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1 Introduction

Risk theory refers to a body of techniques to model and measure the risk
associated with a portfolio of insurance contracts. A first approach consists
in modeling the distribution of total claims over a fixed period of time using
the classical collective model of risk theory. A second input of interest to
the actuary is the evolution of the surplus of the insurance company over
many periods of time. In ruin theory, the main quantity of interest is the
probability that the surplus becomes negative, in which case technical ruin of
the insurance company occurs.

The interested reader can read more on these subjects in Klugman et al.
(2012); Gerber (1979); Denuit and Charpentier (2004); Kaas et al. (2008), among
others.

The current version of actuar (Dutang et al., 2008) contains four visible
functions related to the above problems: two for the calculation of the aggre-
gate claim amount distribution and two for ruin probability calculations.

2 The collective risk model

Let random variable S represent the aggregate claim amount (or total amount
of claims) of a portfolio of independent risks over a fixed period of time, ran-
dom variable N represent the number of claims (or frequency) in the portfolio
over that period, and random variable Cj represent the amount of claim j (or
severity). Then, we have the random sum

S = C1 + · · ·+ CN , (1)
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where we assume that C1, C2, . . . are mutually independent and identically
distributed random variables each independent of N. The task at hand con-
sists in evaluating numerically the cdf of S, given by

FS(x) = Pr[S ≤ x]

=
∞

∑
n=0

Pr[S ≤ x|N = n]pn

=
∞

∑
n=0

F∗n
C (x)pn, (2)

where FC(x) = Pr[C ≤ x] is the common cdf of C1, . . . , Cn, pn = Pr[N = n]
and F∗n

C (x) = Pr[C1 + · · ·+ Cn ≤ x] is the n-fold convolution of FC(·). If C is
discrete on 0, 1, 2, . . . , one has

F∗k
C (x) =


I{x ≥ 0}, k = 0
FC(x), k = 1

∑x
y=0 F∗(k−1)

C (x − y) fC(y), k = 2, 3, . . . ,
(3)

where I{A} = 1 if A is true and I{A} = 0 otherwise.

3 Discretization of claim amount distributions

Some numerical techniques to compute the aggregate claim amount distribu-
tion (see section 4) require a discrete arithmetic claim amount distribution;
that is, a distribution defined on 0, h, 2h, . . . for some step (or span, or lag) h.
The package provides function discretize to discretize a continuous distri-
bution. (The function can also be used to modify the support of an already
discrete distribution, but this requires additional care.)

Let F(x) denote the cdf of the distribution to discretize on some interval
(a, b) and fx denote the probability mass at x in the discretized distribution.
Currently, discretize supports the following four discretization methods.

1. Upper discretization, or forward difference of F(x):

fx = F(x + h)− F(x) (4)

for x = a, a + h, . . . , b − h. The discretized cdf is always above the true cdf.

2. Lower discretization, or backward difference of F(x):

fx =

{
F(a), x = a
F(x)− F(x − h), x = a + h, . . . , b.

(5)

The discretized cdf is always under the true cdf.
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3. Rounding of the random variable, or the midpoint method:

fx =

{
F(a + h/2), x = a
F(x + h/2)− F(x − h/2), x = a + h, . . . , b − h.

(6)

The true cdf passes exactly midway through the steps of the discretized
cdf.

4. Unbiased, or local matching of the first moment method:

fx =


E[X ∧ a]− E[X ∧ a + h]

h
+ 1 − F(a), x = a

2E[X ∧ x]− E[X ∧ x − h]− E[X ∧ x + h]
h

, a < x < b
E[X ∧ b]− E[X ∧ b − h]

h
− 1 + F(b), x = b.

(7)

The discretized and the true distributions have the same total probability
and expected value on (a, b).

Figure 1 illustrates the four methods. It should be noted that although very
close in this example, the rounding and unbiased methods are not identical.

Usage of discretize is similar to R’s plotting function curve. The cdf
to discretize and, for the unbiased method only, the limited expected value
function are passed to discretize as expressions in x. The other arguments
are the upper and lower bounds of the discretization interval, the step h and
the discretization method. For example, upper and unbiased discretizations
of a Gamma(2, 1) distribution on (0, 17) with a step of 0.5 are achieved with,
respectively,

> fx <- discretize(pgamma(x, 2, 1), method = "upper",
+ from = 0, to = 17, step = 0.5)
> fx <- discretize(pgamma(x, 2, 1), method = "unbiased",
+ lev = levgamma(x, 2, 1),
+ from = 0, to = 17, step = 0.5)

Function discretize is written in a modular fashion making it simple to
add other discretization methods if needed.

4 Calculation of the aggregate claim amount distri-
bution

Function aggregateDist serves as a unique front end for various methods
to compute or approximate the cdf of the aggregate claim amount random
variable S. Currently, five methods are supported.

1. Recursive calculation using the algorithm of Panjer (1981). This requires
the severity distribution to be discrete arithmetic on 0, 1, 2, . . . , m for some
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Figure 1: Comparison of four discretization methods

monetary unit and the frequency distribution to be a member of either
the (a, b, 0) or (a, b, 1) class of distributions (Klugman et al., 2012). (These
classes contain the Poisson, binomial, negative binomial and logarithmic
distributions and their zero-truncated and zero-modified extensions allow-
ing for a zero or arbitrary mass at x = 0.) The general recursive formula
is:

fS(x) =
(p1 − (a + b)p0) fC(x) + ∑

min(x,m)
y=1 (a + by/x) fC(y) fS(x − y)

1 − a fC(0)
,

with starting value fS(0) = PN( fC(0)), where PN(·) is the probability gen-
erating function of N. Probabilities are computed until their sum is arbi-
trarily close to 1.

The recursions are done in C to dramatically increase speed. One difficulty
the programmer is facing is the unknown length of the output. This was
solved using a common, simple and fast technique: first allocate an arbi-
trary amount of memory and double this amount each time the allocated
space gets full.

2. Exact calculation by numerical convolutions using (2) and (3). This also
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requires a discrete severity distribution. However, there is no restriction on
the shape of the frequency distribution. The package merely implements
the sum (2), the convolutions being computed with R’s function convolve,
which in turn uses the Fast Fourier Transform. This approach is practical
for small problems only, even on today’s fast computers.

3. Normal approximation of the cdf, that is

FS(x) ≈ Φ
(

x − µS
σS

)
, (8)

where µS = E[S] and σ2
S = Var[S]. For most realistic models, this approxi-

mation is rather crude in the tails of the distribution.

4. Normal Power II approximation of the cdf, that is

FS(x) ≈ Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS
σS

)
, (9)

where γS = E[(S − µS)
3]/σ3/2

S . The approximation is valid for x > µS only
and performs reasonably well when γS < 1. See Daykin et al. (1994) for
details.

5. Simulation of a random sample from S and approximation of FS(x) by the
empirical cdf

Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}. (10)

The simulation itself is done with function simul (see the "simulation"
vignette). This function admits very general hierarchical models for both
the frequency and the severity components.

Here also, adding other methods to aggregateDist is simple due to its
modular conception.

The arguments of aggregateDist differ according to the chosen calculation
method; see the help page for details. One interesting argument to note is
x.scale to specify the monetary unit of the severity distribution. This way, one
does not have to mentally do the conversion between the support of 0, 1, 2, . . .
assumed by the recursive and convolution methods, and the true support of
S.

The recursive method fails when the expected number of claims is so large
that fS(0) is numerically equal to zero. One solution proposed by Klugman
et al. (2012) consists in dividing the appropriate parameter of the frequency
distribution by 2n, with n such that fS(0) > 0 and the recursions can start. One
then computes the aggregate claim amount distribution using the recursive
method and then convolves the resulting distribution n times with itself to
obtain the final distribution. Function aggregateDist supports this procedure
through its argument convolve.

5



A common problem with the recursive method is failure to obtain a cu-
mulative distribution function that reaching (close to) 1. This is usually due
to too coarse a discretization of the severity distribution. One should make
sure to use a small enough discretization step and to discretize the severity
distribution far in the right tail.

The function aggregateDist returns an object of class "aggregateDist" in-
heriting from the "function" class. Thus, one can use the object as a function
to compute the value of FS(x) in any x.

For illustration purposes, consider the following model: the distribution
of S is a compound Poisson with parameter λ = 10 and severity distribution
Gamma(2, 1). To obtain an approximation of the cdf of S we first discretize
the gamma distribution on (0, 22) with the unbiased method and a step of 0.5,
and then use the recursive method in aggregateDist:

> fx <- discretize(pgamma(x, 2, 1), method = "unbiased",
+ from = 0, to = 22, step = 0.5,
+ lev = levgamma(x, 2, 1))
> Fs <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx, lambda = 10, x.scale = 0.5)
> summary(Fs) # summary method

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 71.0

Although useless here, the following is essentially equivalent, except in the
far right tail for numerical reasons:

> Fsc <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx, lambda = 5, convolve = 1,
+ x.scale = 0.5)
> summary(Fsc) # summary method

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 103.0

We return to object Fs. It contains an empirical cdf with support

> knots(Fs) # support of Fs.b (knots)

[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
[10] 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
[19] 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0
[28] 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5
[37] 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0
[46] 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5
[55] 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0
[64] 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5
[73] 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0
[82] 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5
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Figure 2: Graphic of the empirical cdf of S obtained with the recursive method

[91] 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0
[100] 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5
[109] 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0
[118] 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5
[127] 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0
[136] 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0

A nice graph of this function is obtained with a method of plot (see Fig-
ure 2):

> plot(Fs, do.points = FALSE, verticals = TRUE, xlim = c(0, 60))

The package defines a few summary methods to extract information from
"aggregateDist" objects. First, there are methods of mean and quantile to
easily compute the mean and obtain the quantiles of the approximate distri-
bution:

> mean(Fs) # empirical mean

[1] 20

> quantile(Fs) # quantiles
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25% 50% 75% 90% 95% 97.5% 99% 99.5%
14.5 19.5 25.0 30.5 34.0 37.0 41.0 43.5

> quantile(Fs, 0.999) # quantiles

99.9%
49.5

Second, a method of diff gives easy access to the underlying probability
mass function:

> diff(Fs)

[1] 6.293e-05 8.934e-05 1.767e-04 2.954e-04
[5] 4.604e-04 6.811e-04 9.662e-04 1.324e-03
[9] 1.760e-03 2.282e-03 2.893e-03 3.594e-03
[13] 4.387e-03 5.269e-03 6.235e-03 7.280e-03
[17] 8.395e-03 9.570e-03 1.079e-02 1.205e-02
[21] 1.333e-02 1.462e-02 1.590e-02 1.715e-02
[25] 1.837e-02 1.953e-02 2.063e-02 2.166e-02
[29] 2.259e-02 2.343e-02 2.417e-02 2.479e-02
[33] 2.531e-02 2.570e-02 2.598e-02 2.614e-02
[37] 2.618e-02 2.612e-02 2.594e-02 2.567e-02
[41] 2.530e-02 2.484e-02 2.431e-02 2.370e-02
[45] 2.303e-02 2.230e-02 2.153e-02 2.072e-02
[49] 1.988e-02 1.901e-02 1.813e-02 1.725e-02
[53] 1.636e-02 1.547e-02 1.460e-02 1.374e-02
[57] 1.290e-02 1.208e-02 1.128e-02 1.052e-02
[61] 9.780e-03 9.074e-03 8.401e-03 7.761e-03
[65] 7.155e-03 6.583e-03 6.044e-03 5.538e-03
[69] 5.065e-03 4.623e-03 4.213e-03 3.831e-03
[73] 3.478e-03 3.152e-03 2.851e-03 2.575e-03
[77] 2.321e-03 2.090e-03 1.878e-03 1.685e-03
[81] 1.509e-03 1.350e-03 1.205e-03 1.075e-03
[85] 9.571e-04 8.510e-04 7.556e-04 6.699e-04
[89] 5.931e-04 5.244e-04 4.630e-04 4.083e-04
[93] 3.596e-04 3.162e-04 2.778e-04 2.437e-04
[97] 2.135e-04 1.869e-04 1.633e-04 1.426e-04

[101] 1.243e-04 1.083e-04 9.423e-05 8.189e-05
[105] 7.108e-05 6.164e-05 5.339e-05 4.619e-05
[109] 3.993e-05 3.447e-05 2.973e-05 2.562e-05
[113] 2.205e-05 1.896e-05 1.629e-05 1.398e-05
[117] 1.199e-05 1.027e-05 8.786e-06 7.512e-06
[121] 6.416e-06 5.476e-06 4.668e-06 3.977e-06
[125] 3.385e-06 2.878e-06 2.445e-06 2.076e-06
[129] 1.761e-06 1.492e-06 1.263e-06 1.069e-06
[133] 9.035e-07 7.632e-07 6.441e-07 5.432e-07
[137] 4.577e-07 3.854e-07 3.243e-07 2.726e-07
[141] 2.290e-07 1.923e-07 1.613e-07
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Of course, this is defined (and makes sense) for the recursive, direct con-
volution and simulation methods only.

Third, the package introduces the generic functions VaR and CTE (with alias
TVaR) with methods for objects of class "aggregateDist". The former com-
putes the value-at-risk VaRα such that

Pr[S ≤ VaRα] = α, (11)

where α is the confidence level. Thus, the value-at-risk is nothing else than a
quantile. As for the method of CTE, it computes the conditional tail expectation
(also called Tail Value-at-Risk)

CTEα = E[S|S > VaRα]. (12)

Here are examples using object Fs obtained above:

> VaR(Fs)

90% 95% 99%
30.5 34.0 41.0

> CTE(Fs)

90% 95% 99%
35.42 38.55 45.01

To conclude on the subject, Figure 3 shows the cdf of S using five of the
many combinations of discretization and calculation method supported by
actuar.

5 The continuous time ruin model

We now turn to the multi-period ruin problem. Let U(t) denote the surplus
of an insurance company at time t, c(t) denote premiums collected through
time t, and S(t) denote aggregate claims paid through time t. If u is the initial
surplus at time t = 0, then a mathematically convenient definition of U(t) is

U(t) = u + c(t)− S(t). (13)

As mentioned previously, technical ruin of the insurance company occurs
when the surplus becomes negative. Therefore, the definition of the infinite
time probability of ruin is

ψ(u) = Pr[U(t) < 0 for some t ≥ 0]. (14)

We define some other quantities needed in the sequel. Let N(t) denote the
number of claims up to time t ≥ 0 and Cj denote the amount of claim j. Then
the definition of S(t) is analogous to (1):

S(t) = C1 + · · ·+ CN(t), (15)
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Figure 3: Comparison between the empirical or approximate cdf of S obtained
with five different methods

assuming N(0) = 0 and S(t) = 0 as long as N(t) = 0. Furthermore, let Tj
denote the time when claim j occurs, such that T1 < T2 < T3 < . . . Then
the random variable of the interarrival (or wait) time between claim j − 1 and
claim j is defined as W1 = T1 and

Wj = Tj − Tj−1, j ≥ 2. (16)

For the rest of this discussion, we make the following assumptions:

1. premiums are collected at a constant rate c, hence c(t) = ct;

2. the sequence {Tj}j≥1 forms an ordinary renewal process, with the conse-
quence that random variables W1, W2, . . . are independent and identically
distributed;

3. claim amounts C1, C2, . . . are independent and identically distributed.
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6 Adjustment coefficient

The quantity known as the adjustment coefficient ρ hardly has any physical
interpretation, but it is useful as an approximation to the probability of ruin
since we have the inequality

ψ(u) ≤ e−ρu, u ≥ 0.

The adjustment coefficient is defined as the smallest strictly positive solution
(if it exists) of the Lundberg equation

h(t) = E[etC−tcW ] = 1, (17)

where the premium rate c satisfies the positive safety loading constraint E[C−
cW] < 0. If C and W are independent, as in the most common models, then
the equation can be rewritten as

h(t) = MC(t)MW(−tc) = 1. (18)

Function adjCoef of actuar computes the adjustment coefficient ρ from the
following arguments: either the two moment generating functions MC(t) and
MW(t) (thereby assuming independence) or else function h(t); the premium
rate c; the upper bound of the support of MC(t) or any other upper bound for
ρ.

For example, if W and C are independent, W ∼ Exponential(2), C ∼
Exponential(1) and the premium rate is c = 2.4 (for a safety loading of 20%
using the expected value premium principle), then the adjustment coefficient
is

> adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2),
+ premium.rate = 2.4, upper = 1)

[1] 0.1667

The function also supports models with proportional or excess-of-loss rein-
surance (Centeno, 2002). Under the first type of treaty, an insurer pays a pro-
portion α of every loss and the rest is paid by the reinsurer. Then, for fixed α
the adjustment coefficient is the solution of

h(t) = E[etαC−tc(α)W ] = 1. (19)

Under an excess-of-loss treaty, the primary insurer pays each claim up to a
limit L. Again, for fixed L, the adjustment coefficient is the solution of

h(t) = E[et min(C,L)−tc(L)W ] = 1. (20)

For models with reinsurance, adjCoef returns an object of class "adjCoef"
inheriting from the "function" class. One can then use the object to compute
the adjustment coefficient for any retention rate α or retention limit L. The
package also defines a method of plot for these objects.

11



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Adjustment Coefficient

x

R
(x

)

Proportional reinsurance

Figure 4: Adjustment coefficient as a function of the retention rate

For example, using the same assumptions as above with proportional rein-
surance and a 30% safety loading for the reinsurer, the adjustment coefficient
as a function of α ∈ [0, 1] is (see Figure 4 for the graph):

> mgfx <- function(x, y) mgfexp(x * y)
> p <- function(x) 2.6 * x - 0.2
> rho <- adjCoef(mgfx, mgfexp(x, 2), premium = p, upper = 1,
+ reins = "prop", from = 0, to = 1)
> rho(c(0.75, 0.8, 0.9, 1))

[1] 0.1905 0.1862 0.1765 0.1667

> plot(rho)

7 Probability of ruin

In this subsection, we always assume that interarrival times and claim amounts
are independent.

The main difficulty with the calculation of the infinite time probability of
ruin lies in the lack of explicit formulas except for the most simple models.
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If interarrival times are Exponential(λ) distributed (Poisson claim number
process) and claim amounts are Exponential(β) distributed, then

ψ(u) =
λ

cβ
e−(β−λ/c)u. (21)

If the frequency assumption of this model is defensible, the severity assump-
tion can hardly be used beyond illustration purposes.

Fortunately, phase-type distributions have come to the rescue since the
early 1990s. Asmussen and Rolski (1991) first show that in the classical Cramér–
Lundberg model where interarrival times are Exponential(λ) distributed, if
claim amounts are Phase-type(π, T) distributed, then ψ(u) = 1− F(u), where
F is Phase-type(π+, Q) with

π+ = −λ

c
πT−1

Q = T + tπ+,
(22)

and t = −Te, e is a column vector with all components equal to 1; see the
"lossdist" vignette for details.

In the more general Sparre Andersen model where interarrival times can
have any Phase-type(ν, S) distribution, Asmussen and Rolski (1991) also show
that using the same claim severity assumption as above, one still has ψ(u) =
1 − F(u) where F is Phase-type(π+, Q), but with parameters

π+ =
e′(Q − T)

ce′t
(23)

and Q solution of

Q = Ψ(Q)

= T − tπ
[
(In ⊗ ν)(Q ⊕ S)−1(In ⊗ s)

]
.

(24)

In the above, s = −Se, In is the n × n identity matrix, ⊗ denotes the usual
Kronecker product between two matrices and ⊕ is the Kronecker sum defined
as

Am×m ⊕ Bn×n = A ⊗ In + B ⊗ Im. (25)

Function ruin of actuar returns a function object of class "ruin" to compute
the probability of ruin for any initial surplus u. In all cases except the expo-
nential/exponential model where (21) is used, the output object calls function
pphtype to compute the ruin probabilities.

Some thought went into the interface of ruin. Obviously, all models can be
specified using phase-type distributions, but the authors wanted users to have
easy access to the most common models involving exponential and Erlang
distributions. Hence, one first states the claim amount and interarrival times
models with any combination of "exponential", "Erlang" and "phase-type".
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Then, one passes the parameters of each model using lists with components
named after the corresponding parameters of dexp, dgamma and dphtype. If a
component "weights" is found in a list, the model is a mixture of exponential
or Erlang (mixtures of phase-type are not supported). Every component of
the parameter lists is recycled as needed.

The following examples should make the matter clearer. (All examples use
c = 1, the default value in ruin.) First, for the exponential/exponential model,
one has

> psi <- ruin(claims = "e", par.claims = list(rate = 5),
+ wait = "e", par.wait = list(rate = 3))
> psi

function (u, survival = FALSE, lower.tail = !survival)
{

res <- 0.6 * exp(-(2) * u)
if (lower.tail)

res
else 0.5 - res + 0.5

}
<environment: 0x1521065c8>
attr(,"class")
[1] "ruin" "function"

> psi(0:10)

[1] 6.000e-01 8.120e-02 1.099e-02 1.487e-03
[5] 2.013e-04 2.724e-05 3.687e-06 4.989e-07
[9] 6.752e-08 9.138e-09 1.237e-09

Second, for a mixture of two exponentials claim amount model and expo-
nential interarrival times, the simplest call to ruin is

> ruin(claims = "e",
+ par.claims = list(rate = c(3, 7), weights = 0.5),
+ wait = "e",
+ par.wait = list(rate = 3))

function (u, survival = FALSE, lower.tail = !survival)
pphtype(u, c(0.5, 0.214285714285714), c(-1.5, 3.5, 0.642857142857143,
-5.5), lower.tail = !lower.tail)
<environment: 0x150b6ba40>
attr(,"class")
[1] "ruin" "function"

Finally, one will obtain a function to compute ruin probabilities in a model
with phase-type claim amounts and mixture of exponentials interarrival times
with

> prob <- c(0.5614, 0.4386)
> rates <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)
> ruin(claims = "p",
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+ par.claims = list(prob = prob, rates = rates),
+ wait = "e",
+ par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6)))

function (u, survival = FALSE, lower.tail = !survival)
pphtype(u, c(0.146595513877824, 0.761505562273639), c(-7.66616600130962,
0.246715940794557, 7.05568145018379, -0.338063471100003), lower.tail = !lower.tail)
<environment: 0x131d58990>
attr(,"class")
[1] "ruin" "function"

To ease plotting of the probability of ruin function, the package provides
a method of plot for objects returned by ruin that is a simple wrapper for
curve (see Figure 5):

> psi <- ruin(claims = "p",
+ par.claims = list(prob = prob, rates = rates),
+ wait = "e",
+ par.wait = list(rate = c(5, 1),
+ weights = c(0.4, 0.6)))
> plot(psi, from = 0, to = 50)

8 Approximation to the probability of ruin

When the model for the aggregate claim process (15) does not fit nicely into
the framework of the previous section, one can compute ruin probabilities us-
ing the so-called Beekman’s convolution formula (Beekman, 1968; Kass, 2004).

Let the surplus process and the aggregate claim amount process be de-
fined as in (13) and (15), respectively, and let {N(t)} be a Poisson process
with mean λ. As before, claim amounts C1, C2, . . . are independent and iden-
tically distributed with cdf P(·) and mean µ = E[C1]. Then the infinite time
probability of ruin is given by

ψ(u) = 1 − F(u), (26)

where F(·) is Compound Geometric(p, H) with

p = 1 − λµ

c
(27)

and

H(x) =
∫ x

0

1 − P(y)
µ

dy. (28)

In other words, we have (compare with (2)):

ψ(u) = 1 −
∞

∑
n=0

H∗n(u)p(1 − p)n. (29)
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Figure 5: Graphic of the probability of ruin as a function of the initial surplus
u

In most practical situations, numerical evaluation of (29) is done using
Panjer’s recursive formula. This usually requires discretization of H(·). In
such circumstances, Beekman’s formula yields approximate ruin probabilities.

For example, let claim amounts have a Pareto(5, 4) distribution, that is

P(x) = 1 −
(

4
4 + x

)5

and µ = 1. Then

H(x) =
∫ x

0

(
4

4 + y

)5
dy

= 1 −
(

4
4 + x

)4
,

or else H is Pareto(4, 4). Furthermore, we determine the premium rate c with
the expected value premium principle and a safety loading of 20%, that is
c = 1.2λµ. Thus, p = 0.2/1.2 = 1/6.
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One can get functions to compute lower bounds and upper bounds for
F(u) with functions discretize and aggregateDist as follows:

> f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "lower")
> f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "upper")
> F.L <- aggregateDist(method = "recursive",
+ model.freq = "geometric",
+ model.sev = f.L, prob = 1/6)
> F.U <- aggregateDist(method = "recursive",
+ model.freq = "geometric",
+ model.sev = f.U, prob = 1/6)

Corresponding functions for the probability of ruin ψ(u) lower and upper
bounds are (see Figure 6 for the graphic):

> psi.L <- function(u) 1 - F.U(u)
> psi.U <- function(u) 1 - F.L(u)
> u <- seq(0, 50, by = 5)
> cbind(lower = psi.L(u), upper = psi.U(u))

lower upper
[1,] 0.6719160 0.83333
[2,] 0.2892792 0.51572
[3,] 0.1361541 0.32938
[4,] 0.0662486 0.21200
[5,] 0.0329848 0.13700
[6,] 0.0167551 0.08877
[7,] 0.0086802 0.05764
[8,] 0.0045911 0.03749
[9,] 0.0024843 0.02443

[10,] 0.0013790 0.01595
[11,] 0.0007877 0.01043

> curve(psi.L, from = 0, to = 100, col = "blue")
> curve(psi.U, add = TRUE, col = "green")

One can make the bounds as close as one wishes by reducing the dis-
cretization step.
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