataframe that summarizes the results from the sequential testing procedure. Will be NULL unless d is unspecified.

## Author(s)

Adam J. Rothman

## References

Cook, R. D., Forzani, L., and Rothman, A. J. (2012). Estimating sufficient reductions of the predictors in abundant high-dimensional regressions. Annals of Statistics 40(1), 353-384.

Friedman, J., Hastie, T., and Tibshirani R. (2008). Sparse inverse covariance estimation with the lasso. Biostatistics 9(3), 432-441.

## See Also

pred.response

## Examples

```
set.seed(1)
n=20
p=30
d=2
y=sqrt(12)*runif(n)
Gam=matrix(rnorm(p*d), nrow=p, ncol=d)
beta=diag(2)
E=matrix(0.5*rnorm(n*p), nrow=n, ncol=p)
V=matrix(c(1, sqrt(12), sqrt(12), 12.8), nrow=2, ncol=2)
tmp=eigen(V, symmetric=TRUE)
V.msqrt=tcrossprod(tmp$vec*rep(tmp$val^(-0.5), each=2), tmp$vec)
Fyc=cbind(y-sqrt(3), y^2-4)%*%V.msqrt
X=0+Fyc%*%t(beta)%*%t(Gam) + E
fit=fit.pfc(X=X, y=y, r=3, weight.type="sample")
## display hypothesis testing information for selecting d
fit$test.info
## make a response versus fitted values plot
plot(pred.response(fit), y)
```

pred.response Predict the response with the fitted high-dimensional principal fitted components model

## Description

Let $x \in R^{p}$ denote the values of the $p$ predictors. This function computes $\widehat{E}(Y \mid X=x)$ using equation (8.1) of Cook, Forzani, and Rothman (2012).

## Usage

pred.response(fit, newx=NULL)

## Arguments

fit The object returned by fit.pfc().
newx A matrix with $N$ rows and $p$ columns where each row is an instance of $x$ described above. If this argument is unspecified, then the fitted values are returned, i.e, newx=X, where $X$ was the predictor matrix used in the call to fit.pfc ().

## Details

See Cook, Forzani, and Rothman (2012) for more information.

## Value

A vector of response prediction with nrow(newx) entries.

## Author(s)

Adam J. Rothman

## References

Cook, R. D., Forzani, L., and Rothman, A. J. (2012). Estimating sufficient reductions of the predictors in abundant high-dimensional regressions. Annals of Statistics 40(1), 353-384.

## See Also

fit.pfc

## Examples

```
set.seed(1)
n=25
p=50
d=1
true.G = matrix(rnorm(p*d), nrow=p, ncol=d)
y=rnorm(n)
fy = y
E=matrix(rnorm(n*p), nrow=n, ncol=p)
X=fy%*%t(true.G) + E
fit=fit.pfc(X=X, r=4, d=d, y=y, weight.type="diag")
fitted.values=pred.response(fit)
mean((y-fitted.values)^2)
plot(fitted.values, y)
n.new=100
y.new=rnorm(n.new)
fy.new=y.new
E.new=matrix(rnorm(n.new*p), nrow=n.new, ncol=p)
X.new = fy.new%*%t(true.G) + E.new
mean((y.new - pred.response(fit, newx=X.new))^2)
```


## Index

abundant (abundant-package), 1
abundant-package, 1
fit.pfc, 2, 2, 6
pred.response, 2, 4, 5

