Package ‘adfExplorer’

September 5, 2021
Type Package
Title Import from and Export to Amiga Disk Files
Version 0.1.6
Date 2021-09-05
Author Pepijn de Vries [aut, cre, dtc]
Maintainer Pepijn de Vries <pepijn.devries@outlook.com>

Description Amiga Disk Files (ADF) are virtual
representations of 3.5 inch floppy disks for the
Commodore Amiga. Most disk drives from other systems
(including modern drives) are not able to read these
disks. To be able to emulate this system, the ADF
format was created. This package enables you to read
ADF files and import and export files from and to such
virtual DOS-formatted disks.

Depends R (>=2.10)
Imports methods

Suggests knitr, rmarkdown, ProTrackR
URL https://github.com/pepijn-devries/adfExplorer

BugReports https://github.com/pepijn-devries/adfExplorer/issues
License GPL-3

LazyData True

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-05 08:50:02 UTC

https://github.com/pepijn-devries/adfExplorer
https://github.com/pepijn-devries/adfExplorer/issues

2

adf.disk.name

R topics documented:

adfidiskoname 2
adfeexample L. e e e 3
adffile.exists 4
adffileremove oL 5
amigaBlock-class 6
amigaBlock-method 7
amigaDateToRaw e 8
amigaDisk-class 9
amigalntToRaw 10
blank.amigaDOSDisk L 11
bootblock.code 13
current.adf.dir Lo 14
dircreate.adf 15
displayRawData 16
getadfifile e 17
getblockID 19
get.diskLocation. 20
is.amigaDOS L 21
ishootable 22
listadffiles e 23
PIINt . . . o e 24
putadffile 25
rawToAmigaDate e 26
rawToAmigalnt L 27
rawToBitmap 29
read.adf 30
write.adf . . . oL 32
Index 34
adf.disk.name Get or set the disk name of an amigaDisk object
Description

Get or set the disk name of an amigaDisk object.

Usage

S4 method for signature 'amigaDisk'
adf.disk.name(x)

S4 replacement method for signature 'amigaDisk,character'
adf.disk.name(x) <- value

adf.example 3

Arguments
X An amigaDisk object for which the disk name needs to be obtained or changed.
value A character representation with which the disk’s name needs to be replaced.
Disk name needs to be between 1 and 30 characters long and are not allowed to
contain a colon or forward slash.
Details

DOS-formatted disks (is.amigaDO0S) store their disk name on the socalled root block of the disk.
This method allows you to obtain the disk’s name or change it (when it is DOS-formatted).

Value

Returns A character representation of the disk’s name.

Author(s)

Pepijn de Vries

Examples

Not run:
data(adf.example)

get the disk name:
adf.disk.name(adf.example)

change it if you don't like it:
adf.disk.name(adf.example) <- "MyDisk”

confirm that it has changed:
adf.disk.name(adf.example)

End(Not run)

adf.example An example of an amigaDisk object

Description

An example of an amigaDisk-class object.

Format

An S4 amigaDisk-class object.

4 adf file.exists

Details

An amigaDisk-class object that represents an ’Old File System’ formatted and bootable disk. It
is used in multiple examples of this package. It contains a directory structure and some files that
can be accessed using this package. The content of this example might change in future versions.

Examples

data("adf.example")

adf.file.exists Test file or directory existsence in an amigaDisk object

Description

Tests whether a specific file (or directory) exists in an amigaDisk object.

Usage

S4 method for signature 'amigaDisk,character'
adf.file.exists(x, file)

Arguments
X An amigaDisk object in which this method will check for the file’s existence.
file A character string representing a file or directory name. Use Amiga specifica-
tions for file name (see current.adf.dir).
Details

This method will look for a file/directory header, based on its name. If such a header exists, it is
assumed that the file exists. The file/directory itself is not checked for validity.

Value

Returns a logical value indicating whether the file exists or not.

Author(s)
Pepijn de Vries

Examples
data(adf.example)

This file exists:
adf.file.exists(adf.example, "df@:mods/mod.intro")

This file doesn't:
adf.file.exists(adf.example, "df@:idontexist")

adf.file.remove 5

adf.file.remove Remove a file from an amigaDisk object

Description

Remove a file from a virtual Amiga floppy disk represented by an amigaDisk object.

Usage

S4 method for signature 'amigaDisk,character,logical’
adf.file.remove(x, file, full)

S4 method for signature 'amigaDisk,character,missing'
adf.file.remove(x, file)

Arguments
X An amigaDisk onto which the file should be put.
file A character string of the path on the virtual floppy of the file that should be
removed. The path should be conform Amiga specs (see current.adf.dir). Wild
cards are not allowed (see details). Both files and directories can be removed
from the virtual disk using this function.
full A logical value (default is FALSE). When set to TRUE not only pointers to the
file are removed, but also the data in the header and data blocks. When set
to FALSE, the data is left as orphans on the disk. Technically, these files can be
undeleted, unless they are overwritten.
Details

Remove a file from a virtual Amiga floppy disk (represented by an amigaDisk object. Make sure
that the virtual disk is DOS formatted (see is.amigaDOS). This method can only remove one file at a
time from a virtual virtual disk, it is not allowed to use wild cards in the source or destination names.
It is possible to remove an entire directory at once. Use loops to remove multiple files/directories
from a virtual disk.

Value

Returns an amigaDisk object where the specified file is removed.

Author(s)

Pepijn de Vries

6 amigaBlock-class

Examples

Not run:
This removes a single file from a disk
resulting.disk <- adf.file.remove(adf.example, "df@:mods/mod.intro")

This removes the entire 's' directory and cannot be undone:
resulting.disk <- adf.file.remove(adf.example, "df@:s", TRUE)

End(Not run)

amigaBlock-class The amigaBlock class

Description
The Commodore Amiga stores data on floppy disks as 512 byte blocks. This class reflects such a
block.

Details

There are several types of blocks. Most important are the boot block (used for booting the Amiga
system), the root block (containing information on the disk and the root directory), header blocks
(indicating where to find file data) and data blocks (containing the actual file data). See this pack-
age’s vignette for more details. use the amigaBlock-method to extract a specific block from an
amigaDisk object.

Slots
data The raw data of a ’block’ of data on an Amiga disk file. Each block holds 512 bytes of
information. This slot is therefore a vector of the same length.
Author(s)

Pepijn de Vries

Examples

create a block with no data:
new("amigaBlock")

../doc/amigaDiskFiles.html

amigaBlock-method 7

amigaBlock-method Extract block from or replace a block on an amigaDisk object

Description

Extract an amigaBlock from an amigaDisk object, or replace it on the disk.

Usage

S4 method for signature 'amigaDisk,numeric'
amigaBlock(x, block)

S4 replacement method for signature 'amigaDisk,numeric,amigaBlock'
amigaBlock(x, block) <- value

Arguments
X An amigaDisk object from which the block needs to be extracted or on which
the block needs to be replaced.
block A numeric identifier (whole numbers ranging from 0 up to 1759 (DD disk) or
3519 (HD disk)).
value An amigaBlock object with which the block at the specified location on the disk
needs to be replaced.
Details

Information is stored in 512 byte blocks on floppy disks. This method extracts a specific block at a
numeric identifier (whole numbers ranging from 0 up to 1759 (DD disk) or 3519 (HD disk)) from
an amigaDisk object.

Value

The amigaBlock object at the specified location is returned. In case of the replace method, an
amigaDisk object with a replaced amigaBlock is returned.

Author(s)

Pepijn de Vries

See Also

Other block.operations: get.blockID(), get.diskLocation()

8 amigaDateToRaw

Examples

get the root block from the example adf:
amigaBlock (adf.example, 880)

Create a completely blank disk without file system:
blank.disk <- new("amigaDisk")

Replace the boot block on the blank disk with
that from the example object:
amigaBlock(blank.disk, @) <- amigaBlock(adf.example, @)

The blank disk now has a boot block,
but still no file system...

amigaDateToRaw Convert date time objects into raw values

Description

This function converts date-time objects into raw data conform Amiga file system specifications.

Usage

amigaDateToRaw(x, format = c(”long"”, "short"), tz = "UTC")

Arguments
X A (vector of) POSIXt object(s).
format a character string indicating whether the date should be stored as short or
long integers.
tz A character string specifying the time zone to be used to convert the date time
object. Note that the time zone is not stored on the Amiga. By default the
Universal time zone (UTC) is assumed. You will get a warning when you use a
timezone other then UTC.
Details

The Amiga file system stores date time objects as three unsigned short (16 bit) or long (32 bit)
integers. Where the values are number of days, minutes and ticks (fiftieth of a second) since 1978-
01-01 respectively.

As these values are always positive, only date time values on or after 1978-01-01 are allowed. The
inverse of this function can be achieved with rawToAmigaDate.

Value

returns raw data reflecting the date-time objects conform the Amiga file system specifications.

amigaDisk-class 9

Author(s)

Pepijn de Vries

See Also

Other raw.operations: amigaIntToRaw(), displayRawData(), rawToAmigaDate(), rawToAmigaInt(),
rawToBitmap()

Examples

Note that using the same date-time with different timezones will
result in different raw data. The time zone is not stored.
amigaDateToRaw(as.POSIXct("”1978-01-01 13:30", tz = "UTC"))
amigaDateToRaw(as.POSIXct("”1978-01-01 13:30", tz = "CET"))

amigaDisk-class The amigaDisk class

Description

An S4 class representing the information from an Amiga Disk File.

Details

An Amiga Disk File (ADF) holds the raw data of an Amiga disk in the same order as blocks
(amigaBlock-class) on the physical disks. As an Amiga Disk can hold any kind of information,
so can this class.

An ADF file does not hold any other information. The size of the file will dictate whether it repre-
sents a double density floppy disk (880 kB) or a high density floppy disk (1760 kB). The disk type
is also stored in this class.

Finally, the current directory is stored with this class. Which is only useful for DOS-formatted disks
(with a file structure). By default this is set to the disk’s root.

For more (technical) backgrounds please check this package’s vignette.

Use the objects constructor (new("amigaDisk"”)) to create a completely blank disk (without a
filesystem). If you want to be able to transfer files from and to the virtual disk, use blank.amigaDOSDisk
instead.

Slots

data The raw data of the virtual disk. It should be a vector of length 901,120 in case of a double
density disk and 1,802,240 in case of a high density disk.

type A character indicating whether the virtual disk represents a "DD"” (double density, most
common) or "HD" (high density) disk.

current.dir An integer, pointing at the block address of the current directory of this virtual
disk. Use current.adf.dir to get or set the current directory.

../doc/amigaDiskFiles.html

10 amigalntToRaw

Author(s)

Pepijn de Vries

Examples

This creates a blank non-bootable, non-DOS disk:
new("amigaDisk")

amigalntToRaw Convert Amiga integers into raw values

Description
Convert 8, 16, or 32-bit signed or unsigned integer values into raw data, conform Amiga specifica-
tions.

Usage

amigaIntToRaw(x, bits = 8, signed = F)

Arguments
X A vector of class numeric which needs to be converted into raw values.
bits Number of bits that represents the integer value. Should be 8 or a positive mul-
titude of 8.
signed A logical value indicating whether the numeric values is signed (TRUE, default)
or not (FALSE).
Details

The Commodore Amiga has specified the following data formats to represent integer data: BYTE
(signed 8-bit integer), UBYTE (unsigned 8-bit integer), WORD (signed 16-bit integer), UWORD
(unsigned 16-bit integer), LONG (signed 32-bit integer), ULONG, (unsigned 32-bit integer). This
function converts such integers into raw data.

Value

Returns (a vector of) raw data, representing the integer value(s) conform Amiga specifications.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: amigaDateToRaw(), displayRawData(), rawToAmigaDate(), rawToAmigaInt(),
rawToBitmap()

blank.amigaDOSDisk 11

Examples

some unsigned 8-bit integers:
ubyte <- sample.int(255, 100, TRUE)

The same values as raw data:
amigalIntToRaw(ubyte)

some signed 8-bit integers:
byte <- sample.int(255, 100, TRUE) - 128

The same values as raw data:
amigalntToRaw(byte, signed = TRUE)

some signed 16-bit integers:
word <- sample.int(2716, 100, TRUE) - 2*15

The same values as raw data:
amigalIntToRaw(word, 16, TRUE)

note that 16-bit integers require
twice as many raw values:

length(amigaIntToRaw(word, 16, TRUE))
length(amigaIntToRaw(byte, 8, TRUE))

blank.amigaDOSDisk Create blank disk with file system

Description

Create a virtual blank DOS formatted floppy disk with a file system on it.

Usage

S4 method for signature 'character'
blank.amigaD0SDisk(
diskname,
disktype = c("DD", "HD"),
filesystem = c("OFS", "FFS"),
international = F,
dir.cache = F,

bootable =T,
creation.date = Sys.time()
)
Arguments
diskname A character string of the desired disk name. Disk name should be between

1 and 30 characters long, and should not contain any colon or forward slash
characters.

12 blank.amigaDOSDisk

disktype Either "DD" (double density, most common and therefore default) or "HD" (high
denisity). The type of disk the blank disk should represent.

filesystem Either "OFS" (old file system) or "FFS" (fast file system). FFS is not compatible
with Amiga OS <2.0. On the original system, the FFS was slightly faster and
can requires less data for the file system. It is however less robust: on corrupt
disks, file recovery is more difficult.

international The international mode was introduced in Amiga OS 2.0. In lower versions,
international characters were mistakenly not converted to uppercase when com-
paring file names. The international mode (set this argument to TRUE) corrects
this mistake. The international mode is not compatible with Amiga OS <2.0.

dir.cache The directory cache mode (set this argument to TRUE) was introduced with
Amiga OS 3.0 (and is not compatible with lower versions). On real machines
this allowed for slightly faster directory listing (but costs disk space). The direc-
tory cache mode is always used in combination with the ’international mode’.

bootable When this argument is set to TRUE. Minimal executable code is added to the
bootblock. This code will open the command line interface when the disk is
used to boot the system. In Amiga OS >2.0, the *Startup-Sequence’ file needs to
be present for this, otherwise the screen will remain black on booting. See also
the boot.block. code data.

creation.date A POSIXt object. Will be used and stored as the creation date of the virtual
disk. Note that the Amiga does not store the time zone and UTC is assumed as
default. The Amiga stores the date and time as positive integers, relative to 1st
of January in 1978. As a result, dates before that are not allowed.

Details

Creates a blank amigaDisk object. This method differs from the object constructor (new("”amigaDisk"))
because it also installs a file system on the disk. The blank disk can thus be used to write files onto,

and is also usable in Amiga emulators. For use in emulators, the object needs to be saved with the
write.adf method.

Value

Returns a blank amigaDisk object with a file system installed on it.

Author(s)

Pepijn de Vries

Examples

Create a blank virtual disk compatible with
Amiga OS 1.x and up (Note that spaces in file and
disk names are allowed but not recommended):
disk.os1x <- blank.amigaDOSDisk(diskname = "I'm_0S_1.x_compatible”,
disktype = "DD",
filesystem = "OFS",
international = FALSE,
dir.cache = FALSE,

boot.block.code 13

bootable = TRUE)

create a disk that is compatible with 0S 2.x and up
(no backward compatibility):
disk.o0s2x <- blank.amigaDOSDisk(diskname = "I'm_0S_2.x_compatible”,
disktype = "DD",
filesystem = "FFS",
international = TRUE,
dir.cache = FALSE,
bootable = TRUE)

create a disk that is compatible with 0S 3.x and up
(no backward compatibility):
disk.os3x <- blank.amigaDOSDisk(diskname = "I'm_0S_3.x_compatible”,
disktype "DD",
filesystem = "FFS",
international = TRUE,
dir.cache = TRUE,
bootable = TRUE)

boot.block.code Minimal executable code for a bootblock

Description

A minimal piece of code required to boot to a command line interface on a Commodore Amiga.

Format

A data frame with two columns. The first column contains the assembled code (as raw data).
The second column contains the corresponding Motorola 68000 (the main CPU of the original
Commodore Amiga) assembly syntax.

Details

The first two blocks (amigaDisk) are special and are called the boot block. This block should
contain information on the type of disk and possibly some executable code that will be run at boot
time. This data. frame contains some minimal executable code that will start the Amiga command
line interface. On Amiga OS >=2.0 the screen will stay black unless a startup-sequence file is
present on the disk.

The original code is from Thomas Kessler as published by Laurent Clévy (http://1clevy.free.
fr/adflib/adf_info.html).

Examples
data("boot.block.code")

To create a basic boot block for a DD disk:
bblock <- new("amigaBlock”, data =

http://lclevy.free.fr/adflib/adf_info.html
http://lclevy.free.fr/adflib/adf_info.html

14 current.adf.dir

c(as.raw(c(0x44, 0x4F, 0x53, 0x00, OxE3, 0x3D, OxQE, 0x73,
0x00, 0x00, 0x03, 0x70)), unlist(boot.block.code$assembled),
raw(419))

)

The raw data preceding the executable code are

a label, flags and a checksum.

current.adf.dir Get or set the current directory of an amigaDisk object

Description

Get or set the current directory of an amigaDisk object.

Usage

S4 method for signature 'amigaDisk'
current.adf.dir(x)

S4 replacement method for signature 'amigaDisk,character'
current.adf.dir(x) <- value

Arguments
X An amigaDisk object for which the current directory needs to be obtained or
changed.
value A character representation of the path, that needs to be set as current directory.
Use Amiga DOS syntax as specified in the details
Details

By default the disk’s root is stored as the current directory for a new amigaDisk object. With this
method, the current directory can be retrieved or changed.

For this purpose the path should be specified conform Amiga DOS syntax. Use the disk’s name
or "DFOQ" followed by a colon in order to refer to the disk’s root. Subdirectories are separated by
forward slashes ("/"). Colons and forward slashes are not allowed in file and directory names. Both
upper and lowercase letters are allowed in file and directory names. The case is ignored when iden-
tifying files however. This packages will NOT follow the Amiga’s full search path (https://wiki.
amigaos.net/wiki/AmigaOS_Manual:_AmigaDOS_Working_With_AmigaDOS#Search_Path).

Value

Returns a character representation of the current directory.

Author(s)

Pepijn de Vries

https://wiki.amigaos.net/wiki/AmigaOS_Manual:_AmigaDOS_Working_With_AmigaDOS#Search_Path
https://wiki.amigaos.net/wiki/AmigaOS_Manual:_AmigaDOS_Working_With_AmigaDOS#Search_Path

dir.create.adf 15

Examples

data(adf.example)

by default the current dir is the
disk's root. The disk name is

therefore shown when running

current.adf.dir for the provided
example data:

current.adf.dir(adf.example)

change the current dir:
current.adf.dir(adf.example) <- "DF@:this/is/a/deep/path”

confirm that it has changed:
current.adf.dir(adf.example)

let's set it back to the disk's root:
current.adf.dir(adf.example) <- "DF@:"

dir.create.adf Create a directory on an amigaDisk object

Description

Create a directory on a virtual Amiga floppy disk represented by an amigaDisk object.

Usage

S4 method for signature 'amigaDisk,character,missing,missing'’
dir.create.adf(x, path, date, comment)

S4 method for signature 'amigaDisk,character,POSIXt,missing’
dir.create.adf(x, path, date, comment)

S4 method for signature 'amigaDisk,character,POSIXt,character’
dir.create.adf(x, path, date, comment)

Arguments
X An amigaDisk on which the directory should be created.
path Specify the directory that should be created on x. You can specify the full path

on the virtual disk conform Amiga DOS syntax (see current.adf.dir details).
When no full path is specified the new directory will be created in the current
directory. Note that wild cards are not allowed.

date A POSIXt object that will be used as the directory modification date. When
missing the system time will used.

comment An optional character string that will be included in the directory header as a
comment. Should not be longer than 79 characters.

16 displayRawData

Details

Create a directory on a virtual Amiga floppy disk represented by an amigaDisk object. Make sure
that the virtual disk is DOS formatted.

Value

Returns an amigaDisk object on which the directory is created.

Author(s)

Pepijn de Vries

Examples

Not run:
create a blank DOS disk:
blank.disk <- blank.amigaDOSDisk("blank", "DD", "FFS", TRUE, FALSE, FALSE)

creating a new directory on the blank disk is easy:
blank.disk <- dir.create.adf(blank.disk, "new_dir")

in the line above, the directory is placed in the
current directory (the root in this case). Directories
can also be created by specifying the full path:

blank.disk <- dir.create.adf(blank.disk, "DF@:new_dir/sub_dir")

check whether we succeeded:
list.adf.files(blank.disk)

we can even make it the current dir:
current.adf.dir(blank.disk) <- "DF@:new_dir/sub_dir"

End(Not run)

displayRawData Display raw data in a comprehensive way

Description

Cat raw data to the sink in columns with ASCII code

Usage

displayRawData(x, ncol = 4, col.wid = 4, address.len = 3, hex.upper = T)

get.adf file 17

Arguments
X A vector of class raw to be displayed.
ncol Number of columns of hexadecimal code to display.
col.wid Width of each column (in bytes) to display.
address.len Length of the hexadecimal address (in number of hexadecimal digits) to display.
hex.upper logical value, to specify whether hexadecimals should be displayed in upper-
case (TRUE, default) or lowercase (FALSE).
Details

As binary data is hard to decipher this function will cat raw data as hexadecimal code in columns,
together with the relative (hexadecimal) address of the data and an ASCII translation of the data.
Hexadecimals are shown in space separated columns for improved readability. Special characters
are replaced by dots in the ASCII representation.

Raw data is padded with zeros at the end to fill remaining columns...

Value

The character string send to the sink is also returned by the function.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: amigaDateToRaw(), amigaIntToRaw(), rawToAmigaDate(), rawToAmigaInt(),
rawToBitmap()

Examples

Display some raw random data:
displayRawData(as.raw(sample.int(100)))

Display the full ASCII table:
displayRawData(as.raw(@:255))

get.adf.file Get a file from an amigaDisk object

Description

Get files stored on virtual amigaDisks as raw data or copy as file.

18 get.adf file

Usage

S4 method for signature 'amigaDisk,character,missing'
get.adf.file(x, source, destination)

S4 method for signature 'amigaDisk,character,character’
get.adf.file(x, source, destination)

S4 method for signature 'amigaDisk,character,ANY'
get.adf.file(x, source, destination)

Arguments
X An amigaDisk object from which a file needs to be extracted.
source Specify the source file’s path on the amigaDisk object, conform Amiga specs.
See current.adf.dir for details on these specs.
destination either a file name or a file connection, that allows writing binary data (see e.g.,
file or url). When the destination is missing, the file content is returned as
raw data.
Details

Amiga DOS formatted disks can store any kind of file (as long as the disk’s capacity allows it). Use
this method to extract such files embedded in an Amiga Disk File (ADF) as raw data or copy to a
file on your system.

Value
Returns a vector of raw data when the argument destination is missing. Otherwise returns
nothing.

Author(s)

Pepijn de Vries

Examples

data(adf.example)

Not run:

get the file "Startup-Sequence” from the virtual

example disk and save as a text file in the

current working directory:

get.adf.file(adf.example, "DFQ:S/Startup-Sequence”, "startup.txt")

End(Not run)
get the same file as raw data

by omitting the destination:
startup <- get.adf.file(adf.example, "DF@:S/Startup-Sequence”)

get.blocklD 19

Look, it's a text file:
cat(rawToChar(startup))

if (requireNamespace("ProTrackR", quietly = TRUE)) {
look there is a typical ProTracker module on
the example disk. You can load it like this:

get the file from the virtual disk
as raw data
mod.raw <- get.adf.file(adf.example, "DF@:mods/mod.intro")

open a raw connection with the
newly imported raw data
con <- rawConnection(mod.raw, "rb")

and read it as a ProTracker module
mod <- ProTrackR::read.module(con)
close(con)

plot the first sample from the module:
plot(ProTrackR: :waveform(ProTrackR: :PTSample(mod, 1)),
type = "1", ylab = "amplitude")
} else {
cat("You need to install and load the\nProTrackR package for this part of the example.")
3

get.blockID Get the block ID from the physical location on the disk

Description
Get the block identifier based on the physical location on a disk (side, cylinder and sector) and the
disk type.

Usage

S4 method for signature 'character,numeric,numeric,numeric’
get.blockID(disktype, sector, side, cylinder)

Arguments
disktype A character string indicating the type of disk: DD for double density disks. HD
for high density disks.
sector numeric identifier for the sector on the disk, ranging from O up to 10 (DD disks)
or 21 (HD disks).
side numeric identifier for the side of the disk (0 or 1).

cylinder numeric identifier for the cylinder on the disk, ranging from 0 up to 79.

20 get.diskLocation

Details

Data on Amiga floppy disks are stored as 512 byte blocks. These blocks are physically stored on a
specific cylinder and side at a specific sector. This method returns the block identifier based on the
physical location on the disk. The inverse of this function is achieved with the get.diskLocation
method.

Note that all identifiers (or indices) have a base at zero, for consitency with Amiga specifications
and documentation, opposed to the base of one used in R.
Value

Returns the numeric identifier for the corresponding block.

Author(s)
Pepijn de Vries

See Also

Other block.operations: amigaBlock-method, get.diskLocation()

Examples

Get the block identifier for sectors @ up to 3 combined with
cylinders @ up to 3 on side @ of the disk:
get.blockID(disktype = "DD",

sector = 0:3,

side Q,

cylinder = 0:3)

get.diskLocation Get the physical location on the disk for a specific block

Description

Get the side, cylinder and sector on a disk, based on disk type and block id.

Usage

S4 method for signature 'character,numeric'
get.diskLocation(disktype, block)

Arguments
disktype A character string indicating the type of disk: DD for double density disks. HD
for high density disks.
block numeric identifier of a block. Whole numbers ranging from 0 up to 1759 (for

DD disks) or 3519 (for HD disks). Note that the base index is zero (for consi-
tency with Amiga specifications and documentation) opposed to the base of one
used in R.

is.amigaDOS 21

Details

Data on Amiga floppy disks are stored as 512 byte blocks. These blocks are physically stored on
a specific cylinder and side at a specific sector. This method returns the identifiers for the physical
location based on the block identifier. The inverse of this function is achieved with the get.blockID
method.

Value

Returns a 1ist with corresponding sector, side and cylinder identifiers (numeric).

Author(s)

Pepijn de Vries

See Also

Other block.operations: amigaBlock-method, get.blockID()

Examples

get the physical location of the first 20 blocks on a DD disk
and arrange as a data.frame:
as.data.frame(get.diskLocation(”"DD", ©:19))

is.amigaD0S Check if amigaDisk object is DOS formatted

Description

This method checks if there is a DOS file structure is present on the amigaDisk object.

Usage
S4 method for signature 'amigaDisk'
is.amigaD0S(x)

Arguments

X An amigaDisk object for which the check should be performed.

Details

Not all Amiga Disk Files have a DOS file structure on them. This function checks if there is.

Value

Returns a logical value, indicating whether the disk is DOS formatted. When it is not, the at-
tributes to the returned value will contain information as to why the disk is not DOS compatible.

22 is.bootable

Author(s)

Pepijn de Vries

Examples

data(adf.example)

let's check if the example amigaDisk object
is DOS formatted:

is.amigaD0OS(adf.example)

it apparently is

is.bootable Check if amigaDisk object is bootable

Description

This function checks if the amigaDisk object represents a bootable disk.

Usage

S4 method for signature 'amigaDisk'
is.bootable(x)

Arguments

X An amigaDisk object for which the check should be performed.

Details

The first two amigaBlock-class objects on a disk are special and are called the boot block. The
boot block will determine whether an Amiga can boot from the disk.

This function will determine whether the Amiga would attempt to execute the machine code present
on the boot block. It will not check whether it would be successful at that, as that would require
emulation of the Commodore Amiga system.

Value

Returns a logical value, indicating whether the disk is bootable.

Author(s)

Pepijn de Vries

list.adf files 23

Examples

data(adf.example)

let's check if the example amigaDisk object
is bootable:

is.bootable(adf.example)

it apparently is

list.adf.files List files in an amigaDisk directory

Description

Get a list of files in a specific directory on a virtual amigaDisk.

Usage

S4 method for signature 'amigaDisk,missing'’
list.adf.files(x, path)

S4 method for signature 'amigaDisk,character'
list.adf.files(x, path)

Arguments
X An amigaDisk object for which the files should be listed.
path Specify the path on the amigaDisk object, conform Amiga specs, for which files
should be listed. See current.adf.dir for details on these specs.
Details

As an analogue of list.files, this method list files in a specific directory. But in this case the
files are located on a virtual floppy disk represented by the amigaDisk object. This works only for
DOS-formatted (is.amigaD0S) virtual disks.

Value

Returns a vector of characters listing the files in the specified directory on the virtual disk.

Author(s)

Pepijn de Vries

24

Examples

data(adf.example)

show all files in the root of the example
disk file:
list.adf.files(adf.example)

you can also list the files in a specified
directory:
list.adf.files(adf.example, "DF@:mods")

For the same path, only now specified
relatively to the current directory:
list.adf.files(adf.example, "mods")

print

print Print Amiga Disk File objects

Description

A method to print Amiga Disk File S4 class objects to the sink.

Usage

S4 method for signature 'amigaDisk'
print(x, ...)

S4 method for signature 'amigaBlock'

print(x, ...)
Arguments
X Either a amigaDisk or amigaBlock object.
further arguments passed to or from other methods
Value

Returns nothing (NULL).

Author(s)

Pepijn de Vries

Examples

data(adf.example)

print(adf.example)

put.adf.file 25

put.adf.file Put a file onto an amigaDisk object

Description

Put a file onto a virtual Amiga floppy disk represented by an amigaDisk object.

Usage

S4 method for signature 'amigaDisk,raw,character,POSIXt,character'’
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,raw,character,POSIXt,missing'
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,raw,character,missing,missing'’
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,character,character,POSIXt,character'
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,character,character,POSIXt,missing'
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,character,character,missing,missing’
put.adf.file(x, source, destination, date, comment)

S4 method for signature 'amigaDisk,character,missing,missing,missing’
put.adf.file(x, source, destination, date, comment)

Arguments

X An amigaDisk onto which the file should be put.

source Either a character string of the source file’s path; or a vector of raw data that
should be written to the destination file. Wildcards are not allowed (see details)

destination A character string of the destination path on the virtual floppy disk where
the source file should be put. The path should be conform Amiga specs (see
current.adf.dir). When the destination is missing or only specifies a direc-
tory, the file will be put into the current directory (current.adf.dir) or speci-
fied path of x respectively. In that case, the same file name as that of the source
file is used. Wild cards are not allowed (see details).

date A POSIXt object that will be used as the file modification date. When missing
the system time will used.

comment An optional character string that will be included in the file header as a com-

ment. Should not be longer than 79 characters.

26 rawToAmigaDate

Details

Put a file or raw data from your local system onto a virtual Amiga floppy disk represented by an
amigaDisk object. Make sure that the virtual disk is DOS formatted. This method can only put one
file at a time onto the virtual virtual disk. It is therefore not allowed to use wild cards in the source
or destination names. Use loops to add multiple files onto a virtual disk.

Value

Returns an amigaDisk object onto which the source file is put at the specified destination.

Author(s)

Pepijn de Vries

Examples

Not run:
create a blank disk to put files onto:
blank.disk <- blank.amigaDOSDisk("blank”, "DD", "OFS", TRUE, FALSE, FALSE)

let's copy the base package 'INDEX' file onto the
virtual disk:
blank.disk <- put.adf.file(blank.disk, system.file(”INDEX"))

We can also put raw data onto the virtual disk:
blank.disk <- put.adf.file(blank.disk, raw(2048), "DF@:null.dat"”)

check whether we succeeded:
list.adf.files(blank.disk)

End(Not run)

rawToAmigaDate Convert raw values into a date time object

Description

This function converts raw data into a date time object conform the Amiga file system specifications.

Usage

rawToAmigaDate(x, format = c("long", "short"), tz = "UTC")

rawToAmigalnt 27

Arguments
X a vector of raw values with a length of a multitude of 6 (for the short format)
or 12 (for the long format).
format a character string indicating whether the date is stored as short or long inte-
gers.
tz A character string specifying the time zone to be used to retrieve the date time
object. Note that the time zone is not stored on the Amiga. By default the
Universal time zone (UTC) is assumed.
Details

The Amiga file system stores date time objects as three unsigned short (16 bit) or long (32 bit)
integers. Where the values are number of days, minutes and ticks (fiftieth of a second) since 1978-
01-01 respectively.

As these values are always positive, only date time values on or after 1978-01-01 are allowed. The
inverse of this function can be achieved with amigaDateToRaw.
Value

Returns a POSIXct object based on the provided raw data.

Author(s)

Pepijn de Vries

See Also
Other raw.operations: amigaDateToRaw(), amigaIntToRaw(), displayRawData(), rawToAmigaInt(),
rawToBitmap()

Examples

all raw data is zero, so the origin date is returned:
rawToAmigaDate(raw(12))

let's get the date, one day, one minute and 50 ticks from the origin:
rawToAmigaDate(amigaIntToRaw(c(1, 1, 50), 32))

rawToAmigalnt Convert raw values into Amiga integers

Description

Convert raw data into 8, 16, or 32-bit signed or unsigned integer values, conform Amiga specifica-
tions.

28 rawToAmigalnt

Usage
rawToAmigaInt(x, bits = 8, signed = F)

Arguments
X A vector of class raw to be converted into a character.
bits Number of bits that represents the integer value. Should be 8 or a positive mul-
titude of 8.
signed A logical value indicating whether the integer should be signed (TRUE, default)
or not (FALSE).
Details

The Commodore Amiga has specified the following data formats to represent integer data: BYTE
(signed 8-bit integer), UBYTE (unsigned 8-bit integer), WORD (signed 16-bit integer), UWORD
(unsigned 16-bit integer), LONG (signed 32-bit integer), ULONG, (unsigned 32-bit integer). This
function converts raw data into such integers. Note that WORD and UWORD are also referred to
as SHORT and USHORT respectively.

Value

A numeric value (or a vector of values), representing the integer data represented by the provided
raw data. Note that R defines integer as 32-bit signed integers and cannot store the 32-bit signed
values. Therefore a numeric value is returned rather than an explicit integer.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: amigaDateToRaw(), amigaIntToRaw(), displayRawData(), rawToAmigaDate(),
rawToBitmap()

Examples

Let's start by obtaining unsigned 8-bit integers:
rawToAmigalnt(as.raw(@:255))

note that this is the same as:
as.numeric(as.raw(@:255))

but with this function we can also get signed values:
rawToAmigalnt(as.raw(@:255), signed = TRUE)

Furthermore 32 or 16-bit integers can also be obtained.
Let's look at 16-bit integers:
rawToAmigalnt(as.raw(@:255), 16)

Note that 16-bit integers require twice as many bytes

rawToBitmap 29

as 8 bit integers:
length(rawToAmigalnt(as.raw(@:255), 16))
length(rawToAmigalnt(as.raw(@:255), 8))

rawToBitma Convert raw data into a bitmap or vice versa
p P

Description

Convert raw data into a bitmap or vice versa (i.e., binary data) conform Amiga specifications.

Usage

rawToBitmap(x, invert.bytes = F, invert.longs = T)

bitmapToRaw(x, invert.bytes = T, invert.longs = T)

Arguments

X A vector of raw data, in case rawToBitmapis used. A vector of raw, interger
or logical values should be used in case of bitmapToRaw. In the latter case
each value in the vector is interpeted as a bit and should be a mutiple of 8 long.

invert.bytes A logical value. When set to TRUE, the bit order of bytes are reversed.

invert.longs A logical value. When set to TRUE, the bit order of long values (32 bits) are
reversed. When x does not have a multiple length of 32 bits or 4 bytes, x will be
padded with zeros to the right, but the result will be trimmed to correspond with
the length of x. Note that data might get lost this way.

Details

A bitmap is simply put a map of bits (binary data, which can be interpeted as O or 1; or FALSE
and TRUE). Bitmaps can have several purposes, also on the Commodore Amiga. The Amiga file
system uses a bitmap to indicates which blocks are occupied with data and which are free. Bitmaps
can also be used in bitmap images where each bit indicates which color should be used for a specific
pixel in an image. These function can be used to convert raw data into usable bitmaps or vice versa.

As the Commodore Amiga is a big-endian system (most significant bit first) using a 32 bit CPU, it
may sometimes necessary to invert the bits of a byte or longs (4 bytes, 32 bits), which can be done
with the arguments "invert.bytes’ and *invert.longs’ respectively.

Value
Returns a vector of raw data in case of bitmapToRaw, and a vector of binary raw values in case
of rawToBitmap.

Author(s)

Pepijn de Vries

30 read.adf

See Also

Other raw.operations: amigaDateToRaw(), amigaIntToRaw(), displayRawData(), rawToAmigaDate(),
rawToAmigalInt()

Examples

The bitmap block of the example disk is located at block
number 882 (note that this is not true for all disks,

the actual location is stored in the root block)
data(adf.example)

bitmap.block <- amigaBlock(adf.example, 881)

bitmap data are stored in bytes 5 up to 224 in this block:
bitmap.raw <- bitmap.block@data[5:224]

let's get the bitmap from the raw data:
bitmap <- rawToBitmap(bitmap.raw)

Whe can now get the occupied blocks (minus one is used for
the discrepancy in indexing):
which(bitmap != as.raw(@0x01)) - 1

we can also do the reverse:

bitmap.raw.new <- bitmapToRaw(bitmap)

it should be the same as the original raw data:
all(bitmap.raw.new == bitmap.raw)

WARNING: don't use these methods to directly
modify an amigaDisk objects bitmap block. The
file system on that object may get corrupted.
All methods in this package should update the
bitmap block automatically and cleanly...

read.adf Read an Amiga Disk File

Description
Read data from an Amiga Disk File (ADF) to an amigaDisk object. Alternatively data can be read
from an ADZ file.

Usage

S4 method for signature 'character'
read.adf (file)

S4 method for signature 'ANY'
read.adf (file)

read.adf 31

S4 method for signature 'character'
read.adz(file)

Arguments
file Either a file name or a file connection, that allows reading binary data (see e.g.,
file or url). read.adz only accepts file names.
Details

Amiga Disk Files usually have a .adf-extension to the file name. It should be 880 kB (double
density) or 1760 kB (high density) in size. This function can read such files.

Alternatively, ADZ files can also be read. These are essentially gzipped ADF files.

Note that this package cannot read extended ADF files containing information on the disk’s Mod-
ified frequency modulation (MFM). This information is typically only required for copy protected
disk’s and is therefore out of the scope of this package.

Value

Returns an amigaDisk object read from the provided Amiga disk file

Author(s)

Pepijn de Vries

See Also

Other io.operations: write.adf ()

Examples

Not run:

In order to read an adf-file, we first need one.
so let's first write the example object to a file:
data(adf.example)

write it to the current working directory:
write.adf (adf.example, "test.adf")

now we can read it again:
my.disk <- read.adf("test.adf")
print(my.disk)

and this is how you read it,
using a connection:

con <- file("test.adf"”, "rb")
my.disk2 <- read.adf(con)
close(con)

print(my.disk2)

32

write.adf

Alternatively, you can work with ADZ files:
write.adz(adf.example, "test.adz")
my.disk3 <- read.adz("test.adz")

print(my.disk3)

End(Not run)

write.adf Write an amigaDisk object to an ADF file

Description

Write an amigaDisk object to an Amiga Disk File (ADF) or alternatively to an ADZ file.

Usage

S4

write.

S4

write.

S4

write.

Arguments

X

file

Details

method for signature 'amigaDisk,ANY'
adf(x, file)

method for signature 'amigaDisk,character'
adf(x, file)

method for signature 'amigaDisk,character'
adz(x, file)

An amigaDisk object that needs to be saved to an ADF file.

either a file name to write to, or a file connection, that allows to write binary
data (see file). write.adz only accepts a file name.

Use this function to write amigaDisk objects as binary data to so-called Amiga Disk Files (ADF).
These files can be used as input for Amiga emulator software.

Alternatively, the object can be saved with ’write.adz’, which is essentially a gzipped version of an
ADF file.

Value

Writes to an ADF file but returns nothing.

Author(s)

Pepijn de Vries

write.adf

See Also

Other io.operations: read.adf ()

Examples

Not run:
Let's write the example data to an ADF file:
data(adf.example)

Let's put it in the current working directory:
write.adf(adf.example, "test.adf")

You can also use file connections to do the same:
con <- file("test2.adf”, "wb")

write.adf (adf.example, con)

close(con)

Last but not least the same object can be saved
as an adz file:

write.adz(adf.example, "test.3.adz")

End(Not run)

Index

* amiga.disk.access

amigaDisk-class, 9

* block.operations

amigaBlock-method, 7
get.blockID, 19
get.diskLocation, 20

* blocks

amigaBlock-class, 6

* io.operations

read.adf, 30
write.adf, 32

* raw.operations

adf.
adf.

adf.
adf.

adf.

adf

adf.
adf.

adf.

amigaDateToRaw, 8

amigaIntToRaw, 10

displayRawData, 16
rawToAmigaDate, 26
rawToAmigalnt, 27

rawToBitmap, 29

disk.name, 2

disk.name,amigaDisk-method
(adf.disk.name), 2

disk.name<- (adf.disk.name), 2

disk.name<-,amigaDisk,character-method

(adf.disk.name), 2
example, 3

.file.exists, 4
adf.

file.exists,amigaDisk,character-method

(adf.file.exists), 4
file.remove, 5

amigaBlock<- (amigaBlock-method), 7

amigaBlock<-,amigaDisk,numeric,amigaBlock-method
(amigaBlock-method), 7

amigaDateToRaw, 8, 10, 17, 27, 28, 30

amigaDisk, 2-7, 12-18, 21-26, 30-32

amigaDisk (amigaDisk-class), 9

amigaDisk-class, 9

amigaIntToRaw, 9, 10, 17, 27, 28, 30

bitmapToRaw (rawToBitmap), 29
blank.amigaD0SDisk, 9, 11
blank.amigaDOSDisk,character-method
(blank.amigaD0SDisk), 11
boot.block.code, 12, 13

current.adf.dir, 4, 5,9, 14, 15,18, 23, 25
current.adf.dir,amigaDisk-method
(current.adf.dir), 14
current.adf.dir<- (current.adf.dir), 14
current.adf.dir<-,amigaDisk,character-method
(current.adf.dir), 14

dir.create.adf, 15

dir.create.adf,amigaDisk, character,missing,missing-method
(dir.create.adf), 15

dir.create.adf,amigaDisk,character,POSIXt,character-method
(dir.create.adf), 15

dir.create.adf,amigaDisk,character,POSIXt,missing-method
(dir.create.adf), 15

displayRawData, 9, 10, 16, 27, 28, 30

file.remove,amigaDisk,character,logical-metfied;s 37, 32

(adf.file.remove), 5

file.remove,amigaDisk,character,missing-mgé¢hoddf.file, 17

(adf.file.remove), 5

amigaBlock, 7, 24
amigaBlock (amigaBlock-class), 6
amigaBlock,amigaDisk,numeric-method

(amigaBlock-method), 7

amigaBlock-class, 6
amigaBlock-method, 7

34

get.adf.file,amigaDisk, character,ANY-method
(get.adf.file), 17

get.adf.file,amigaDisk, character,character-method
(get.adf.file), 17

get.adf.file,amigaDisk,character,missing-method
(get.adf.file), 17

get.blocklID, 7, 19, 21

INDEX

35

get.blockID,character,numeric,numeric, numericaméth8ds/

(get.blockID), 19

get.diskLocation, 7, 20, 20 write.adf, 12, 31, 32
get.diskLocation,character,numeric-method write.adf,amigaDisk,ANY-method

(get.diskLocation), 20 (write.adf), 32
write.adf,amigaDisk,character-method
is.amigaDO0S, 3, 5, 21, 23 (write.adf), 32
is.amigaD0S, amigaDisk-method write.adz (write.adf), 32
(is.amigaD0S), 21 write.adz,amigaDisk,character-method
is.bootable, 22 (write.adf), 32

is.bootable,amigaDisk-method

(is.bootable), 22

list.adf.files, 23
list.adf.files,amigaDisk,character-method

(list.adf.files), 23

list.adf.files,amigaDisk,missing-method

(list.adf.files), 23

list.files, 23

POSIXct,

27

POSIXt, 8, 12, 15,25

print, 24

print,amigaBlock-method (print), 24
print,amigaDisk-method (print), 24

put.adf.
put.adf.

put.adf.
put.adf.
put.adf.
put.adf.
put.adf.

put.adf.

file, 25
file,amigaDisk,character,character,missing,missing-method
(put.adf.file), 25
file,amigaDisk,character,character,POSIXt,character-method
(put.adf.file), 25
file,amigaDisk,character,character,POSIXt,missing-method
(put.adf.file), 25
file,amigaDisk,character,missing,missing,missing-method
(put.adf.file), 25
file,amigaDisk,raw,character,missing,missing-method
(put.adf.file), 25
file,amigaDisk,raw,character,POSIXt,character-method
(put.adf.file), 25
file,amigaDisk,raw,character,POSIXt,missing-method
(put.adf.file), 25

rawToAmigaDate, 8-10, 17, 26, 28, 30
rawToAmigalnt, 9, 10, 17,27,27, 30
rawToBitmap, 9, 10, 17,27, 28, 29
read.adf, 30, 33

read.adf,ANY-method (read.adf), 30
read.adf,character-method (read.adf), 30
read.adz (read. adf), 30
read.adz,character-method (read.adf), 30

	adf.disk.name
	adf.example
	adf.file.exists
	adf.file.remove
	amigaBlock-class
	amigaBlock-method
	amigaDateToRaw
	amigaDisk-class
	amigaIntToRaw
	blank.amigaDOSDisk
	boot.block.code
	current.adf.dir
	dir.create.adf
	displayRawData
	get.adf.file
	get.blockID
	get.diskLocation
	is.amigaDOS
	is.bootable
	list.adf.files
	print
	put.adf.file
	rawToAmigaDate
	rawToAmigaInt
	rawToBitmap
	read.adf
	write.adf
	Index

