
Package ‘adehabitatHR’
January 10, 2021

Version 0.4.19

Date 2021-01-09

Depends R (>= 3.0.1), sp, methods, deldir, ade4, adehabitatMA,
adehabitatLT

Suggests maptools, tkrplot, MASS, rgeos

Imports graphics, grDevices, stats

Title Home Range Estimation

Author Clement Calenge, contributions from Scott Fortmann-Roe

Maintainer Clement Calenge <clement.calenge@ofb.gouv.fr>

Description A collection of tools for the estimation of animals home range.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-01-10 05:10:13 UTC

R topics documented:
BRB . 2
CharHull . 8
clusthr . 10
estUD-class . 11
findmax . 13
getverticeshr . 14
kernelbb . 15
kernelkc . 20
kerneloverlap . 28
kernelUD . 31
kver2spol . 37
LoCoH . 38
MCHu . 41
mcp . 43

Index 46

1

2 BRB

BRB Utilization Distribution of an Animal Based on Biased Random
Bridges

Description

This function estimates the utilization distribution of one/several animals using a biased random
bridge approach (Benhamou and Cornelis 2010, Benhamou 2011). This function also allows the
decomposition of the utilization distribution into (i) an intensity distribution reflecting the average
time spent by the animal in the habitat patches, and (ii) a recursion distribution reflecting the number
of visits of the animal in the habitat patches (Benhamou and Riotte-Lambert, 2012).

Usage

BRB(ltr, D, Tmax, Lmin, hmin, type=c("UD","ID", "RD"), radius = NULL,
maxt = NULL, filtershort = TRUE, habitat = NULL, activity = NULL,
grid = 200, b=FALSE, same4all=FALSE, extent=0.5, tau = NULL,
boundary=NULL)

BRB.D(ltr, Tmax = NULL, Lmin = NULL, habitat = NULL, activity = NULL)

BRB.likD(ltr, Dr=c(0.1,100),
Tmax = NULL, Lmin = NULL,
habitat = NULL, activity = NULL)

Arguments

ltr an object of class ltraj.

D a number corresponding to the diffusion parameter (in squared "units" per sec-
ond, where "units" denote the units of the relocation coordinates) used for the
estimation. Alternatively this parameter may be an object of class DBRB returned
by the function BRB.D.

Dr a vector of length two giving the lower and upper limits of the diffusion coeffi-
cient, within which the maximum likelihood could be found.

Tmax the maximum duration (in seconds) allowed for a step built by successive relo-
cations. All steps characterized by a duration dt greater than Tmax are not taken
into account in the calculations.

Lmin the minimum distance (in units of the coordinates) between successive reloca-
tions, defining intensive use or resting (See details). The distance should be
specified in units of the relocation coordinates (i.e. in metres if they are speci-
fied in metres).

hmin The minimum smoothing parameter (in units of the relocations coordinates), ap-
plied to all recorded relocations. See details for a description of this parameter.

BRB 3

type The type of distribution expected by the user: "UD" returns the utilization distri-
bution using the approach described by Benhamou and Cornelis (2010). "ID"
returns the intensity distribution described in Benhamou and Riotte-Lambert
(2012), i.e. a distribution reflecting the average time spent in habitat patches.
"RD" returns the recursion distribution described in Benhamou and Riotte-Lambert
(2012), i.e. a distribution reflecting the number of visits in habitat patches.

radius If type = "ID" or "RD", the radius of the patches (in units of the relocation
coordinates) used in the calculation of the residence time or the number of visits.
If NULL, the radius is set to 3*hmin.

maxt If type = "ID" or "RD", maximum time threshold (in seconds) that the animal
is allowed to spend outside the patch before that we consider that the animal
actually left the patch (see ?residenceTime).

filtershort logical indicating the behaviour of the function when the length of a step is
lower than Lmin (see details). It must be set to TRUE if track segments shorter
than Lmin are assumed to correspond to resting periods, which thereby will be
filtered out systematically, or to FALSE to take these short track segments into
account when not associated to resting (animals active without moving more
than Lmin). They then will be given a null diffusion coefficient.

habitat optionally, an object of class SpatialPixelsDataFrame with one column de-
scribing the habitat type on the area.

activity optionally, a character indicating the name of the variable in the infolocs compo-
nent of ltr indicating the proportion of time between relocation i and relocation
i+1 during which the animal was active (Users of adehabitatLT prior to version
0.3 should read the section Warning below).

grid a number giving the size of the grid on which the UD should be estimated.
Alternatively, this parameter may be an object of class SpatialPixels, or a list
of objects of class SpatialPixels with as many elements as there are bursts in
ltr.

b logical specifying how relocation and movement variances are combined. If
TRUE, the relocation variance progressively merges with the movement compo-
nent; if FALSE, the relocation variance has a constant weight (see Benhamou,
2011).

same4all logical. if TRUE, the same grid is used for the estimation of all bursts. If FALSE,
one grid is used per burst.

extent a value indicating the extent of the grid used for the estimation (the extent of the
grid on the abscissa is equal to (min(xy[,1]) + extent * diff(range(xy[,1])))).

tau interpolation time (tau, in seconds). Defaults to tmin/10, where tmin is the
minimum duration of a step in ltr.

boundary If, not NULL, an object inheriting the class SpatialLines defining a barrier that
cannot be crossed by the animals. There are constraints on the shape of the
barrier that depend on the smoothing parameter (***see details***)

Details

The function BRB uses the biased random bridge approach to estimate the Utilization Distribution
of an animal with serial autocorrelation of the relocations. This approach is similar to the Brownian

4 BRB

bridge approach (see ?kernelbb), with several noticeable improvements. Actually, the Brownian
bridge approach supposes that the animal movement is random and purely diffusive between two
successive relocations: it is supposed that the animal moves in a purely random fashion from the
starting relocation and reaches the next relocation randomly. The BRB approach goes further by
adding an advection component (i.e., a "drift") to the purely diffusive movement: is is supposed that
the animal movement is governed by a drift component (a general tendency to move in the direction
of the next relocation) and a diffusion component (tendency to move in other directions than the
direction of the drift).

The BRB approach is based on the biased random walk model. This model is the following: at
a given time t, the speed of the animal is drawn from a probability density function (pdf) and the
angle between the step and the east direction is drawn from a circular pdf with given mean angle
and concentration parameters. A biased random walk occurs when this angular distribution is not
uniform (i.e. there is a preferred direction of movement). Now, consider two successive relocations
r1 = (x1, y1) and r2 = (x2, y2) collected respectively at times t1 and t2. The aim of the Biased
Random Bridges approach is to estimate the pdf that the animal is located at a given place r = (x,y)
at time ti (with t1 < ti < t2), given that it is located at r1,r2 at times t1,t2, and given that the animal
moves according a biased random walk with an advection component determined by r1 and r2.

Benhamou (2011) proposed an approximation for this pdf, noting that it can be approximated by a
circular bivariate normal distribution with mean location corresponding to (x1 + pi*(x2-x1), y1 +
pi*(y2-y1)), where pi = (ti-t1)/(t2-t1). The variance-covariance matrix of this distribution is diag-
onal, with both diagonal elements corresponding to the diffusion coefficient D. This coefficient D
can be estimated using the plug-in method, using the function BRB.D (for details, see Benhamou,
2011). Note that the diffusion parameter D can be estimated for each habitat type is a habitat map
is available. Note that the function BRB.likD can be used alternatively to estimate the diffusion
coefficient using the maximum likelihood method.

An important aspect of the BRB approach is that the drift component is allowed to change in di-
rection and strength from one step to the other, but should remain constant during each of them.
For this reason, it is required to set an upper time threshold Tmax. Steps characterized by a longer
duration are not taken into account into the estimation of the pdf. This upper threshold should be
based on biological grounds.

As for the Brownian bridge approach, this conditional pdf based on biased random walks takes
an infinite value at times ti = t1 and ti = t2 (because, at these times, the relocation of the animal
is known exactly). Benhamou proposed to circumvent this drawback by considering that the true
relocation of the animal at times t1 and t2 is not known exactly. He noted: "a GPS fix should be
considered a punctual sample of the possible locations at which the animal may be observed at
that time, given its current motivational state and history. Even if the recording noise is low, the
relocation variance should therefore be large enough to encompass potential locations occurring in
the same habitat patch as the recorded location". He proposed two ways to include this "relocation
uncertainty" component in the pdf: (i) either the relocation variance progressively merges with the
movement component, (ii) or the relocation variance has a constant weight. This is controlled by the
parameter b of the function. In both cases, the minimum uncertainty over the relocation of an animal
is observed for ti = t1 or t2. This minimum standard deviation corresponds to the parameter hmin.
According to Benhamou and Cornelis, "hmin must be at least equal to the standard deviation of the
localization errors and also must integrate uncertainty of the habitat map when UDs are computed
for habitat preference analyses. Beyond these technical constraints, hmin also should incorporate a
random component inherent to animal behavior because any recorded location, even if accurately
recorded and plotted on a reliable map, is just a punctual sample of possible locations at which the

BRB 5

animal may be found at that time, given its current motivational state and history. Consequently,
hmin should be large enough to encompass potential locations occurring in the same habitat patch
as the recorded location".

Practically, the BRB approach can be carried out with the help of the movement-based kernel den-
sity estimation (MKDE) developed by Benhamou and Cornelis (2010). This method consists in
dividing each step i into Ti/tau intervals, where Ti is the duration of the step (in seconds) and tau is
the interpolation time (in seconds). A kernel density estimation is then used to estimate the required
pdf, with a smoothing parameter varying with each interpolated location ri and corresponding to:
hi^2 = hmin^2 + 4pi(1-pi)(hmax^2 - hmin^2)Ti/Tmax. In this equation, hmax^2 corresponds to
hmin^2+ D*Tmax/2 if b is FALSE and to D*Tmax/2 otherwise. Note that this smoothing parame-
ter may be a function of the habitat type where the interpolated relocation occurs if the diffusion
parameters are available for each habitat types.

The special case where a given step covers a distance lower than Lmin merits further details. When
the parameter filtershort = TRUE, it is always assumed that the animal was resting at this time,
and this step is filtered out before the estimation. When the parameter filtershort = FALSE, this
assumption is not made. In this case, the behaviour of the function depends on the availability of a
variable measuring the activity of the animal (when the name of the variable containing the ai in the
infolocs component is passed as the parameter activity; see ?infolocs for additionnal infor-
mation on this component). If the animal was active during the step, the smoothing parameter hi is
set to hmin for this step. This procedure allows to give more weight to the immediate surroundings
of this relocation (indicating an intensive use of these immediate surroundings). If the animal was
inactive, then the animal was resting and the step is filtered out before the estimation. Note however
that activity value may sometimes be relatively high while the animal is resting, e.g. if disturbed by
flies, possibly requiring manual correction of activity values based on the distance moved between
relocations).

If no activity variable is available and filtershort = FALSE, it is always suppose that the animal
was active between the two relocations, the step is not filtered out and the smoothing parameter hi
is set to hmin for this step.

The parameter boundary allows to define a barrier that cannot be crossed by the animals. When this
parameter is set, the method described by Benhamou and Cornelis (2010) for correcting boundary
biases is used. The boundary can possibly be defined by several nonconnected lines, each one being
built by several connected segments. Note that there are constraints on these segments (not all kinds
of boundary can be defined): (i) each segment length should at least be equal to 3*h (the size of
"internal lane" according to the terminology of Benhamou and Cornelis), (ii) the angle between two
line segments should be greater that pi/2 or lower that -pi/2. The UD of all the pixels located
within a band defined by the boundary and with a width equal to 6*h ("external lane") is set to zero.

Benhamou and Riotte-Lambert (2012) showed that the space use at any given location, as estimated
by this approach, can be seen as the product between the mean residence time per visit times the
number of visits of the location. They proposed an approach allowing the decomposition of the UD
into two components: (i) the intensity distribution reflecting this average residence time and (ii) a
recursion distribution reflecting the number of visits. This function allows to estimate these two
components, by setting the argument type to "ID" and "RD" respectively.

Note that all the methods available to deal with objects of class estUDm are available to deal with
the results of the function BRB (see ?kernelUD).

6 BRB

Value

BRB returns an object of class estUDm when the UD is estimated for several animals, and estUD
when only one animal is studied.

BRB.D and BRB.likD returns a list of class DBRB, with one component per burst containing a data
frame with the diffusion parameters.

Warning

Users of the version 0.2 of adehabitatHR should be careful that there was a slight inconsistency
in the package design: whereas all the parameters characterizing the steps in an object of class
"ltraj" (e.g. dist,dx,dy) describe the step between relocations i and i+1, it was expected for
BRB that the activity described the proportion of activity time between relocation i-1 and i. This
inconsistency has now been corrected since version 0.3.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>, based on a C translation of the Pascal source
code of the program provided by Simon Benhamou.

References

Benhamou, S. (2011) Dynamic approach to space and habitat use based on biased random bridges
PLOS One, 6, 1–8.

Benhamou, S. and Cornelis, D. (2010) Incorporating Movement Behavior and Barriers to Improve
Biological Relevance of Kernel Home Range Space Use Estimates. Journal of Wildlife Manage-
ment, 74, 1353–1360.

Benhamou, S. and Riotte-Lambert, L. (2012) Beyond the Utilization Distribution: Identifying home
range areas that are intensively exploited or repeatedly visited. Ecological Modelling, 227, 112–
116.

See Also

kernelbb for the Brownian bridge kernel estimation, kernelUD and estUD-class for additional
information about objects of class estUDm and estUD, infolocs for additional information about
the infolocs component, as.ltraj for additional information about the class ltraj.

Examples

Example dataset used by Benhamou (2011)
data(buffalo)

The trajectory:
buffalo$traj

The habitat map:
buffalo$habitat

Show the dataset

BRB 7

plot(buffalo$traj, spixdf = buffalo$habitat)

Estimate the diffusion component for each habitat type
Using the plug-in method
vv <- BRB.D(buffalo$traj, Tmax = 180*60, Lmin = 50,

habitat = buffalo$habitat, activ = "act")

vv

Note that the values are given here as m^2/s, whereas
they are given as m^2/min in Benhamou (2011). The
values in m^2 per min are:
vv[[1]][,2]*60

Approximately the same values, with slight differences due to
differences in the way the program of Benhamou (2011) and the present
one deal with the relocations occurring on the boundary between two
different habitat types
Note that an alternative estimation of the Diffusion coefficient
could be found using maximum likelihood
vv2 <- BRB.likD(buffalo$traj, Tmax = 180*60, Lmin = 50,

habitat = buffalo$habitat, activ = "act")
vv2
vv[[1]][,2]*60

Estimation of the UD with the same parameters as those chosen by
Benhamou (2011)
ud <- BRB(buffalo$traj, D = vv, Tmax = 180*60, tau = 300, Lmin = 50, hmin=100,

habitat = buffalo$habitat, activity = "act", grid = 50, b=0,
same4all=FALSE, extent=0.5)

ud

Show the UD.
image(ud)

Not run:
Example of the decomposition of the UD into a recursion distribution
and a intensity distribution (Benhamou and Riotte-Lambert 2012).
##
1. Intensity Distribution using the same parameters as Benhamou and
Riotte-Lambert (2012)

id <- BRB(buffalo$traj, D = 440/60, Tmax = 3*3600, Lmin = 50, type = "ID",
hmin=100, radius = 300, maxt = 2*3600, activity="act", filtershort=FALSE,
grid = 200, extent=0.1)

rd <- BRB(buffalo$traj, D = 440/60, Tmax = 3*3600, Lmin = 50, type = "RD",
hmin=100, radius = 300, maxt = 2*3600, activity="act", filtershort=FALSE,
grid = 200, extent=0.1)

ud <- BRB(buffalo$traj, D = 440/60, Tmax = 3*3600, Lmin = 50,
hmin=100, radius = 300, maxt = 2*3600, activity="act", filtershort=FALSE,

8 CharHull

grid = 200, extent=0.1)

par(mfrow = c(2,2), mar=c(0,0,2,0))
image(getvolumeUD(id))
title("ID")
image(getvolumeUD(rd))
title("RD")
image(getvolumeUD(ud))
title("UD")

End(Not run)

CharHull Estimation of the Home Range by Delaunay Triangulation method

Description

The function CharHull implements the method developed by Downs and Horner (2009) for the
home range estimation.

Usage

CharHull(xy, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates = c("random", "remove"), amount = NULL)

Arguments

xy an object inheriting the class SpatialPoints containing the x and y coordinates
of the relocations of the animal. If xy inherits the class SpatialPointsDataFrame,
it should contain only one column (factor) corresponding to the identity of the
animals for each relocation.

unin the units of the relocations coordinates. Either "m" (default) for meters or "km"
for kilometers

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares (default)

duplicates a setting to determine how duplicated points are handled. If "random" the dupli-
cated points are slightly moved randomly. If "remove" the duplicated points are
removed.

amount if duplicates == random, this parameter controls the amount of noise added to
the data (see the help page of jitter for additional information on this param-
eter).

CharHull 9

Details

This method consists in the computation of the Delaunay triangulation of the set of relocations.
Then, the triangles are ordered from the smallest to the largest. It is possible to select a given
percentage of the smallest triangles (measured by their area) as the home-range estimation. The
contour can be extracted with the function getverticeshr

Value

an object of the class MCHu

Note

This function relies on the package deldir.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Downs J.A. and Horner, M.W. (2009) A Characteristic-Hull Based Method for Home Range Esti-
mation. Transactions in GIS, 13, 527–537.

See Also

MCHu for further information on the class MCHu, and SpatialPolygonsDataFrame-class for addi-
tional information on this class. See getverticeshr to extract a given home range contour.

Examples

Not run:
data(puechabonsp)
lo<-puechabonsp$relocs[,1]

Home Range Estimation
res <- CharHull(lo)

Displays the home range
plot(res)

Computes the home range size
MCHu2hrsize(res)

Computes the 95 percent home range
ver <- getverticeshr(res)
ver
plot(ver)

End(Not run)

10 clusthr

clusthr Estimation of the Home Range by Single-Linkage Cluster Analysis

Description

clusthr allows the estimation of the home range by single-linkage cluster analysis (see details).

Usage

clusthr(xy, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

Arguments

xy an object inheriting the class SpatialPoints containing the x and y relocations
of the animal. If xy inherits the class SpatialPointsDataFrame, it should con-
tain only one column (factor) corresponding to the identity of the animals for
each relocation.

unin the units of the relocations coordinates. Either "m" (default) for meters or "km"
for kilometers

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares (default)

duplicates a setting to determine how duplicated points are handled. If "random" the dupli-
cated points are slightly moved randomly. If "remove" the duplicated points are
removed.

amount if duplicates == random, this parameter controls the amount of noise added to
the data (see the help page of jitter for additional information on this param-
eter).

Details

This method estimates home range using the single-linkage cluster analysis modified by Kenward
et al. (2001). The clustering process is described hereafter: the three locations with the minimum
mean of nearest-neighbour joining distances (NNJD) form the first cluster. At each step, two dis-
tances are computed: (i) the minimum mean NNJD between three locations (which corresponds to
the next potential cluster) and (ii) the minimum of the NNJD between a cluster "c" and the closest
location. If (i) is smaller that (ii), another cluster is defined with these three locations. If (ii) is
smaller than (i), the cluster "c" gains a new location. If this new location belong to another cluster,
the two cluster fuses. The process stop when all relocations are assigned to the same cluster.

At each step of the clustering process, the proportion of all relocations which are assigned to a
cluster is computed (so that the home range can be defined to enclose a given proportion of the
relocations at hand, i.e. to an uncomplete process). At a given step, the home range is defined as
the set of minimum convex polygon enclosing the relocations in the clusters.

Note that a given home-range contour can be extracted using the function getverticeshr.

estUD-class 11

Value

The function clusthr returns either objects of class SpatialPolygonsDataFrame (if the reloca-
tions of only one animals are passed as the xy argument) or a list of SpatialPolygonsDataFrame
of class MCHu – Multiple Convex Hull (if the relocations of several animals are passed as the xy
argument).

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Kenwward R.E., Clarke R.T., Hodder K.H. and Walls S.S. (2001) Density and linkage estimators
of homre range: nearest neighbor clustering defines multinuclear cores. Ecology, 82, 1905–1920.

See Also

MCHu for further information on the class MCHu, and SpatialPolygonsDataFrame-class for addi-
tional information on this class. See getverticeshr to extract a given home range contour.

Examples

data(puechabonsp)
lo<-puechabonsp$relocs[,1]

Home Range Estimation
res <- clusthr(lo)

Displays the home range
plot(res)

Computes the home range size
MCHu2hrsize(res)

get the 95 percent home range:
plot(getverticeshr(res, percent=95))

estUD-class Class "estUD": Storing Utilization Distributions in R

Description

This class is an extension of the class SpatialPixelsDataFrame of the package sp, and is designed
to store the utilization distribution of an animal

12 estUD-class

Objects from the Class

Objects of class "estUD" can be created using the functions kernelUD and getvolumeUD.

Slots

h: Object of class "list" containing all information concerning the smoothing parameters used in
the estimation process

vol: Object of class "logical" indicating whether the mapped values coorespond to the UD or to
the volume under the UD (see ?kernelUD)

data: Object of class "data.frame" containing the values of the UD

Extends

Class "SpatialPixelsDataFrame", directly.

Methods

coerce signature(from = "estUD",to = "data.frame"): converts the object into a data frame

show signature(object = "estUD"): printing method of the object

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

SpatialPixelsDataFrame for additional information about this class, and kernelUD for additional
information about the methods generating such objects.

Examples

load the data
data(puechabonsp)

estimate one UD for each animal
jj <- kernelUD(puechabonsp$relocs[,1])
image(jj)
jj

Consider the first animal
jj[[1]]
class(jj[[1]])
image(jj[[1]])

findmax 13

findmax Find Local Maxima on a Map of Class ’SpatialPixelsDataFrame’

Description

findmax finds the local maxima on a map of class SpatialPixelsDataFrame.

Usage

findmax(x)

Arguments

x a map of class SpatialPixelsDataFrame with one column

Details

This function may be useful, among other things, to identify the local modes of the utilization
distribution of an animal estimated using kernelUD.

Value

an object of class SpatialPoints containing the x and y coordinates of the local maxima.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

SpatialPixelsDataFrame-class for additionnal information on objects of class SpatialPixelsDataFrame.

Examples

data(puechabonsp)

estimates the UD
kud <- kernelUD(puechabonsp$relocs[,1])

displays the maximum
image(kud[[1]])
points(findmax(kud[[1]]))

14 getverticeshr

getverticeshr Extract the home-range contour of one or several animals

Description

These functions allow the extraction of the home-range contours computed using various methods
(kernel home range, cluster home range, etc.)

Usage

getverticeshr(x, percent = 95, ...)
S3 method for class 'estUD'
getverticeshr(x, percent = 95, ida = NULL, unin = c("m", "km"),

unout = c("ha", "km2", "m2"),
standardize = FALSE, ...)

S3 method for class 'estUDm'
getverticeshr(x, percent = 95, whi = names(x),

unin = c("m", "km"),
unout = c("ha", "km2", "m2"),
standardize = FALSE, ...)

S3 method for class 'MCHu'
getverticeshr(x, percent = 95, whi = names(x), ...)
Default S3 method:
getverticeshr(x, percent = 95, ...)

Arguments

x For getverticeshr.estUD, an object of class estUD. For getverticeshr.estUDm,
an object of class estUDm. For getverticeshr.MCHu, an object of class MCHu.

percent a single value giving the percentage level for home-range estimation

ida a character string indicating the id of the polygons corresponding to the home
range in the resulting SpatialPolygonsDataFrame (see the help page of SpatialPolygonsDataFrame).
By default it is set to "homerange"

unin the units of the relocations coordinates. Either "m" for meters (default) or "km"
for kilometers

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares (default)

whi a vector of character strings indicating which animals should be returned.

standardize a logical value indicating whether the UD should be standardized over the area
of interest, so that the volume under the UD and *over the area* is equal to 1..

... Additional arguments to be passed to and from other methods

Value

An object of class SpatialPolygonsDataFrame containing the selected home range contours of
the animals.

kernelbb 15

Note

The function getverticeshr.default is present for compatibility purposes. Its use generates an
error.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

See Also

kernelUD, kernelbb or kernelkc for methods generating objects of classes estUD and estUDm,
clusthr, LoCoH.a and CharHull for methods generating objects of class MCHu.

Examples

Example with a kernel home range
data(puechabonsp)
loc <- puechabonsp$relocs

have a look at the data
head(as.data.frame(loc))
the first column of this data frame is the ID

Estimation of UD for the four animals
(ud <- kernelUD(loc[,1]))

Calculates the home range contour

ver <- getverticeshr(ud, percent=95)
ver
plot(ver)

Example with a cluster home range
clu <- clusthr(loc[,1])
ver2 <- getverticeshr(clu, percent=95)
ver2
plot(ver2)

kernelbb Estimation of Kernel Brownian Bridge Home-Range

Description

kernelbb is used to estimate the utilization distribution of an animal using the brownian bridge
approach of the kernel method (for autocorrelated relocations; Bullard 1991, Horne et al. 2007).

liker can be used to find the maximum likelihood estimation of the parameter sig1, using the
approach defined in Horne et al. 2007 (see Details).

16 kernelbb

Usage

kernelbb(ltr, sig1, sig2, grid = 40, same4all = FALSE, byburst = FALSE,
extent = 0.5, nalpha = 25)

liker(tr, rangesig1, sig2, le = 1000,
byburst = FALSE, plotit = TRUE)

S3 method for class 'liker'
print(x, ...)

Arguments

ltr,tr an object of class ltraj of type II (time recorded), regular or not (see help(as.ltraj)).

sig1 first smoothing parameter for the brownian bridge method (related to the speed
of the animals; it can be estimated by the function liker).

sig2 second smoothing parameter for the brownian bridge method (related to the im-
precision of the relocations, supposed known).

grid a number giving the size of the grid on which the UD should be estimated.
Alternatively, this parameter may be an object of class SpatialPixels, or a list
of objects of class SpatialPixels, with named elements corresponding to each
level of the factor id

same4all logical. If TRUE, the same grid is used for all animals. If FALSE, one grid per
animal is used

byburst logical. Whether the brownian bridge estimation should be done by burst.

extent a value indicating the extent of the grid used for the estimation (the extent of the
grid on the abscissa is equal to (min(xy[,1]) + extent * diff(range(xy[,1])))).

nalpha a parameter used internally to compute the integral of the Brownian bridge. The
integral is computed by cutting each step built by two relocations into nalpha
sub-intervals.

rangesig1 the range of possible values of sig1 within which the likelihood should be max-
imized.

le The number of values of sig1 tested within the specified range.

plotit logical. Whether the results of the function should be plotted.

x an object of class khr returned by kernelbb.

... additionnal parameters to be passed to the generic functions print

Details

The function kernelbb uses the brownian bridge approach to estimate the Utilization Distribution
of an animal with serial autocorrelation of the relocations (Bullard 1991, Horne et al. 2007). Instead
of simply smoothing the relocation pattern (which is the case for the function kernelUD), it takes
into account the fact that between two successive relocations r1 and r2, the animal has moved
through a continuous path, which is not necessarily linear. A brownian bridge estimates the density
of probability that this path passed through any point of the study area, given that the animal was
located at the point r1 at time t1 and at the point r2 at time t2, with a certain amount of inaccuracy

kernelbb 17

(controled by the parameter sig2, see Examples). Brownian bridges are placed over the different
sections of the trajectory, and these functions are then summed over the area. The brownian bridge
approach therefore smoothes a trajectory.

The brownian bridge estimation relies on two smoothing parameters, sig1 and sig2. The parameter
sig1 is related to the speed of the animal, and describes how far from the line joining two successive
relocations the animal can go during one time unit (here the time is measured in second). The
function liker can be used to estimate this value using the maximum likelihood approach described
in Horne et al. (2007). The larger this parameter is, and the more wiggly the trajectory is likely to
be. The parameter sig2 is equivalent to the parameter h of the classical kernel method: it is related
to the inaccuracy of the relocations, and is supposed known (See examples for an illustration of the
smoothing parameters).

The functions getvolumeUD and getverticeshr can then be used to conpute the home ranges (see
kernelbb). More generally, more details on the generic parameters of kernelbb can be found on
the help page of kernelUD.

Value

An object of class estUDm

liker returns an object of class liker, with one component per animal (or per burst, depending on
the value of the parameter perburst), containing the value of (i) optimized sig1, (ii) sig2, and (iii)
a data frame named "cv" with the tested values of sig1 and the corresponding log-likelihood.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Bullard, F. (1991) Estimating the home range of an animal: a Brownian bridge approach. Master
of Science, University of North Carolina, Chapel Hill.

Horne, J.S., Garton, E.O., Krone, S.M. and Lewis, J.S. (2007) Analyzing animal movements using
brownian bridge. Ecology, in press.

See Also

as.ltraj for further information concerning objects of class ltraj. kernelUD for the classical
kernel estimation. , mcp for estimation of home ranges using the minimum convex polygon, and for
help on the function plot.hrsize.

Examples

Not run:

###
###
###
###
Example of a typical case study

18 kernelbb

with the brownian bridge approach
###

Load the data
data(puechcirc)
x <- puechcirc[1]

Field studies have shown that the mean standard deviation (relocations
as a sample of the actual position of the animal) is equal to 58
meters on these data (Maillard, 1996, p. 63). Therefore
sig2 <- 58

Find the maximum likelihood estimation of the parameter sig1
First, try to find it between 10 and 100.
liker(x, sig2 = 58, rangesig1 = c(10, 100))

Wow! we expected a too large standard deviation! Try again between
1 and 10:
liker(x, sig2 = 58, rangesig1 = c(1, 10))

So that sig1 = 6.23

Now, estimate the brownian bridge
tata <- kernelbb(x, sig1 = 6.23, sig2 = 58, grid = 100)
image(tata)

OK, now look at the home range
image(tata)
plot(getverticeshr(tata, 95), add=TRUE, lwd=2)

###
###
###
###
Comparison of the brownian bridge approach
with the classical approach
###

Take an illustrative example: we simulate a trajectory
suppressWarnings(RNGversion("3.5.0"))
set.seed(2098)
pts1 <- data.frame(x = rnorm(25, mean = 4.5, sd = 0.05),

y = rnorm(25, mean = 4.5, sd = 0.05))
pts1b <- data.frame(x = rnorm(25, mean = 4.5, sd = 0.05),

y = rnorm(25, mean = 4.5, sd = 0.05))
pts2 <- data.frame(x = rnorm(25, mean = 4, sd = 0.05),

y = rnorm(25, mean = 4, sd = 0.05))

kernelbb 19

pts3 <- data.frame(x = rnorm(25, mean = 5, sd = 0.05),
y = rnorm(25, mean = 4, sd = 0.05))

pts3b <- data.frame(x = rnorm(25, mean = 5, sd = 0.05),
y = rnorm(25, mean = 4, sd = 0.05))

pts2b <- data.frame(x = rnorm(25, mean = 4, sd = 0.05),
y = rnorm(25, mean = 4, sd = 0.05))

pts <- do.call("rbind", lapply(1:25, function(i) {
rbind(pts1[i,], pts1b[i,], pts2[i,], pts3[i,],

pts3b[i,], pts2b[i,])
}))
dat <- 1:150
class(dat) <- c("POSIXct","POSIXt")
x <- as.ltraj(pts, date=dat, id = rep("A", 150))

See the trajectory:
plot(x)

Now, we suppose that there is a precision of 0.05
on the relocations
sig2 <- 0.05
and that sig1=0.1
sig1 <- 0.1

Now fits the brownian bridge home range
(kbb <- kernelbb(x, sig1 = sig1,

sig2 = sig2))

Now fits the classical kernel home range
coordinates(pts) <- c("x","y")
(kud <- kernelUD(pts))

The results

opar <- par(mfrow=c(2,2), mar=c(0.1,0.1,2,0.1))
plot(pts, pch=16)
title(main="The relocation pattern")
box()
plot(x, axes=FALSE, main="The trajectory")
box()
image(kud)
title(main="Classical kernel home range")
plot(getverticeshr(kud, 95), add=TRUE)
box()
image(kbb)
title(main="Brownian bridge kernel home range")
plot(getverticeshr(kbb, 95), add=TRUE)
box()
par(opar)

20 kernelkc

###
###
###
###
Image of a brownian bridge.
Fit with two relocations
###

xx <- c(0,1)
yy <- c(0,1)
date <- c(0,1)
class(date) <- c("POSIXt", "POSIXct")
tr <- as.ltraj(data.frame(x = xx,y = yy), date, id="a")

Use of different smoothing parameters
sig1 <- c(0.05, 0.1, 0.2, 0.4, 0.6)
sig2 <- c(0.05, 0.1, 0.2, 0.5, 0.7)

y <- list()
for (i in 1:5) {

for (j in 1:5) {
k <- paste("s1=", sig1[i], ", s2=", sig2[j], sep = "")
y[[k]]<-kernelbb(tr, sig1[i], sig2[j])

}
}

Displays the results
opar <- par(mar = c(0,0,2,0), mfrow = c(5,5))
foo <- function(x)

{
image(y[[x]])
title(main = names(y)[x])
points(tr[[1]][,c("x","y")], pch = 16)

}
lapply(1:length(y), foo)

par(opar)

End(Not run)

kernelkc Kernel Smoothing in Space and Time of the Animals’ Use of Space

Description

These functions estimate the utilization distribution (UD) in space and time of animals monitored
using radio-telemetry, using the product kernel estimator advocated by Keating and Cherry (2009).

kernelkc 21

Note that this approach has also been useful for the analysis of recoveries in programs involving
ringed birds (Calenge et al. 2010, see section examples below).

kernelkc estimate the UD of several animals from an object of class ltraj.

kernelkcbase estimate one UD from a data frame with three columns indicating the spatial coor-
dinates and associated timing.

exwc allows to search for the best value of the time smoothing parameter in the case where the time
is considered as a circular variable (see details).

Usage

kernelkc(tr, h, tcalc, t0, grid = 40, circular = FALSE,
cycle = 24 * 3600, same4all = FALSE,
byburst = FALSE, extent = 0.5)

kernelkcbase(xyt, h, tcalc, t0, grid=40, circular=FALSE,
cycle=24*3600, extent=0.5)

exwc(hv)

Arguments

tr an object of class ltraj

xyt a data frame with three columns indicating the x and y coordinates, as well as
the timing of the relocations.

h a numeric vector with three elements indicating the value of the smoothing pa-
rameters: the first and second elements are the smoothing parameters of the X
and Y coordinates respectively, the third element is the smoothing parameter
for the time dimension. If circular=TRUE it should be a smoothing parameter
in the interval 0-1 (see details). If circular=FALSE this smoothing parameter
should be given in seconds.

tcalc the time at which the UD is to be estimated

t0 if circular=TRUE, this parameter indicates the time at which the time cycle
begins (see examples).

grid a number giving the size of the grid on which the UD should be estimated.
Alternatively, this parameter may be an object of class SpatialPixels. In
addition, for the function kernelkc this parameter can be a list of objects of
class SpatialPixels, with named elements corresponding to each level of the
burst/id

circular logical. Indicates whether the time should be considered as a circular variable
(e.g., the 31th december 2007 is considered to be one day before the 1st january
2007) or not (e.g., the 31th december 2007 is considered to be one year after the
1st january 2007).

cycle if circular=TRUE, the duration of the time cycle. for kernelkc, it should be
given in seconds, and for kernelkcbase, in the units of the data (the units of the
third column of xyt).

22 kernelkc

same4all logical. If TRUE, the same grid is used for all levels of id/burst. If FALSE, one
grid per id/burst is used.

byburst logical. Indicates whether one UD should be estimated by burst of tr, or whether
the data should be pooled across all bursts of each value of id in tr

extent a value indicating the extent of the grid used for the estimation (the extent of the
grid on the abscissa is equal to (min(xy[,1]) + extent * diff(range(xy[,1])))).

hv a value of smoothing parameter for the time dimension.

Details

Keating and Cherry (2009) advocated the estimation of the UD in time and space using the product
kernel estimator. These functions implement exactly this methodology.\

For the spatial coordinates, the implemented kernel function is the biweight kernel.

Two possible approaches are possible to manage the time in the estimation process: (i) the time
may be considered as a linear variable (e.g., the 31th december 2007 is considered to be one day
before the 1st january 2007), or (ii) the time may be considered as a circular variable (e.g., the 31th
december 2007 is considered to be one year after the 1st january 2007).

If the time is considered as a linear variable, the kernel function used in the estimation process
is the biweight kernel. If the time is considered as a circular variable, the implemented kernel is
the wrapped Cauchy distribution (as in the article of Keating and Cherry). In this latter case, the
smoothing parameter should be chosen in the interval 0-1, with a value of 1 corresponding to a
stronger smoothing.

These functions can only be used on objects of class "ltraj", but the estimation of the UD in time
and space is also possible with other types of data (see the help page of kernelkcbase). Note that
both kernelkc and kernelkcbase return conditional probability density function (pdf), i.e. the pdf
to relocate an animal at a place, given that it has been relocated at time tcalc (i.e. the volume under
the UD estimated at time tcalc is equal to 1 whatever tcalc).

The function exwc draws a graph of the wrapped Cauchy distribution for the chosen h parameter
(for circular time), so that it is possible to make one’s mind concerning the weight that can be
given to the neighbouring points of a given time point. Note that although Keating and Cherry
(2009) advocated the use of an automatic algorithm to select "optimal" values for the smoothing
parameter, it is not implemented in adehabitatHR. Indeed, different smoothing parameters may
allow to identify patterns at different scales, and we encourage the user to try several values before
subjectively choosing the value which allows to more clearly identify the patterns of the UD.

Value

kernelkc returns a list of class "estUDm" containing objects of class estUD, mapping one estimate
of the UD per burst or id (depending on the value of the parameter byburst).

kernelkcbase returns an object of class "estUD" mapping the estimated UD.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

kernelkc 23

References

Keating, K. and Cherry, S. (2009) Modeling utilization distributions in space and time. Ecology,
90: 1971–1980.

Calenge, C., Guillemain, M., Gauthier-Clerc, M. and Simon, G. 2010. A new exploratory approach
to the study of the spatio-temporal distribution of ring recoveries - the example of Teal (Anas crecca)
ringed in Camargue, Southern France. Journal of Ornithology, 151, 945–950.

See Also

as.ltraj for additional information on objects of class ltraj, kernelUD for the "classical" kernel
home range estimates.

Examples

Not run:

##
##
Illustrates the analysis of recoveries of
ringed data

data(teal)
head(teal)

compute the sequence of dates at which the
probability density function (pdf) of recoveries is to be estimated

vv <- seq(min(teal$date), max(teal$date), length=50)
head(vv)

The package "maps" should be installed for the example below
library(maps)

re <- lapply(1:length(vv), function(i) {

Estimate the pdf. We choose a smoothing parameter of
2 degrees of lat-long for X and Y coordinates,
and of 2 months for the time
uu <- kernelkcbase(teal, c(2.5,2.5,2*30*24*3600), tcalc =

vv[i], grid=100, extent=0.1)

now, we show the result
potentially, we could type
##
jpeg(paste("prdefu", i, ".jpg", sep=""))
##
to store the figures in a file, and then to build a
movie with the resulting files:

24 kernelkc

##

image(uu, col=grey(seq(1,0, length=8)))
title(main=vv[i])

highlight the area on which there is a probability
equal to 0.95 to recover a bird
****warning! The argument standardize=TRUE should
be passed, because the UD is defined in space and
time, and because we estimate the UD just in space
plot(getverticeshr(uu, 95, standardize=TRUE), add=TRUE,

border="red", lwd=2)

The map:
map(xlim=c(-20,70), ylim=c(30,80), add=TRUE)

and if we had typed jpeg(...) before, we have to type
dev.off()
to close the device. When we have finished this loop
We could combine the resulting files with imagemagick
(windows) or mencoder (linux)
})

##
##
Illustrates how to explore the UD in time and
space with the bear data

data(bear)

compute the sequence of dates at which the UD is to be
estimated
vv <- seq(min(bear[[1]]$date), max(bear[[1]]$date), length=50)
head(vv)

estimates the UD at each time point
re <- lapply(1:length(vv), function(i) {

estimate the UD. We choose a smoothing parameter of
1000 meters for X and Y coordinates, and of 72 hours
for the time (after a visual exploration)
uu <- kernelkc(bear, h = c(1000,1000,72*3600),

tcalc= vv[i], grid=100)

now, we show the result
potentially, we could type
##
jpeg(paste("UD", i, ".jpg", sep=""))
##
to store the figures in a file, and then to build a

kernelkc 25

movie with the resulting files:
##
image(uu, col=grey(seq(1,0,length=10)))
title(main=vv[i])

highlight the 95 percent home range
we set standardize = TRUE because we want to estimate
the home range in space from a UD estimated in space and
time
plot(getverticeshr(uu, 95, standardize=TRUE), lwd=2,

border="red", add=TRUE)

and if we had typed jpeg(...) before, we have to type
dev.off()
to close the device. When we have finished this loop
We could combine the resulting files with imagemagick
(windows) or mencoder (linux)
})

Or, just show the home range:
re <- lapply(1:length(vv), function(i) {

uu <- kernelkc(bear, h = c(1000,1000,72*3600),
tcalc= vv[i])

pc <- getverticeshr(uu, 95, standardize=TRUE)
plot(pc, xlim=c(510000, 530000),

ylim=c(6810000, 6825000))
title(main=vv[i])
})

##
##
Example with several wild boars (linear time)

load wild boar data
data(puechcirc)

keep only the first two circuits:
puechc <- puechcirc[1:2]

Now load the map of the elevation
data(puechabonsp)

26 kernelkc

compute the time point at which the UD is to be estimated
vv <- seq(min(puechcirc[[2]]$date), max(puechcirc[[2]]$date),

length=50)

The estimate the UD
re <- lapply(1:length(vv),

function(i) {

We choose a smoothing parameter of 300 meters for
the x and y coordinates and of one hour for the time
(but try to play with these smoothing parameters)

uu <- kernelkc(puechcirc, h=c(300,300,3600),
tcalc = vv[i], same4all=TRUE,
extent=0.1)

show the elevation
image(puechabonsp$map,

xlim=c(698000,704000),
ylim=c(3156000,3160000))

title(main=vv[i])

and the UD, with contour lines
colo <- c("green","blue")
lapply(1:length(uu), function(i) {

contour(as(uu[[i]],"SpatialPixelsDataFrame"),
add=TRUE, col=colo[i])

})

the blue contour lines show the UD of the mother and
the red ones correspond to her son. Adult wild boars
are known to be more "shy" that the youger ones.
Here, the low elevation corresponds to crop area
(vineyards). The young boar is the first and the
last in the crops

})

##
##
Example with the bear, to illustrate (circular time)

data(bear)

kernelkc 27

We consider a time cycle of 24 hours.
the following vector contains the time points on the
time circle at which the UD is to be estimated (note that
the time is given in seconds)
vv <- seq(0, 24*3600-1, length=40)

for each time point:
re <- lapply(1:length(vv),

function(i) {

Estimation of the UD for the bear. We choose
a smoothing parameter of 1000 meters for the spatial
coordinates and a smoothing parameter equal to 0.2
for the time. We set the beginning of the time
cycle at midnight (no particular reason, just to
illustrate the function). So we pass, as t0, any
object of class POSIXct corresponding t a date at
this hour, for example the 12/25/2012 at 00H00
t0 <- as.POSIXct("2012-12-25 00:00")
uu <- kernelkc(bear, h=c(1000,1000,0.2), cycle=24*3600,

tcalc=vv[i], t0=t0, circular=TRUE)

shows the results
first compute the hour for the title
hour <- paste(floor(vv[i]/3600), "hours",

floor((vv[i]%%3600)/60), "min")

compute the 95% home range
pc <- getverticeshr(uu, 95, standardize=TRUE)
plot(pc, xlim=c(510000, 530000),

ylim=c(6810000, 6825000))
title(main=hour)

compute the 50% home range
pc <- getverticeshr(uu, 50, standardize=TRUE)
plot(pc, add=TRUE, col="blue")

})
Now, each home range computed at a given time point corresponds to
the area used by the animal at this time period. We may for example
try to identify the main difference in habitat composition of the
home-range between different time, to identify differences in
habitat use between different time of the day. We do not do it here
(lack of example data)

28 kerneloverlap

##
##
Example of the use of the function kernelkcbase and
related functions

load the data
data(puechabonsp)
locs <- puechabonsp$relocs

keeps only the wild boar Jean
locs <- locs[slot(locs, "data")[,1]=="Jean",]

compute the number of days since the beginning
of the monitoring
dd <- cumsum(c(0, diff(strptime(slot(locs, "data")[,4], "%y%m%d"))))
dd

compute xyt. Note that t is here the number of
days since the beginning of the monitoring (it
is not an object of class POSIXt, but it may be)
xyt <- data.frame(as.data.frame(coordinates(locs)), dd)

Now compute the time points at which the UD is to be estimated:
vv <- 1:61

and finally, show the UD changed with time:
re <- lapply(1:length(vv),

function(i) {
ud <- kernelkcbase(xyt, h=c(300,300,20),

tcalc=vv[i], grid=100)
image(ud, main=vv[i])
plot(getverticeshr(ud, 95, standardize=TRUE),

border="red", lwd=2, add=TRUE)

Just to slow down the process
Sys.sleep(0.2)
})

End(Not run)

kerneloverlap Spatial Interaction between Animals Monitored Using Radio-Tracking

kerneloverlap 29

Description

These functions implements all the indices of kernel home-range overlap reviewed by Fieberg and
Kochanny (2005). kerneloverlap computes these indices from a set of relocations, whereas
kerneloverlaphr computes these indices from an object containing the utilization distributions
of the animals.

Usage

kerneloverlap(xy, method = c("HR", "PHR", "VI", "BA", "UDOI",
"HD"), percent = 95, conditional = FALSE, ...)

kerneloverlaphr(x, method = c("HR", "PHR", "VI", "BA", "UDOI", "HD"),
percent = 95, conditional = FALSE, ...)

Arguments

xy an object of class SpatialPointsDataFrame containing only one column (which
is a factor indicating the identity associated to the relocations))

x an object of class estUDm containing several home-ranges for which the overlap
is to be calculated

method the desired method for the estimation of overlap (see details)

percent the percentage level of the home range estimation

conditional logical. If TRUE, the function sets to 0 the pixels of the grid over which the UD
is estimated, outside the home range of the animal estimated at a level of proba-
bility equal to percent. Note that this argument has no effect when meth="HR".

... additional arguments to be passed to the function kernelUD for the kernel esti-
mation of the utilization distribution.

Details

Fieberg and Kochanny (2005) made an extensive review of the indices of overlap between utilization
distributions (UD) of two animals. The function kerneloverlap implements these indices. The
argument method allows to choose an index.

The choice method="HR" computes the proportion of the home range of one animal covered by the
home range of another one, i.e.:

HRi,j = Ai,j/Ai

, where Ai,j is the area of the intersection between the two home ranges and Ai is the area of the
home range of the animal i.

The choice method="PHR" computes the volume under the UD of the animal j that is inside the
home range of the animal i (i.e., the probability to find the animal j in the home range of i). That is:

PHRi,j =

∫ ∫
Ai

UDj(x, y)dxdy

where UDj(x, y) is the value of the utilization distribution of the animal j at the point x,y.

30 kerneloverlap

The choice method="VI" computes the volume of the intersection between the two UD, i.e.:

V I =

∫
x

∫
y

min(UDi(x, y), UDj(x, y))dxdy

Other choices rely on the computation of the joint distribution of the two animals under the hypoth-
esis of independence UD[i](x,y) * UD[j](x,y).

The choice method="BA" computes the Bhattacharyya’s affinity

BA =

∫
x

∫
y

√
UDi(x, y)×

√
UDj(x, y)

The choice method="UDOI" computes a measure similar to the Hurlbert index of niche overlap:

UDOI = Ai,j

∫
x

∫
y

UDi(x, y)× UDj(x, y)

The choice method="HD" computes the Hellinger’s distance:

HD =

∫
x

∫
y

((
√
UDi(x, y)−

√
UDj(x, y))

2dxdy)1/2

Value

A matrix giving the value of indices of overlap for all pairs of animals.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>, based on a work of John Fieberg

References

Fieberg, J. and Kochanny, C.O. (2005) Quantifying home-range overlap: the importance of the
utilization distribution. Journal of Wildlife Management, 69, 1346–1359.

See Also

kernelUD for additional information on kernel estimation of home ranges

Examples

Not run:
data(puechabonsp)

kerneloverlap(puechabonsp$relocs[,1],
grid=200, meth="VI", conditional=TRUE)

Identical to

kernelUD 31

kud <- kernelUD(puechabonsp$relocs[,1],
grid=200, same4all=TRUE)

kerneloverlaphr(kud, meth="VI", conditional=TRUE)

other indices
kerneloverlap(puechabonsp$relocs[,1],

grid=200, meth="HR")

kerneloverlap(puechabonsp$relocs[,1],
grid=200, meth="PHR")

kerneloverlap(puechabonsp$relocs[,1],
grid=200, meth="BA")

kerneloverlap(puechabonsp$relocs[,1],
grid=200, meth="UDOI")

kerneloverlap(puechabonsp$relocs[,1],
grid=200, meth="HD")

End(Not run)

kernelUD Estimation of Kernel Home-Range

Description

The function kernelUD estimates the UD of one or several animals.

plotLSCV allows to explore the results of the least-square cross-validation algorithm used to find
the best smoothing value.

image allows a graphical display of the estimates.

getvolumeUD and kernel.area provide utilities for home range and home-range size estimation.

getverticeshr stores the home range contour as an object of class SpatialPolygonsDataFrame
(package sp), with one row per animal.

estUDm2spixdf can be used to convert the result into an object of class SpatialPixelsDataFrame

as.data.frame.estUD can be used to convert an object of class estUD as a data frame.

Usage

kernelUD(xy, h = "href", grid = 60,
same4all = FALSE, hlim = c(0.1, 1.5),
kern = c("bivnorm", "epa"), extent = 1,
boundary = NULL)

S3 method for class 'estUDm'
print(x, ...)

32 kernelUD

S3 method for class 'estUD'
image(x, ...)

S3 method for class 'estUDm'
image(x, ...)

S3 method for class 'estUD'
as.data.frame(x, row.names, optional, ...)

plotLSCV(x)

getvolumeUD(x, standardize = FALSE)

kernel.area(x, percent = seq(20, 95, by = 5),
unin = c("m", "km"),
unout = c("ha", "km2", "m2"), standardize = FALSE)

estUDm2spixdf(x)

Arguments

xy An object inheriting the class SpatialPoints containing the x and y relocations
of the animal. If xy inherits the class SpatialPointsDataFrame, it should con-
tain only one column (factor) corresponding to the identity of the animals for
each relocation.

h a character string or a number. If h is set to "href", the ad hoc method is used
for the smoothing parameter (see details). If h is set to "LSCV", the least-square
cross validation method is used. Note that "LSCV" is not available if kern =
"epa". Alternatively, h may be set to any given numeric value

grid a number giving the size of the grid on which the UD should be estimated. Al-
ternatively, this parameter may be an object inheriting the class SpatialPixels,
that will be used for all animals. For the function kernelUD, it may in addition
be a list of objects of class SpatialPixels, with named elements corresponding
to each level of the factor id.

hlim a numeric vector of length two. If h = "LSCV", the function minimizes the cross-
validation criterion for values of h ranging from hlim[1]*href to hlim[2]*href,
where href is the smoothing parameter computed with the ad hoc method (see
below)

kern a character string. If "bivnorm", a bivariate normal kernel is used. If "epa", an
Epanechnikov kernel is used.

extent a value controlling the extent of the grid used for the estimation (the extent of
the grid on the abscissa is equal to (min(abscissa.relocations) + extent *
diff(range(abscissa.relocations))), and similarly for the ordinate).

same4all logical. If TRUE, the same grid is used for all animals. If FALSE, one grid per
animal is used. Note that when same4all = TRUE, the grid used for the esti-

kernelUD 33

mation is calculated by the function (so that the parameter grid cannot be a
SpatialPixels object).

boundary If, not NULL, an object inheriting the class SpatialLines defining a barrier that
cannot be crossed by the animals. There are constraints on the shape of the
barrier that depend on the smoothing parameter h (***see details***)

x an object of class estUD (UD for one animal) or estUDm (UD for several ani-
mals). For the function estUDm2spixdf, an object of class estUDm only. For the
function as.data.frame.estUD, an object of class estUD only.

percent for kernel.area, a vector of percentage levels for home-range size estimation.
For getverticeshr, a single value giving the percentage level for home-range
estimation.

standardize a logical value indicating whether the UD should be standardized over the area
of interest, so that the volume under the UD and *over the area* is equal to 1.

unin the units of the relocations coordinates. Either "m" for meters (default) or "km"
for kilometers

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares (default)

row.names unused argument here

optional unused argument here

... additionnal parameters to be passed to the generic functions print and image

Details

The Utilization Distribution (UD) is the bivariate function giving the probability density that an
animal is found at a point according to its geographical coordinates. Using this model, one can
define the home range as the minimum area in which an animal has some specified probability of
being located. The functions used here correspond to the approach described in Worton (1995).

The kernel method has been recommended by many authors for the estimation of the utilization
distribution (e.g. Worton, 1989, 1995). The default method for the estimation of the smoothing
parameter is the ad hoc method, i.e. for a bivariate normal kernel

h = σn−
1
6

where
σ2 = 0.5(var(x) + var(y))

which supposes that the UD is bivariate normal. If an Epanechnikov kernel is used, this value
is multiplied by 1.77 (Silverman, 1986, p. 86). Alternatively, the smoothing parameter h may be
computed by Least Square Cross Validation (LSCV). The estimated value then minimizes the Mean
Integrated Square Error (MISE), i.e. the difference in volume between the true UD and the estimated
UD. Note that the cross-validation criterion cannot be minimized in some cases. According to
Seaman and Powell (1998) "This is a difficult problem that has not been worked out by statistical
theoreticians, so no definitive response is available at this time" (see Seaman and Powell, 1998
for further details and tricky solutions). plotLSCV allows to have a diagnostic of the success of
minimization of the cross validation criterion (i.e. to know whether the minimum of the CV criterion
occurs within the scanned range). Finally, the UD is then estimated over a grid.

34 kernelUD

The default kernel is the bivariate normal kernel, but the Epanechnikov kernel, which requires less
computer time is also available for the estimation of the UD.

The function getvolumeUD modifies the UD component of the object passed as argument: that the
pixel values of the resulting object are equal to the percentage of the smallest home range containing
this pixel. This function is used in the function kernel.area, to compute the home-range size.
Note, that the function plot.hrsize (see the help page of this function) can be used to display the
home-range size estimated at various levels.

The parameter boundary allows to define a barrier that cannot be crossed by the animals. When this
parameter is set, the method described by Benhamou and Cornelis (2010) for correcting boundary
biases is used. The boundary can possibly be defined by several nonconnected lines, each one being
built by several connected segments. Note that there are constraints on these segments (not all kinds
of boundary can be defined): (i) each segment length should at least be equal to 3*h (the size of
"internal lane" according to the terminology of Benhamou and Cornelis), (ii) the angle between two
line segments should be greater that pi/2 or lower that -pi/2. The UD of all the pixels located
within a band defined by the boundary and with a width equal to 6*h ("external lane") is set to zero.

Value

The function kernelUD returns either: (i) an object belonging to the S4 class estUD (see ?estUD-class)
when the object xy passed as argument contains the relocations of only one animal (i.e., belong to
the class SpatialPoints), or (ii) a list of elements of class estUD when the object xy passed as argu-
ment contains the relocations of several animals (i.e., belong to the class SpatialPointsDataFrame).

The function getvolumeUD returns an object of the same class as the object passed as argument
(estUD or estUDm).

kernel.area returns a data frame of subclass hrsize, with one column per animal and one row
per level of estimation of the home range.

getverticeshr returns an object of class SpatialPolygonsDataFrame.

estUDm2spixdf returns an object of class SpatialPixelsDataFrame.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

References

Silverman, B.W. (1986) Density estimation for statistics and data analysis. London: Chapman \&
Hall.

Worton, B.J. (1989) Kernel methods for estimating the utilization distribution in home-range stud-
ies. Ecology, 70, 164–168.

Worton, B.J. (1995) Using Monte Carlo simulation to evaluate kernel-based home range estimators.
Journal of Wildlife Management, 59,794–800.

Seaman, D.E. and Powell, R.A. (1998) Kernel home range estimation program (kernelhr). Docu-
mentation of the program.

Benhamou, S. and Cornelis, D. (2010) Incorporating Movement Behavior and Barriers to Improve
Biological Relevance of Kernel Home Range Space Use Estimates. Journal of Wildlife Manage-
ment, 74, 1353–1360.

kernelUD 35

See Also

mcp for help on the function plot.hrsize.

Examples

Load the data
data(puechabonsp)
loc <- puechabonsp$relocs

have a look at the data
head(as.data.frame(loc))
the first column of this data frame is the ID

Estimation of UD for the four animals
(ud <- kernelUD(loc[,1]))

The UD of the four animals
image(ud)

Calculation of the 95 percent home range
ver <- getverticeshr(ud, 95)

and display on an elevation map:
elev <- puechabonsp$map
image(elev, 1)
plot(ver, add=TRUE, col=rainbow(4))
legend(699000, 3165000, legend = names(ud), fill = rainbow(4))

Example of estimation using LSCV
udbis <- kernelUD(loc[,1], h = "LSCV")
image(udbis)

Compare the estimation with ad hoc and LSCV method
for the smoothing parameter
(cuicui1 <- kernel.area(ud)) ## ad hoc
plot(cuicui1)
(cuicui2 <- kernel.area(udbis)) ## LSCV
plot(cuicui2)

Diagnostic of the cross-validation
plotLSCV(udbis)

Use of the same4all argument: the same grid
is used for all animals
BTW, we indicate a grid with a fine resolution:
udbis <- kernelUD(loc[,1], same4all = TRUE, grid = 100)
image(udbis)

36 kernelUD

Estimation of the UD on a map
(e.g. for subsequent analyses on habitat selection)
Measures the UD in each pixel of the map
udbis <- kernelUD(loc[,1], grid = elev)
image(udbis)

##
##
Estimating the UD with the presence of a barrier
The boars are located on the plateau of Puechabon (near
Montpellier, France), and their movements are limited by the
Herault river.

We first map the elevation:
image(elev)

Then, we used the function locator() to identify the limits of the
segments of this barrier. BEWARE! The boundary should satisfy the two
constraints: (i) segment length > 3*h, (ii) no angle lower than pi/2
between successive segments. We choose a smoothing parameter of 100
m, so that no segment length should be less than 300 m.
Because the resolution of the map is 100 m, this means that no
segment should cover less than 3 pixels. We have used the function
locator() to digitize this barrier and then the function dput to
have the following limits:

bound <- structure(list(x = c(701751.385381925, 701019.24105475,
700739.303517889,
700071.760160759, 699522.651915378,
698887.40904327, 698510.570051342,
698262.932999504, 697843.026694212,
698058.363261028),
y = c(3161824.03387414,
3161824.03387414, 3161446.96718494,
3161770.16720425, 3161479.28718687,
3161231.50050539, 3161037.5804938,
3160294.22044937, 3159389.26039528,
3157482.3802813)), .Names = c("x", "y"))

lines(bound, lwd=3)

We convert bound to SpatialLines:
bound <- do.call("cbind",bound)
Slo1 <- Line(bound)
Sli1 <- Lines(list(Slo1), ID="frontier1")
barrier <- SpatialLines(list(Sli1))

estimation of the UD
kud <- kernelUD(loc[,1], h=100, grid=100, boundary=barrier)

kver2spol 37

Result:
image(kud)

Have a closer look to Calou:
kud2 <- kud[[2]]
image(kud2, col=grey(seq(1,0,length=15)))
title(main="Home range of Calou")
points(loc[slot(loc,"data")[,1]=="Calou",], pch=3, col="blue")
plot(getverticeshr(kud2, 95), add=TRUE, lwd=2)
lines(barrier, col="red", lwd=3)

kver2spol Conversion of old classes from adehabitat to classes from adehabi-
tatHR

Description

These functions convert home ranges available in adehabitat toward classes available in the package
adehabitatHR.

kver2spol converts an object of class kver into an object of class SpatialPolygons.

khr2estUDm converts an object of class khr (kernel UD) into an object of class estUDm.

Usage

kver2spol(kv)
khr2estUDm(x)

Arguments

kv an object of class kver.

x an object of class khr.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

38 LoCoH

LoCoH Estimating LoCoH home ranges

Description

The functions computes the home range of one or several animals using the LoCoH family of
methods.

The functions LoCoH.k, LoCoH.r, and LoCoH.a implement the k-LoCoH, r-LoCoH, and a-LoCoH
respectively (Getz et al. 2007).

The functions LoCoH.k.area, LoCoH.r.area, and LoCoH.a.area compute the curve showing the
relationships between the home-range size (computed to a specified percent) and the k, r or a pa-
rameters respectively.

Usage

LoCoH.k(xy, k=5, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

LoCoH.r(xy, r, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

LoCoH.a(xy, a, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

LoCoH.k.area(xy, krange, percent=100, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

LoCoH.r.area(xy, rrange, percent=100, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

LoCoH.a.area(xy, arange, percent=100, unin = c("m", "km"),
unout = c("ha", "m2", "km2"),
duplicates=c("random","remove"), amount = NULL)

Arguments

xy An object inheriting the class SpatialPoints containing the x and y relocations
of the animal. If xy inherits the class SpatialPointsDataFrame, it should con-

LoCoH 39

tain only one column (a factor) corresponding to the identity of the animals for
each relocation.

k numeric. The number of nearest neighbors minus one out of which to create
convex hulls

r numeric. The convex hulls are created out of all points within r distance from
the root points

a numeric. Create convex hulls from the maximum number of nearest neighbors
such that the sum of their distances is less than or equal to this parameter

unin the units of the relocations coordinates. Either "m" for meters or "km" for kilo-
meters

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares

duplicates a setting to determine how duplicated points are handled. If "random" the dupli-
cated points are slightly moved randomly. If "remove" the duplicated points are
removed.

amount if duplicates == random, this parameter controls the amount of noise added to
the data (see the help page of jitter for additional information on this param-
eter).

krange a vector containing the values of k for which the home range size is to be esti-
mated.

arange a vector containing the values of k for which the home range size is to be esti-
mated.

rrange a vector containing the values of k for which the home range size is to be esti-
mated.

percent the percentage level of the home range. For the function plot.LoCoH, this value
could also be the character string "all", indicating that all the polygons are to
be displayed.

Value

The functions LoCoH.* return either objects of class SpatialPolygonsDataFrame (if the reloca-
tions of only one animals are passed as the xy argument) or a list of SpatialPolygonsDataFrame
(if the relocations of several animals are passed as the xy argument).

The functions LoCoH.*.area return invisibly either a vector (if the relocations of only one animals
are passed as the xy argument) or a data frame containing the home-range sizes for various values
of k, r (rows) for the different animals (columns).

Note

These functions rely on the packages rgeos, gpclib, and maptools.

The LoCoH family of methods for locating Utilization Distributions consists of three algorithms:
Fixed k LoCoH, Fixed r LoCoH, and Adaptive LoCoH. All the algorithms work by constructing
a small convex hull for each relocation, and then incrementally merging the hulls together from
smallest to largest into isopleths. The 10% isopleth contains 10% of the points and represents a
higher utilization than the 100% isopleth that contains all the points.

40 LoCoH

Fixed k LoCoH: Also known as k-NNCH, Fixed k LoCoH is described in Getz and Willmers
(2004). The convex hull for each point is constructed from the (k-1) nearest neighbors to that point.
Hulls are merged together from smallest to largest based on the area of the hull.

Fixed r LoCoH: In this case, hulls are created from all points within r distance of the root point.
When merging hulls, the hulls are primarily sorted by the value of k generated for each hull (the
number of points contained in the hull), and secondly by the area of the hull.

Adaptive LoCoH: Here, hulls are created out of the maximum nearest neighbors such that the sum
of the distances from the nearest neighbors is less than or equal to d. Use the same hull sorting as
Fixed r LoCoH.

Fixed r LoCoH and Adaptive LoCoH are discussed in Getz et al (2007).

All of these algorithms can take a significant amount of time. Time taken increases exponentially
with the size of the data set.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>
with contributions from Scott Fortmann-Roe <scottfr@gmail.com>

References

Getz, W.M. & Wilmers, C.C. (2004). A local nearest-neighbor convex-hull construction of home
ranges and utilization distributions. Ecography, 27, 489–505.

Getz, W.M., Fortmann-Roe, S.B, Lyons, A., Ryan, S., Cross, P. (2007). LoCoH methods for the
construction of home ranges and utilization distributions. PLoS ONE, 2: 1–11.

See Also

MCHu, getverticeshr.

Examples

Not run:

Load the data
data(puechabonsp)

The relocations:
locs <- puechabonsp$relocs
locsdf <- as.data.frame(locs)
head(locsdf)

Shows the relocations
plot(locs, col=as.numeric(locsdf[,1]))

Examinates the changes in home-range size for various values of k
Be patient! the algorithm can be very long
ar <- LoCoH.k.area(locs[,1], k=c(8:13))

MCHu 41

12 points seems to be a good choice (rough asymptote for all animals)
the k-LoCoH method:
nn <- LoCoH.k(locs[,1], k=12)

Graphical display of the results
plot(nn, border=NA)

the object nn is a list of objects of class
SpatialPolygonsDataFrame
length(nn)
names(nn)
class(nn[[1]])

shows the content of the object for the first animal
as.data.frame(nn[[1]])

The 95% home range is the smallest area for which the
proportion of relocations included is larger or equal
to 95% In this case, it is the 22th row of the
SpatialPolygonsDataFrame.
The area covered by the home range is for this first animal
equal to 22.87 ha.

shows this area:
plot(nn[[1]][11,])

rasterization of the home ranges:
use the map of the area:
image(puechabonsp$map)
ras <- MCHu.rast(nn, puechabonsp$map, percent=100)
opar <- par(mfrow=c(2,2))
lapply(1:4, function(i) { image(ras,i); box()})
par(opar)

r-LoCoH and a-LoCoH can be applied similarly

End(Not run)

MCHu The Class "MCHu": Managing Home Ranges Built by Multiple Con-
vex Hulls

Description

The class "MCHu" is designed to store home ranges built by multiple convex hulls, for example
built using the single-linkage cluster algorithm (function clusterhr) or the LoCoH (e.g. function
LoCoH.k).

42 MCHu

The function plot.MCHu allows to graphically display the home-ranges.

MCHu.rast allows to compute a raster map of the home ranges.
MCHu2hrsize allows to compute the home range size for specified percentage levels for the home
range (see help(plot.hrsize)).

spoldf2MCHu allows to convert a SpatialPolygonsDataFrame storing home ranges built by multiple
convex hulls into an object of class "MCHu".

Usage

S3 method for class 'MCHu'
print(x, ...)

S3 method for class 'MCHu'
plot(x, percent="all", points=NULL, ...)

MCHu.rast(x, spdf, percent=100)

MCHu2hrsize(x, percent=seq(20,100, by=10), plotit=TRUE)

spoldf2MCHu(spdf, nam="a")

Arguments

x an object of class MCHu.
spdf an object of class SpatialPixelsDataFrame.
points an object of class SpatialPoints or SpatialPointsDataFrame with one col-

umn (a factor storing the identity of the animal for each relocation), containing
the relocations of the animal(s).

percent the percentage level of the home range. For the function plot.MCHu, this value
could also be the character string "all", indicating that all the polygons are to
be displayed.

plotit a logical value indicating whether the results should be plotted.
nam the name of the animal to be used in the object of class "MCHu".
... additional arguments to be passed to the functions print and plot.

Details

The class "MCHu" is basically a list of objects of class SpatialPolygonsDataFrame, with one data
frame per animal.

Value

The function MCHu.rast returns an object of class SpatialPixelsDataFrame.

The function MCHu2hrsize returns an object of class hrsize (see ?mcp.area).

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

mcp 43

See Also

clusthr and LoCoH for home range estimation methods returning this class of objects.

Examples

Not run:
data(puechabonsp)

The relocations:
locs <- puechabonsp$relocs
locsdf <- as.data.frame(locs)
head(locsdf)

Shows the relocations
plot(locs, col=as.numeric(locsdf[,1]))

12 points seems to be a good choice (rough asymptote for all animals)
the k-LoCoH method:
nn <- LoCoH.k(locs[,1], k=12)

Graphical display of the results
plot(nn, border=NA)

Rasterize the home range on the elevation map:
image(puechabonsp$map)
(oo <- MCHu.rast(nn, puechabonsp$map))
image(oo)

End(Not run)

mcp Estimation of the Home Range Using the Minimum Convex Polygon
Estimator

Description

mcp computes the home range of several animals using the Minimum Convex Polygon estimator.
mcp.area is used for home-range size estimation.
hr.rast is used to rasterize a minimum convex polygon.
plot.hrsize is used to display the home-range size estimated at various levels.

Usage

mcp(xy, percent=95, unin = c("m", "km"),
unout = c("ha", "km2", "m2"))

mcp.area(xy, percent = seq(20,100, by = 5),

44 mcp

unin = c("m", "km"),
unout = c("ha", "km2", "m2"), plotit = TRUE)

hr.rast(mcp, w)

S3 method for class 'hrsize'
plot(x, ...)

Arguments

xy An object inheriting the class SpatialPoints containing the x and y relocations
of the animal. If xy inherits the class SpatialPointsDataFrame, it should con-
tain only one column (a factor) corresponding to the identity of the animals for
each relocation.

percent A single number for the function mcp and a vector for the function mcp.area:
100 minus the proportion of outliers to be excluded from the computation.

unin the units of the relocations coordinates. Either "m" (default) for meters or "km"
for kilometers

unout the units of the output areas. Either "m2" for square meters, "km2" for square
kilometers or "ha" for hectares (default)

plotit logical. Whether the plot should be drawn.

x an objet of class hrsize returned by the function mcp.area, or kernel.area
(see kernelUD())

mcp an objet of class SpatialPolygons returned by the function mcp.

w an objet of class SpatialPixelsDataFrame used as a reference for the rasteri-
zation.

... additional arguments to be passed to the function plot.

Details

This function computes the Minimum Convex Polygon estimation after the removal of (100 minus
percent) percent of the relocations the farthest away from the centroid of the home range (com-
puted by the arithmetic mean of the coordinates of the relocations for each animal).

Value

mcp returns an object of class SpatialPolygonsDataFrame, in which the first column contains the
ID of the animals, and the second contains the home range size.

mcp.area returns a data frame of class hrsize, with one column per animal and one row per level
of estimation of the home range.

hr.rast returns an object of class SpatialPixelsDataFrame.

Author(s)

Clement Calenge <clement.calenge@ofb.gouv.fr>

mcp 45

References

Mohr, C.O. (1947) Table of equivalent populations of north american small mammals. The Ameri-
can Midland Naturalist, 37, 223-249.

See Also

chull, SpatialPolygonsDataFrame-class for additionnal information on the class SpatialPolygonsDataFrame.

Examples

data(puechabonsp)
rel <- puechabonsp$relocs

estimates the MCP
cp <- mcp(rel[,1])

The home-range size
as.data.frame(cp)

Plot the home ranges
plot(cp)

... And the relocations
plot(rel, col=as.data.frame(rel)[,1], add=TRUE)

Computation of the home-range size:
cuicui1 <- mcp.area(rel[,1])

Rasterization
ii <- hr.rast(cp, puechabonsp$map)

opar <- par(mfrow=c(2,2))
lapply(1:4, function(i) {image(ii, i); box()})
par(opar)

Index

∗ classes
estUD-class, 11

∗ hplot
clusthr, 10
kver2spol, 37
MCHu, 41
mcp, 43

∗ spatial
BRB, 2
CharHull, 8
clusthr, 10
findmax, 13
getverticeshr, 14
kernelbb, 15
kernelkc, 20
kerneloverlap, 28
kernelUD, 31
LoCoH, 38
MCHu, 41
mcp, 43

as.data.frame.estUD (kernelUD), 31
as.ltraj, 6, 17, 23

BRB, 2

CharHull, 8, 15
chull, 45
clusthr, 10, 15, 43
coerce,estUD,data.frame-method

(estUD-class), 11

estUD-class, 11
estUDm2spixdf (kernelUD), 31
exwc (kernelkc), 20

findmax, 13

getverticeshr, 9, 11, 14, 40
getverticeshrk (kernelkc), 20
getverticeshrs (kernelkc), 20

getvolumeUD (kernelUD), 31
getvolumeUDk (kernelkc), 20
getvolumeUDs (kernelkc), 20

hr.rast (mcp), 43

image.estUD (kernelUD), 31
image.estUDm (kernelUD), 31
infolocs, 6

kernel.area (kernelUD), 31
kernelbb, 6, 15, 15
kernelkc, 15, 20
kernelkcbase (kernelkc), 20
kerneloverlap, 28
kerneloverlaphr (kerneloverlap), 28
kernelUD, 6, 12, 15, 17, 23, 30, 31
khr2estUDm (kver2spol), 37
kver2spol, 37

liker (kernelbb), 15
LoCoH, 38, 43
LoCoH.a, 15

MCHu, 9, 11, 15, 40, 41
MCHu2hrsize (MCHu), 41
mcp, 17, 35, 43

plot.hrsize (mcp), 43
plot.MCHu (MCHu), 41
plotLSCV (kernelUD), 31
print.estUDm (kernelUD), 31
print.liker (kernelbb), 15
print.MCHu (MCHu), 41

show,estUD-method (estUD-class), 11
SpatialPixelsDataFrame, 12
spoldf2MCHu (MCHu), 41

46

	BRB
	CharHull
	clusthr
	estUD-class
	findmax
	getverticeshr
	kernelbb
	kernelkc
	kerneloverlap
	kernelUD
	kver2spol
	LoCoH
	MCHu
	mcp
	Index

