Package 'agvgd'

February 3, 2022
Type Package
Title An R Implementation of the 'Align-GVGD' Method
Version 0.1.1
Description 'Align-GVGD' ('A-GVGD') is a method to predict the impact of 'missense' substitutions based on the properties of amino acid side chains and protein multiple sequence alignments doi:10.1136/jmg.2005.033878. 'A-GVGD' is an extension of the original 'Grantham' distance to multiple sequence alignments. This package provides an alternative R implementation to the web version found on http://agvgd.hci.utah.edu/.
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2
Imports crayon, dplyr, grantham, magrittr, purrr, rlang, seqinr, stringr, tibble, tidyr, vctrs

Suggests covr, testhat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 2.10)
URL https://maialab.org/agvgd/, https://github.com/maialab/agvgd
BugReports https://github.com/maialab/agvgd/issues
NeedsCompilation no
Author Ramiro Magno [aut, cre] (https://orcid.org/0000-0001-5226-3441), Isabel Duarte [aut] (https://orcid.org/0000-0003-0060-2936), Ana-Teresa Maia [aut] (https://orcid.org/0000-0002-0454-9207), CINTESIS [cph, fnd]
Maintainer Ramiro Magno ramiro.magno@gmail.com
Repository CRAN
Date/Publication 2022-02-03 03:10:02 UTC

R topics documented:

agvgd 2
alignment_file 4
amino_acids 5
cpv_ranges 6
dev 7
gd 8
gv 10
poi_to_res 11
read_alignment 12
read_substitutions 13
res_to_poi 13
Index 15
agvgd Align-GVGD (A-GVGD)

Description

This function implements the Align-GVGD (A-GVGD) method described in Tavtigian et al. (2006).
A-GVGD combines multiple sequence alignment of orthologous sequences with the Grantham distance to classify missense variants, i.e. to distinguish human disease susceptibility missense changes from changes of little clinical significance.

The biochemical variation at each alignment position is converted to a Grantham Variation score (GV) and the difference between these properties and those of the variant amino acid being assessed are calculated and a Grantham Difference score generated (GD). The predicted effect is classed as C0, C15, C25, C35, C45, C55, or C65, with C65 most likely to interfere with function and C0 least likely.

Usage

agvgd(alignment, poi, sub, mode = c("recycle", "expand_grid"), sort = FALSE)

Arguments

alignment A character matrix or an alignment object obtained with read_alignment (). Rows are expected to be sequences of single characters (protein residues), and columns the alignment positions. The first row must be the reference sequence, i.e. the sequence whose substitutions will be evaluated against.
poi A whole number indicating the position of interest (POI).
sub A character vector of protein residue substitutions to be classified. The amino acids must be provided as one-letter symbols.

mode	If both poi and sub contain more than one element, mode specifies how these two inputs are combined. If mode $=$ 'recycle' the shortest vector is recycled to match the length of the longest. If mode $=$ 'expand_grid', all combinations between elements of poi and sub are combined.
sort	Whether to sort the output by gd, or not. Default is FALSE.

Value

A tibble whose observations refer to the combination alignment position and amino acid substitution; consists of seven variables:
res Position of the amino acid residue in the reference protein (first sequence in the alignment). This position corresponds to poi minus the gaps in the alignment.
poi Position of interest, i.e. the alignment position at which the amino acid substitution is being assessed.
ref Reference amino acid, i.e. the amino acid in the first sequence of the alignment, at the position of interest.
sub Amino acid substitution being assessed.
gv Grantham variation score.
gd Grantham difference score.
prediction Predicted effect of the amino acid substitution. This is classed as C0, C15, C25, C35, C 45 , C55, or C65, with C65 most likely to interfere with function and C0 least likely.

References

- Tavtigian, S.V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P.B., de Silva, D., Zharkikh, A., Thomas, A. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics 43, 295-305 (2006). doi: 10.1136/jmg.2005.033878.
- Mathe, E., Olivier, M., Kato, S., Ishioka, C., Hainaut, P., Tavtigian, S.V. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Research 34, 1317-1325 (2006). doi: 10.1093/nar/gkj518.

Examples

```
# Read an alignment into R, e.g. the alignment for gene ATM.
alignment_ATM <- read_alignment(gene = 'ATM')
# Predict the impact of changing the first residue (Met) to a Serine (S).
agvgd(alignment = alignment_ATM, poi = 1, sub = 'S')
# `poi` can be a vector of positions, e.g., 3 thru 10, allow for prediction
# of multiple positions at once.
agvgd(alignment = alignment_ATM, poi = 3:10, sub = 'S')
# `poi` expects a position in the frame of reference of the alignment, i.e.
# an alignment position (a column index). However, if you know instead
```

```
# the residue position in the reference sequence (first sequence in the
# alignment), then you may use the function `residue_pos_to_alignment_pos()`
# to convert from residue position to alignment position.
#
# Example: The second residue in the reference sequence of the ATM alignment
# is a Serine, after a Methionine. In the alignment, there is a gap between
# the two residues, so the alignment is 3 but the residue position on the
# protein is 2.
(poi2 <- res_to_poi(alignment_ATM, 2))
agvgd(alignment = alignment_ATM, poi = poi2, sub = 'A')
# Because changes are context-dependent, i.e. they depend on the residue
# variation observed at a given alignment position, the same reference
# residue when replaced with the same substitution will in general have
# a different predicted impact.
agvgd(alignment = alignment_ATM, poi = 9:10, sub = 'S')
# Use the ancillary function `amino_acids()` to get a vector of one-letter
# residue substitutions if you want to quickly assess the impact of all
# possible substitutions.
agvgd(alignment = alignment_ATM, poi = 1, sub = amino_acids())
# Parameter `mode` gives you flexibility on how to combine `poi` and `sub`.
agvgd(alignment = alignment_ATM, poi = 3:4, sub = c('A', 'V'))
# Use 'expand_grid' for all combinations.
agvgd(alignment = alignment_ATM, poi = 3:4, sub = c('A', 'V'), mode = 'expand_grid')
```

```
alignment_file Pre-bundled alignments
```


Description

This function returns either a data frame of the pre-bundled alignments if parameter gene is missing (default behaviour), or the file name of the alignment of a supplied gene name.

Usage

alignment_file(gene)

Arguments

gene
The gene name of one of the pre-bundled alignments. Run alignment_file() to list all genes available.

Value

Either a data frame of the pre-bundled alignments if parameter gene is missing (default behaviour), or the file name of the alignment of a supplied gene name.

Examples

```
    # List pre-bundled alignment file names and associated genes
    alignment_file()
    # Retrieve the file name of an alignment
    alignment_file("BRCA1")
    # You may get the full path to an alignment file with `system.file()`
    system.file("extdata", alignment_file("BRCA1"), package = "agvgd")
```

amino_acids

The 20 standard amino acids

Description

The 20 amino acids that are encoded directly by the codons of the universal genetic code.

Usage

```
amino_acids(code = c("one_letter", "three_letter"))
```


Arguments

code The type of amino acid symbol to be returned, one-letter ('one_letter') or threeletter ('three_letter') codes.

Value

A character vector of the 20 standard amino acids.

Examples

```
# By default `amino_acids` returns one-letter symbols
amino_acids()
# Use code = 'three_letter' instead for three-letter symbols
amino_acids(code = 'three_letter')
```


Description

This function determines the range (minimum and maximum) values for the three amino acid side chain property values - composition, polarity and molecular volume - from the amino acids at the alignment position of interest.
The alignment passed in alignment must be an already focused alignment of three columns whose second column is the position of interest.

Usage

cpv_ranges(alignment, exclude = c("-", "X", NA_character_))

Arguments

$$
\begin{array}{ll}
\text { alignment } & \begin{array}{l}
\text { A character matrix or an alignment object obtained with read_alignment(). } \\
\text { Rows are expected to be sequences of single characters (protein residues), and } \\
\text { columns the alignment positions. The first row must be the reference sequence, } \\
\text { i.e. the sequence whose substitutions will be evaluated against. }
\end{array} \\
\text { exclude } & \begin{array}{l}
\text { A vector of character values to be ignored when collecting the amino acids at } \\
\text { the position of interest. }
\end{array}
\end{array}
$$

Value

A tibble with one single row, of six variables, i.e., the minimum and maximum values for composition (c_min and c_max), polarity (p_min and p_max) and molecular volume (v_min and v_max).

See Also

$$
\operatorname{gv}()
$$

Examples

```
# You need to first focus the alignment around the position of interest. The
# position of interest is position 4 in the example below. After subsetting
# the alignment, it becomes position 2.
alignment <- read_alignment('ATM')
alignment[, 3:5]
cpv_ranges(alignment[, 3:5])
# If at the position of interest there are symbols other than amino acid
# symbols, e.g. gaps ("-"), then these are ignored and the calculated ranges
# are based only on the observed amino acids.
alignment[, 270:272]
```

cpv_ranges(alignment[, 270:272])
dev Deviation function

Description

This function calculates the deviation in the sense of the Grantham deviation as introduced by Tavtigian et al. (2006). Essentially, if x lies within the range [min, max], then $\operatorname{dev}()$ returns 0 . If x is either below min, or above max, then $\operatorname{dev}()$ returns the absolute difference between x and min or max, respectively.

- -

Inputs are recycled in the sense of vctrs: :vec_recycle().

Usage

$\operatorname{dev}(x, \min , \max)$

Arguments

x
min
$\max \quad$ A numeric vector.

Details

Here's a plot showcasing $\operatorname{dev}()$ with $\min =-4$ and $\max =3$:
$x<--10: 10 ; \min <--4 ; \max <-3$
plot(x, y = dev(x, min, max), type = 'l', xlab = 'x', ylab = 'deviation')

Value

A numeric vector of deviations.

See Also

gd()

Examples

```
\# ‘dev()` returns absolute differences from either min or max (whichever is
\# closest).
\(\operatorname{dev}(10, \min =-4, \max =4)\)
\(\operatorname{dev}(-10, \min =-4, \max =4)\)
\# ‘x` can be a vector
\(\operatorname{dev}(-10: 10, \min =-4, \max =4)\)
\# `min` and `max` can also be vectors, they will be recycled
\(\operatorname{dev}(-10: 10, \min =-4: 16, \max =4: 24)\)
\# If ‘ \(x\) ' contains ‘NA` values, then `dev()' will return `NA` for
\# those cases
\(\operatorname{dev}(c(10, N A), \min =-4, \max =4)\)
\# For each calculation of deviation, only either `min` or `max` is used. If
\# the unused parameter is 'NA` it won't affect the calculation:
\(\operatorname{dev}(c(10,3), \min =c(N A,-4), \max =4)\)
\(\operatorname{dev}(c(10,-5), \min =-4, \max =c(4, N A))\)
```

gd

Grantham deviation

Description

This function calculates the Grantham deviation (gd):

$$
\operatorname{gd}=\rho\left(\left(\alpha \operatorname{dev}^{2}\left(c_{x}, c_{\min }, c_{\max }\right)+\beta \operatorname{dev}^{2}\left(p_{x}, p_{\min }, p_{\max }\right)+\gamma \operatorname{dev}^{2}\left(v_{x}, v_{\min }, v_{\max }\right)\right)^{\frac{1}{2}}\right.
$$

where c_{x} is the value for composition c of amino acid x, i.e. the atomic weight ratio of hetero (noncarbon) elements in end groups or rings to carbons in the side chain; p_{x} is the value for polarity p of amino acid x; and, v_{x} is the value for molecular volume v of amino acid x.
c_{x}, p_{x} and v_{x} are looked up in grantham::amino_acids_properties based on the amino acid identities passed in x. The function dev is implemented in $\operatorname{dev}()$. Remaining variables in the equation are arguments to $\operatorname{gd}()$ and hence are explained below in the Arguments section.

```
Usage
    gd(
        x,
        c_min,
        c_max,
        p_min,
        p_max,
        v_min,
        v_max,
        alpha = 1.833,
        beta = 0.1018,
        gamma = 0.000399,
        rho = 50.723
    )
```


Arguments

$x \quad$ A character vector of one-letter amino acid codes, indicating missense substitutions.
c_min Amino acid composition, minimum value.
c_max Amino acid, composition, maximum value.
p_min Amino acid polarity, minimum value.
p_max Amino acid polarity, maximum value.
v_min Amino acid molecular volume, maximum value.
v_max Amino acid molecular volume, maximum value.
alpha The constant α in Grantham's equation. It is the square inverse of the mean of the composition property.
beta \quad The constant β in Grantham's equation. It is the square inverse of the mean of the polarity property.
gamma The constant γ in Grantham's equation. It is the square inverse of the mean of the molecular volume property.
rho Grantham's distances reported in Table 2, Science (1974). 185(4154): 862-4 by R. Grantham, are scaled by a factor (here named ρ) such that the mean value of all distances are 100. The rho parameter allows this factor ρ to be changed. By default $\rho=50.723$, the same value used by Grantham. This value is originally mentioned in the caption of Table 2 of the aforementioned paper.

Value

A numeric vector of Grantham deviations. Each deviation corresponds to one of the amino acids indicated in x .

See Also

$\operatorname{gv}(), \operatorname{dev}()$

Examples

gd('S', c_min = 0.39, c_max $=0.74$, p_min $=4.9$, p_max $=8.6$, v_min = 3, v_max $=32.5$)

gV
 Grantham variation

Description

This function calculates the Grantham variation (gv):

$$
\mathrm{gv}=\rho\left(\left(\alpha\left(c_{\max }-c_{\min }\right)^{2}+\beta\left(p_{\max }-p_{\min }\right)^{2}+\gamma\left(v_{\max }-v_{\min }\right)^{2}\right)^{\frac{1}{2}}\right.
$$

The minimum and maximum values are those observed for a set of amino acid residues at the alignment position of interest.

Usage

gv(
c_min,
c_max, p_min, p_max, v_min, v_max, alpha $=1.833$, beta $=0.1018$, gamma $=0.000399$, rho $=50.723$
)

Arguments

c_min
c_max Amino acid, composition, maximum value.
p_min Amino acid polarity, minimum value.
p_max Amino acid polarity, maximum value.
v_min Amino acid molecular volume, maximum value.
v_max Amino acid molecular volume, maximum value.
alpha The constant α in Grantham's equation. It is the square inverse of the mean of the composition property.
beta The constant β in Grantham's equation. It is the square inverse of the mean of the polarity property.
gamma The constant γ in Grantham's equation. It is the square inverse of the mean of the molecular volume property.
rho Grantham's distances reported in Table 2, Science (1974). 185(4154): 862-4 by R. Grantham, are scaled by a factor (here named ρ) such that the mean value of all distances are 100. The rho parameter allows this factor ρ to be changed. By default $\rho=50.723$, the same value used by Grantham. This value is originally mentioned in the caption of Table 2 of the aforementioned paper.

Value

A numeric vector of grantham variation values.

See Also

gd(), cpv_ranges()

Examples

```
# Example based on values from Figure 1C of Tavtigian et al. (2006),
# https://doi.org/10.1136/jmg.2005.033878.
gv(c_min = 0, c_max = 0, p_min = 5.7, p_max = 4.9, v_min = 132, v_max = 105)
```

poi_to_res Convert an alignment position to residue position

Description

This function converts an alignment position to a position in the frame of the reference protein sequence, i.e., to the positions of the amino acids in the first sequence of the alignment.

Usage

poi_to_res(alignment, poi)

Arguments

alignment	An alignment.
poi	An alignment position.

Value

An integer vector of positions of the amino acid residues in the reference sequence.

Examples

```
align_ATM <- read_alignment('ATM')
align_ATM[, 1:5]
# Convert the positions of the first five alignment positions to residue positions
poi_to_res(align_ATM, 1:5)
```

read_alignment Read a protein sequence multiple alignment

Description

Reads a protein sequence multiple alignment (PSMA) from either a set of pre-bundled alignments, by gene name, or from a Multi-FASTA file.

Usage

```
read_alignment(
    gene = c("ATM", "BRCA1", "BRCA2", "CHEK2", "MRE11", "MSH6", "NBN", "PALB2", "PMS2",
            "RAD50", "RAD51", "XRCC2"),
        file = NULL
    )
```


Arguments

gene The gene name for which an alignment is provided with this package. Use the function alignment_file() to list the pre-bundled alignments.
file The path to a Multi-FASTA file. If this argument is given, it takes precedence over the gene parameter.

Value

An alignment object; essentially, a character matrix, whose elements are protein residues in oneletter notation. Rows are sequences and columns are alignment positions.

Examples

```
# Read in the alignment for the gene XRCC2
read_alignment('XRCC2')
# Also read in the alignment for the gene XRCC2, but now by specifying
# directly the path to the file.
path <- system.file("extdata", alignment_file("XRCC2"), package = "agvgd")
read_alignment(file = path)
```

```
read_substitutions Read a file with amino acid substitutions
```


Description

This function reads a file with amino acid substitutions. The format of should be the same one as requested by the web version of Align-GVGD.

Usage

```
read_substitutions(
        file = stop("`file` must be specified"),
        amino_acid_code = c("one_letter", "three_letter")
    )
```


Arguments

```
file The path to a file with amino acid substitutions.
amino_acid_code
    The type of symbol used for amino acids in the returned output.
```


Value

A tibble listing the amino acids substitutions.

Examples

```
# "sub.txt" is an example file containing missense substitutions formatted
# according # to the requirements indicated in http://agvgd.hci.utah.edu/help.php.
my_file <- system.file("extdata", "sub.txt", package = "agvgd")
cat(readLines(my_file), sep = "\n")
read_substitutions(file = my_file)
```

res_to_poi Convert a residue position to an alignment position

Description

This function converts an residue position to a position in the frame of the alignment.

Usage

res_to_poi(alignment, res)

Arguments

alignment	An alignment.
res	A residue position.

Value

An integer vector of alignment positions corresponding to residue position in the reference sequence.

Examples

```
align_ATM <- read_alignment('ATM')
align_ATM[, 1:6]
# Convert the positions of the first five residues to alignment positions
res_to_poi(align_ATM, 1:5)
```


Index

```
agvgd, 2
alignment_file,4
alignment_file(),4,12
amino_acids,5
cpv_ranges, 6
cpv_ranges(),11
dev, }
dev(),8,9
gd, }
gd(), 8, 11
grantham::amino_acids_properties, 8
gv, 10
gv(), 6, }
poi_to_res,11
read_alignment,12
read_alignment(), 2,6
read_substitutions,13
res_to_poi,13
tibble, 3, 6, 13
vctrs::vec_recycle(),7
```

