
Alakazam: Topology analysis of lineage trees

Jason Anthony Vander Heiden

2021-10-31

Contents
Example data . 1
Plotting annotations on a tree . 2
Summarizing node properties . 3
Counting and testing node annotation relationships . 6
Counting and testing MRCA annotations . 8

This vignette covers the basics of analyzing the topologies of Ig lineage trees built using
buildPhylipLineage, using some built-in alakazam functions that focus on quantifying annotation
relationships within lineages.

Example data

A small set of annotated example trees, ExampleTrees, are included in the alakazam package. The
trees are igraph objects with the following tree annotations (graph attributes):

• clone: An identifier for the clonal group. These entries correspond to the clone_id column
in the ExampleDb data.frame from which the trees were generated.

• v_gene: IGHV gene name.
• j_gene: IGHJ gene name.
• junc_len: Length of the junction region (nucleotides).

And the following node annotations (vertex attributes):

• sample_id: Time point in relation to influenza vaccination.
• c_call: The isotype(s) assigned to the sequence. Multiple isotypes are delimited by comma,

and reflect identical V(D)J sequences observed with more than one isotype.
• duplicate_count: The copy number (duplicate count), which indicates the total number of

reads with the same V(D)J sequence.

Load required packages
library(alakazam)
library(igraph)
library(dplyr)

Load example trees
data(ExampleTrees)

Select one tree for example purposes

1

graph <- ExampleTrees[[24]]
And add some annotation complexity to the tree
V(graph)$sample_id[c(2, 7)] <- "-1h"
V(graph)$c_call[c(2, 7)] <- "IGHM"

Make a list of example trees excluding multi-isotype trees
graph_list <- ExampleTrees[sapply(ExampleTrees, function(x) !any(grepl(",", V(x)$c_call)))]

Plotting annotations on a tree

There are many options for configuring how an igraph object is plotted which are helpful for
visualizing annotation topologies. Below is an extensive example of how to plot a tree by configuring
the colors, labels, shapes and sizes of different visual elements according to annotations embedded
in the graph.

Set node colors
V(graph)$color[V(graph)$sample_id == "-1h"] <- "seagreen"
V(graph)$color[V(graph)$sample_id == "+7d"] <- "steelblue"
V(graph)$color[V(graph)$name == "Germline"] <- "black"
V(graph)$color[grepl("Inferred", V(graph)$name)] <- "white"

Set node labels
V(graph)$label <- paste(V(graph)$sample_id, V(graph)$c_call, sep=", ")
V(graph)$label[V(graph)$name == "Germline"] <- ""
V(graph)$label[grepl("Inferred", V(graph)$name)] <- ""

Set node shapes
V(graph)$shape <- "crectangle"
V(graph)$shape[V(graph)$name == "Germline"] <- "circle"
V(graph)$shape[grepl("Inferred", V(graph)$name)] <- "circle"

Set node sizes
V(graph)$size <- 60
V(graph)$size[V(graph)$name == "Germline"] <- 30
V(graph)$size[grepl("Inferred", V(graph)$name)] <- 15

Remove large default margins
par(mar=c(0, 0, 0, 0) + 0.05)

Plot the example tree
plot(graph, layout=layout_as_tree, vertex.frame.color="grey",

vertex.label.color="black", edge.label.color="black",
edge.arrow.mode=0)

Add legend
legend("topleft", c("Germline", "Inferred", "-1h", "+7d"),

fill=c("black", "white", "seagreen", "steelblue"), cex=0.75)

2

26

2

1

1

1

5

20

−1h, IGHM

+7d, IGHG

+7d, IGHG

−1h, IGHM

+7d, IGHG

+7d, IGHG

Germline
Inferred
−1h
+7d

Summarizing node properties

Various annotation dependent node statistics can be calculated using the summarizeSubtrees and
getPathLengths functions. getPathLengths calculates distances from the root (germline) to child
nodes, whereas summarizeSubtrees calculates paths and subtree statistics from child nodes.

Calculating distance from the germline

To determine the shortest path from the germline sequence to any node, we use getPathLengths,
which returns the distance both as the number of “hops” (steps) and the number of mutational
events (distance).

Consider all nodes
getPathLengths(graph, root="Germline")

name steps distance
1 Inferred1 1 20
2 GN5SHBT04CW57C 2 26
3 Inferred2 3 28
4 GN5SHBT08I7RKL 4 29
5 GN5SHBT04CAVIG 5 30
6 Germline 0 0
7 GN5SHBT01D6X0W 2 22
8 GN5SHBT06H7TQD 6 31
9 GN5SHBT05HEG2J 4 33

Note, the STEPS counted in the above example include traversal of inferred intermediates. If you
want to exclude such nodes and consider only nodes associated with observed sequences, you can
specify an annotation field and value that will be excluded from the number of steps. In the example
below we are excluding NA values in the c_call annotation (field="c_call", exclude=NA).

3

Exclude nodes without an isotype annotation from step count
getPathLengths(graph, root="Germline", field="c_call", exclude=NA)

name steps distance
1 Inferred1 0 20
2 GN5SHBT04CW57C 1 26
3 Inferred2 1 28
4 GN5SHBT08I7RKL 2 29
5 GN5SHBT04CAVIG 3 30
6 Germline 0 0
7 GN5SHBT01D6X0W 1 22
8 GN5SHBT06H7TQD 4 31
9 GN5SHBT05HEG2J 2 33

Note, steps has changed with respect to the previous example, but distance remains the same.

Calculating subtree properties

The summarizeSubtrees function returns a table of each node with the following properties for
each node:

• name: The node identifier.
• parent: The identifier of the node’s parent.
• outdegree: The number of edges leading from the node.
• size: The total number of nodes within the subtree rooted at the node.
• depth: The depth of the subtree that is rooted at the node.
• pathlength: The maximum path length beneath the node.
• outdegree_norm: The outdegree normalized by the total number of edges.
• size_norm: The size normalized by the total tree size.
• depth_norm: The depth normalized by the total tree depth.
• pathlength_norm: The pathlength normalized by the longest path.

The fields=c("sample_id", "c_call") argument in the example below simply defines which
annotations we wish to retain in the output. This argument has no effect on the results, in constast
to the behavior of getPathLengths.

Summarize tree
df <- summarizeSubtrees(graph, fields=c("sample_id", "c_call"), root="Germline")
print(df[1:4])

name sample_id c_call parent
1 Inferred1 <NA> <NA> Germline
2 GN5SHBT04CW57C -1h IGHM Inferred1
3 Inferred2 <NA> <NA> GN5SHBT04CW57C
4 GN5SHBT08I7RKL +7d IGHG Inferred2
5 GN5SHBT04CAVIG +7d IGHG GN5SHBT08I7RKL
6 Germline <NA> <NA> <NA>
7 GN5SHBT01D6X0W -1h IGHM Inferred1
8 GN5SHBT06H7TQD +7d IGHG GN5SHBT04CAVIG
9 GN5SHBT05HEG2J +7d IGHG Inferred2

4

print(df[c(1, 5:8)])

name outdegree size depth pathlength
1 Inferred1 2 8 6 13
2 GN5SHBT04CW57C 1 6 5 7
3 Inferred2 2 5 4 5
4 GN5SHBT08I7RKL 1 3 3 2
5 GN5SHBT04CAVIG 1 2 2 1
6 Germline 1 9 7 33
7 GN5SHBT01D6X0W 0 1 1 0
8 GN5SHBT06H7TQD 0 1 1 0
9 GN5SHBT05HEG2J 0 1 1 0

print(df[c(1, 9:12)])

name outdegree_norm size_norm depth_norm pathlength_norm
1 Inferred1 0.250 0.8888889 0.8571429 0.39393939
2 GN5SHBT04CW57C 0.125 0.6666667 0.7142857 0.21212121
3 Inferred2 0.250 0.5555556 0.5714286 0.15151515
4 GN5SHBT08I7RKL 0.125 0.3333333 0.4285714 0.06060606
5 GN5SHBT04CAVIG 0.125 0.2222222 0.2857143 0.03030303
6 Germline 0.125 1.0000000 1.0000000 1.00000000
7 GN5SHBT01D6X0W 0.000 0.1111111 0.1428571 0.00000000
8 GN5SHBT06H7TQD 0.000 0.1111111 0.1428571 0.00000000
9 GN5SHBT05HEG2J 0.000 0.1111111 0.1428571 0.00000000

Distributions of normalized subtree statistics for a population of trees can be plotted using the
plotSubtrees function. In the example below, we have specified silent=TRUE which causes
plotSubtrees to return the ggplot object without rendering the plot. The ggplot object are then
plotting using the gridPlot function which places each individual plot in a separate panel of the
same figure.

Set sample colors
sample_colors <- c("-1h"="seagreen", "+7d"="steelblue")

Box plots of node outdegree by sample
p1 <- plotSubtrees(graph_list, "sample_id", "outdegree", colors=sample_colors,

main_title="Node outdegree", legend_title="Time",
style="box", silent=TRUE)

Box plots of subtree size by sample
p2 <- plotSubtrees(graph_list, "sample_id", "size", colors=sample_colors,

main_title="Subtree size", legend_title="Time",
style="box", silent=TRUE)

Violin plots of subtree path length by isotype
p3 <- plotSubtrees(graph_list, "c_call", "pathlength", colors=IG_COLORS,

main_title="Subtree path length", legend_title="Isotype",
style="violin", silent=TRUE)

Violin plots of subtree depth by isotype
p4 <- plotSubtrees(graph_list, "c_call", "depth", colors=IG_COLORS,

main_title="Subtree depth", legend_title="Isotype",

5

style="violin", silent=TRUE)

Plot in a 2x2 grid
gridPlot(p1, p2, p3, p4, ncol=2)

0%

20%

40%

60%

80%

−1h +7d

N
od

e
ou

td
eg

re
e

Time

−1h
+7d

Node outdegree

0%

25%

50%

75%

−1h +7d

S
ub

st
re

e
si

ze

Time

−1h
+7d

Subtree size

0%

25%

50%

75%

100%

IGHA IGHG

P
at

h
le

ng
th

 u
nd

er
 n

od
e Isotype

IGHA
IGHD
IGHE
IGHG
IGHM
IGHK
IGHL

Subtree path length

0%

25%

50%

75%

IGHA IGHG

D
ep

th
 u

nd
er

 n
od

e

Isotype

IGHA
IGHD
IGHE
IGHG
IGHM
IGHK
IGHL

Subtree depth

Counting and testing node annotation relationships

Given a set of annotated trees, you can determine the abundance of specific parent-child relationships
within individual trees using the tableEdges function and the signficance of these relationships
in population of trees using the testEdges function. Annotation relationships over edges can be
calculated as direct or indirect relationships, where a direct relationship is a parent-child pair and
an indirect relationship is a decent relationship that travels through another node (or nodes) first.

Tabulating edges for a single tree

Tabulating all directparent-child annotation relationships in the tree by isotype annotation can be
performed like so:

Count direct edges between isotypes
tableEdges(graph, "c_call")

A tibble: 5 x 3
Groups: parent [3]
parent child count
<chr> <chr> <int>
1 IGHG IGHG 2
2 IGHM <NA> 1
3 <NA> IGHG 2
4 <NA> IGHM 2
5 <NA> <NA> 1

6

The above output is cluttered with the NA annotations from the germline and inferred nodes. We
can perform the same direct tabulation, but exclude any nodes annotated with either Germline or
NA for c_call using the exclude argument:

Direct edges excluding germline and inferred nodes
tableEdges(graph, "c_call", exclude=c("Germline", NA))

A tibble: 1 x 3
Groups: parent [1]
parent child count
<chr> <chr> <int>
1 IGHG IGHG 2

As there are inferred nodes in the tree, we might want to consider indirect parent-child relationships
that traverse through inferred nodes. This is accomplished using the same arguments as above, but
with the addition of the indirect=TRUE argument which will skip over the excluded nodes when
tabulating annotation pairs:

Count indirect edges walking through germline and inferred nodes
tableEdges(graph, "c_call", indirect=TRUE, exclude=c("Germline", NA))

A tibble: 2 x 3
Groups: parent [2]
parent child count
<chr> <chr> <int>
1 IGHG IGHG 2
2 IGHM IGHG 2

Significance testing of edges in a population of trees

Given a population of trees, as a list of annotated igraph objects, you can determine if there is
enrichment for specific annotation pairs using the testEdges function. This has the same options
as tableEdges, except that the values c("Germline", NA) are excluded by default. testEdges
performs a permutation test to generated a null distribution, excluding permutation of of any
annotations specified to the exclude argument (these annotation remain fix in the tree). P-values
output by testEdges are one-sided tests that the annotation pair is observed more often than
expected.

Test isotype relationships
edge_test <- testEdges(graph_list, "c_call", nperm=10)

Print p-value table
print(edge_test)

parent child count expected pvalue
1 IGHA IGHA 36 34.800000 0.0000000
2 IGHA IGHG 2 2.800000 0.7000000
3 IGHG IGHA 1 1.777778 0.5555556
4 IGHG IGHG 99 98.800000 0.3000000

Plot null distributions for each annotation pair
plotEdgeTest(edge_test, color="steelblue", main_title="Isotype Edges",

7

style="hist")

Parent: IGHA Parent: IGHG

C
hild: IG

H
A

C
hild: IG

H
G

0 10 20 30 0 25 50 75 100

0

1

2

3

4

5

0

2

4

6

Number of edges

N
um

be
r

of
 r

ea
liz

at
io

ns

Isotype Edges

Counting and testing MRCA annotations

The most recent common ancestor (MRCA) of an Ig lineage we define herein as the most ancestral
observed (or inferred) sequences in the lineage tree. Meaning, the node that is most proximal (by
some measure) to the germline/root node. The getMRCA and testMRCA functions provide extraction
and significance testing of MRCA sequences by annotation value, respectively.

Extracting MRCAs from a tree

Extracting the MRCA from a tree is accomplished using the getMRCA function. The germline distance
criteria are as described above for getPathLengths and can be either node hops or mutational events,
with or without exclusion of nodes with specific annotations. To simply extract the annotations for
the node(s) immediately below the germline, you can use the path=steps argument without any
node exclusion:

Use unweighted path length and do not exclude any nodes
mrca_df <- getMRCA(graph, path="steps", root="Germline")

Print subset of the annotation data.frame
print(mrca_df[c("name", "sample_id", "c_call", "steps", "distance")])

name sample_id c_call steps distance
Inferred1 Inferred1 <NA> <NA> 1 20

To use mutational distance and consider only observed (ie, non-germline and non-inferred) nodes, we
specify the exclusion field (field="c_call") and exclusion value within that field (exclude=NA):

Exclude nodes without an isotype annotation and use weighted path length
mrca_df <- getMRCA(graph, path="distance", root="Germline",

8

field="c_call", exclude=NA)

Print excluding sequence, label, color, shape and size annotations
print(mrca_df[c("name", "sample_id", "c_call", "steps", "distance")])

name sample_id c_call steps distance
GN5SHBT01D6X0W GN5SHBT01D6X0W -1h IGHM 1 22

Significance testing of MRCA annotations

Similar to testEdges, the function testMRCA will perform a permutation test to determine the
significance of an annotation appearing at the MRCA over a population of trees. P-values output
by testMRCA are one-sided tests that the annotation is observed more often than expected in the
MRCA position.

Test isotype MRCA annotations
mrca_test <- testMRCA(graph_list, "c_call", nperm=10)

Print p-value table
print(mrca_test)

annotation count expected pvalue
1 IGHA 12 11.6 0.0
2 IGHG 31 31.4 0.4

Plot null distributions for each annotation
plotMRCATest(mrca_test, color="steelblue", main_title="Isotype MRCA",

style="hist")

IGHG

IGHA

10 15 20 25 30

0

2

4

6

0

2

4

6

Number of MRCAs

N
um

be
r

of
 r

ea
liz

at
io

ns

Isotype MRCA

9

	Example data
	Plotting annotations on a tree
	Summarizing node properties
	Counting and testing node annotation relationships
	Counting and testing MRCA annotations

