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1 Introduction

Health-related quality of life is a key outcome in health technology assessments because it is patient-relevant
and it is needed to calculate quality-adjusted life years. Quality of life instruments typically measure health
problems in multiple domains using ordinal Likert scales. Value sets or valuation functions convert these
profiles of ordinal measures into cardinal health-related utilities between 1 (perfect health) and minus infinity,
where 0 represents death, and negative values represent health states worse than death. Because 100% quality
of life represents perfect health, health state utilities are limited at 1. The lowest possible utility in a local
value set further defines a lower limit of health state utilities in a local population. Thus, health state utilities
are limited dependent variables. In addition, health state utilities often show gaps between 1 and the next
smaller utility in the value set. These gaps occur more frequently in quality of life instruments with few levels
in the Likert scales such as the EQ-5D-3L (Mulhern et al. 2018). A last but important particularity of health
state utilities is that they can be the consequence of multiple latent classes, or they can exhibit multi-modal
marginal densities (Herndndez Alava et al. 2014).

Adjusted limited dependent variable mixture models are finite mixtures of normal distributions that account
for limits, gaps between 1 and the next smaller utility value and multi-modality (Herndndez Alava, Wailoo,
and Ara 2012; Herndndez Alava et al. 2013, 2014; Herndndez Alava and Wailoo 2015; Mukuria et al. 2019).
These features can improve empirical fit, parameter identification and predictive accuracy compared to
standard regression models. Thus, adjusted limited dependent variable mixture models are particularly useful
for mapping studies (Gray, Wailoo, and Herndndez Alava 2018; Gray, Herndndez Alava, and Wailoo 2018;
Dixon, Hollingworth, and Sparrow 2020; Yang et al. 2019; Xu et al. 2020; Fuller et al. 2017; Pennington et
al. 2020).

The R ‘aldvmm’ package is an implementation of the adjusted limited dependent variable model mixture model
proposed by Herndndez Alava and Wailoo (2015) using normal component distributions and a multinomial
logit model of probabilities of component membership.

The objectives of this vignette are to demonstrate the usage of the ‘aldvinm’ package, show important
challenges of fitting adjusted limited dependent variable mixture models and validate the R implementation
against the STATA® package (Herndndez Alava and Wailoo 2015) using publicly available data.

2 Methods

Adjusted limited dependent variable mixture models are finite mixtures of normal distributions in K
components ¢ with conditional expectations E[y| X, c] = X3¢ and standard deviations o¢. The probabilities of
component membership are estimated using a multinomial logit model as P[c|X| = exp(Xd°)/ Zle exp(X*).
The model accumulates the density mass of the finite mixture below a minimum value ¥, at the value ¥y,
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and the density mass above a maximum value W5 at 1. If the maximum value W5 is smaller than 1, the model
emulates a value set with a gap between 1 and the next smaller value.

1 if yi|C > Wy
yile = Uy if yile < Uy (1)
yile i Uy < y;le < Uy

In this vignette, we estimate the same models of post-operative EQ-5D-3L utilities as Herndndez Alava and
Wailoo (2015) and include post-operative Oxford Hip Scores (divided by 10) as the only explanatory variable
x.

Model 1:  Ely|e, X] = S5+ BSz
Plc|X] = mlogit(5§)
2)
Model 2:  Ely|e, X] = p§+ BSz
Plc|X] = mlogit(d§ + 65x)

The aldvmm() function fits an adjusted limited dependent variable mixture model using the likelihood
function from Herndndez Alava and Wailoo (2015). The function calls optimr::optimr to minimize the
negative log-likelihood using numerical gradients from numDeriv::grad(). The aldvmm() function accepts all
optimization methods available in optimr::optimr() except for “nlm,” which requires a different implementation
of the likelihood function.

The model formula in aldvmm() is an object of class “formula” with two parts on the right-hand side of ~.
The first part on the left of the | delimiter represents the model of expected values of K normal distributions.
The second part on the right of the | delimiter represents the model of probabilities of component membership
from a multinomial logit model.

The ‘aldvmm’ package provides four options for the generation of starting values of the optimization algorithm.
1. “zero”: A vector of zeroes (default).
2. “random”: A vector of standard normal random values.

3. “constant”: Parameter estimates of a constant-only model as starting values for intercepts and standard
deviations, and zeroes for all other parameters.!

4. “sann”: Parameter estimates of a simulated annealing algorithm.

The ‘aldvmm’ package obtains fitted values using the expected value function from Herndndez Alava and
Wailoo (2015). Covariance matrices and standard errors of parameters are obtained from a numerical
approximation of the hessian matrix using numDeriv::hessian(). Standard errors of fitted values in the
estimation data SEif * and standard errors of predicted values in new data SE? " are calculated using the
delta method (Dowd, Greene, and Norton 2014; Whitmore 1986). G; denotes the gradient of a fitted value
with respect to changes in parameter estimates, 3 denotes the covariance matrix of parameters, and M SE
denotes the mean squared error of fitted versus observed values in the estimation data.

SEI'" = \/GI3G; (3)
SErret =\ /MSE + G/%G, (4)

The aldvmm() function returns an object of S3 class “aldvmm” for which methods for generic functions
summary() and predict() are available.

1The auxiliary models for obtaining starting values are fitted using zero starting values.



3 Installation

The ‘aldvmm’ package can be installed from cran.

install.packages("aldvmm")

4 Data

We analyze the same publicly available EQ-5D-3L utility data from English patients after hip replacement in

2011 and 2012 (NHS Digital 2013) as Herndndez Alava and Wailoo (2015) in their description of the STATA®
ALDVMM package.

temp <- tempfile()

url <- pasteO("https://files.digital.nhs.uk/publicationimport/publixxx/",
"pub11359/final-proms-eng-aprll-mari2-data-pack-csv.zip")

download.file(url, temp)

rm(url)
df <- read.table(unz( temp,
"Hip Replacement 1112.csv"),
TRUE)
unlink (temp)
rm(temp)

df <- df[, c("AGEBAND", "SEX", "Q2_EQ5D_INDEX", "HR_Q2_SCORE")]
df <- df [df$AGEBAND != "x" & 4f$SEX != "x", ]

df$eqbd <- df$Q2_EQ5D_INDEX
df$hr <- df$HR_Q2_SCORE/10

df <- df[stats::complete.cases(df), ]

set.seed(101010101)
df <- df[sample(l:nrow(df), nrow(df)*0.3), ]

The data includes 35’166 observations with complete information on patients’ post-operative utilities, Oxford
Hip Scores, age and sex. Like Herndndez Alava and Wailoo (2015), we draw a 30% sub-sample of 10’549
observations from the population of complete observations of these variables. Although we follow a similar
approach in data preparation preparation as Herndndez Alava and Wailoo (2015), our random sample is not
identical to the data used in their study. Post-operative EQ-5D-3L utilities from English value sets (Dolan
1997) show a bimodal distribution, limits at -0.594 and 1 and a gap between 1 and 0.883 (figure 1).

5 Results
5.1 Model 1

5.1.1 BFGS optimization method with zero-only starting values

We first fit model 1 with the “BFGS” optimization method and “zero” initial values. The values 0.883 and
-0.594 in the argument ‘psi’ represent the maximum and minimum values smaller than 1 in the English value
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Figure 1: Frequency distribtution of observed EQ-5D-3L utilities

set (Dolan 1997). As the data showed a bi-modal distribution (figure 1), we estimate a mixture of 2 normal
distributions (‘nemp’ = 2). aldvmm() returns an object of class “aldvmm.”

library("aldvmm")

fit <- aldvmm::aldvmm(egbd ~ hr | 1,

df,
c(0.883, -0.594),
2’
"zero",
"BFGS")
summary (fit)
pred <- predict(fit,
daf,
TRUE,
"fit")

We obtain a summary table of regression results using the generic function summary(). The model converges
at a log-likelihood of 706.32 and an Akaike information criterion value of -1’398.65 (table 1).

The coefficients of the intercept and covariates for the expected values Ely|c, X] of the normal distributions
can be interpreted as marginal effects on component means. ‘Insigma’ denotes the natural logarithm of the
estimated standard deviation o¢. The coeflicients of covariates in the multinomial logit model of probabilities
of component membership are log-transformed relative probabilities. Our model only includes two components,
and the multinomial logit model collapses to a binomial logit model. The intercept of 0.728 means that the
average probability of an observation in the data to belong to component 1 is exp(0.728) or 2.0709346 times
the probability to belong to component 2.

We obtain expected values of observations in the estimation data using the generic function predict(). Standard
errors of fitted (estimation data) or predicted (new data) values are calculated using the delta method.
Expected values exhibit a smoother distribution than observed values and do not show a gap between 1 and
0.883, because they are weighted averages of component distributions and 1.



Table 1: Regression results from modell with "BFGS" optimization method and "zero" starting values

Estimate Std. Err. z P>z] [95% Conf. Intervall
E[y|X, ]
Compl (Intercept) 0.236 0.007 34.179  0.000 0.222 0.249
hr 0.146 0.002 76.362  0.000 0.142 0.150
Insigma -2.462 0.018 -138.131  0.000 -2.497 -2.427
Comp?2 (Intercept) -0.431 0.022  -19.231 0.000 -0.475 -0.387
hr 0.313 0.007 47.942  0.000 0.301 0.326
Insigma -1.248 0.022  -57.989 0.000 -1.290 -1.206
Plc|X]
Compl (Intercept) 0.728 0.061 12.006  0.000 0.609 0.847

N =10549 11 =1706.32 AIC =-1398.65 BIC =-1347.80
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Figure 2: Expected values from base case model

Expected values of observations in the estimation data can also be used to calculate average incremental effects
or average treatment effects on the treated. Average treatment effects on the treated compare predictions
for treated individuals to predictions for the same individuals without the effect of the treatment indicator.
Standard errors of average treatment effects on the treated can be calculated using the delta meethod (see
example code in the appendix).

5.1.2 Comparison of optimization methods

Herndndez Alava and Wailoo (2015) suggested that the likelihood function of the adjusted limited dependent
variable mixture model with the English EQ-5D-3L data might have multiple local optima, and that the
estimation is sensitive to initial values. We thus fit model 1 with all optimization algorithms and methods for
generating initial values available in aldvmm() to assess the sensitivity of the model to optimization settings
and to find the maximum likelihood estimates.

init.method <- c("zero", "random", "constant", "sann"

optim.method <- c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "nlminb", "Rcgmin",
"Rvmmin" s uhjnn)

fitl all <- 1list()



for (i in init.method) {
for (j in optim.method) {
set.seed(101010101) # Seed for random starting values
fitl_all[[i]]1[[j]] <- aldvmm::aldvmm(eq5d ~ hr | 1,
df,
c(0.883, -0.594),
2,
i,
3
}
}

The maximum likelihood varies considerably across optimization methods and initial values which confirms
the sensitivity of the model to changes in these settings (table 2). The most frequent log-likelihood is 706.32,
but the Hooke and Jeeves Pattern Search Optimization (“hjn”) with “zero” initial values converges at a
log-likelihood 33°057.43.

The optimization methods “Nelder-Mead,” “CG,” “L-BFGS-B,” and “Rvmmin” are particularly sensitive to
starting values. The method “BFGS” coverges at a log-likelihood of 706.32 with three of four sets of initial
values, and the method “hjn” with two of four sets of initial values. The methods “nlminb” and “Rcgmin”
converge at a log-likelihood of 706.32 regardless of initial values.

Table 2: Log-likelihood by optimization method

Nelder-Mead  BFGS CG L-BFGS-B nlminb Recgmin  Rvmmin hjn
Zero -259.21  706.32  223.96 -4513.33 706.32  706.32  -8393.14 33057.43
random -434.21  -623.98 65.03 -2830.18 706.32  706.32 -11074.58  -627.78
constant 354.36  706.32 -601.52 -634.81 706.32  706.32 -10867.67 706.32
sann 706.19  706.32  576.51 706.32 706.32  706.32 706.32 706.32

The computation times of optimization routines vary considerably across methods (table 3). The optimization
methods “Nelder-Mead,” “BFGS,” “L-BFGS-B” and “Rvmmin” are the fastest methods, but this speed comes
at the cost of a higher risk of convergence at local optima. Naturally, the generation of initial values using
simulated annealing (“sann”) is the slowest method for generating initial values which results in long overall
computation times of aldvinm(). The Hooke and Jeeves Pattern Search Optimization (“hjn”) with “zero”
starting values that converges at the largest log-likelihood is the slowest approach with a computation time
of 15.16 minutes.

Table 3: Estimation time [minutes] by optimization method
Nelder-Mead BFGS CG L-BFGS-B nlminb Rcgmin Rvmmin hjn

Zero 0.14 0.30 1.01 0.10 0.54 4.20 0.05 15.16
random 0.13 0.39 1.07 0.20 0.54 4.16 0.05 041
constant 0.20 0.48 1.35 0.31 0.83 2.96 0.05 1.00
sann 2.13 2.06 3.00 3.07 2.33 5.38 2.04 4.06

Parameter estimates differ considerably across the three optimization algorithms (table 4). The solution of
the “hjn” method is rather extreme with no effect of the Oxford Hip Score and a standard deviation of almost
0 in component 1 and a very low probability of membership of component 1.

To get a better understanding of the differences between the results of the “Nelder-Mead,” “nlminb” and “hjn”
algorithms we plot the densities of each component weighted by the probability of component membership.

nsim <- 100
hr <- 3.825244 # Population average Ozxford Hip Score



Table 4: Regression results of modell with zero starting values in "Nelder-Mead", "nlminb" and "hjn" algorithms

Nelder-Mead nlminb hjn
E[y|X, ]
Compl (Intercept) -0.057 -0.431 0.691
hr 0.223 0.313 0.000
Insigma -1.838 -1.248 -36.737
Comp2 (Intercept) 4.402 0.236 -0.149
hr -0.997 0.146 0.250
Insigma 0.125 -2.462 -1.589
Plc|X]
Compl (Intercept) 3.849 -0.728 -2.190

N =10549 11 =-259.21 AIC =53242 AIC =-1398.65 AIC = -66100.87

# Nelder—Mead parameter estimates

ni <- nsim*exp(3.8489)/(1 + exp(3.8489))
meanl <- -0.0575 + 0.2233 * hr

sdl  <- exp(-1.8381)

n2 <- nsim*x(1 - exp(3.8489)/(1 + exp(3.8489)))
mean2 <- 4.4022 + -0.9974 * hr

sd2  <- exp(0.1250)

# Make plot
ggplot2: :ggplot( data.frame( c(-1, 1)), aes(x)) +
ggplot2: :stat_function( dnorm,
ni,
list( meani, sdl)) +
ggplot2: :stat_function( dnorm,
n2,
list( mean?2, sd2))

The densities in the solution of the “Nelder-Mead” method resemble the bi-model distribution observed in the
data (figure 3). The densities in the solution of the “nlminb” method include two distributions with similar
means but different standard deviations (figure 4). The densities in the solution of the “hjn” method include
two distributions with similar means, but component 1 shows an extremely small standard deviation and a
low probability of group membership (figure 5). The density plots also suggest that the model fit benefits
more from improving the modeling of the more frequently observed higher utilities rather than replicating
the bi-modal distribution observed in the data. Overall, the differences between optimization methods show
that it is very difficult to fit a two-component model to the data. We suspect that a simple one-component
model would be more likely to converge towards a global optimum and would fit the data similarly well as
the two-component model.

The differences in parameter estimates from different optimization methods show that the choice of the
optimization algorithm and initial values is very important for parameter identification. As adjusted limited
dependent variable mixture models are frequently used for tasks that rely on predictions, we also compare
expected values from the “Nelder-Mead” and “hjn” methods to expected values from the “nlminb” method.
Expected values from the “Nelder-Mead” and “hjn” methods differed from expected values from the “nlminb”
method among observations with lower expected values (figure 6).

An visual inspection of mean residuals over deciles of expected values shows that model 1 fits the data poorly
regardless of the optimization method, and that the patterns of over- and under-predictions of observed
values are similar across optimization methods despite different log-likelihoods (figure 9, figure 10 and figure
11 in the appendix).
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Figure 3: Densities in components based on “Nelder-Mead” parameter estimates (observation with population

average Oxford Hip Score 3.8489)
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Figure 4: Densities in components based on “nlminb” parameter estimates (observation with population

average Oxford Hip Score 3.8489)
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Figure 5: Densities in components based on “hjn” parameter estimates (observation with population average
Oxford Hip Score 3.8489)
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Figure 6: Expected values from model 1, “Nelder-Mead” and “hjn” versus “nlminb” with zero starting values



5.1.3 Constrained optimization with user-defined initial values

We can also fit model 1 with user-defined starting values and box constraints. When constraints are imposed,
the aldvmm() function uses the optimization method “L-BFGS-B,” which shows very sensitive to starting
values. We use zero initial values for all parameters except for the intercept in the multinomial logit which
we set to the estimate from the “nlminb” optimization method with “zero” sarting values (0.7283) (table
4). We impose a lower limit of -3 to the log-standard deviations in both components. The aldvmm()
function returns a warning that the covariance matrix included negative values on the diagonal. We see
that these values are the variances of the intercept and the log-standard deviation in component 2 (table
5). The log-likelihood amounts to -627.78, which is even lower than the log-likelihood in the solution of the
“Nelder-Mead” optimization method with “zero” starting values. The parameter estimates do not resemble
any of the solutions of the unconstrained “Nelder-Mead,” “nlminb” or “hjn” optimization methods with “zero”
values (table 4), which further emphasizes the difficulties in finding a global optimum of the likelihood with
English EQ-5D-3L utilities after hip replacement.

init <- c(0, 0, 0, 0, 0, 0, 0.7283)
lo <- c¢(-Inf, -Inf, -3, -Inf, -Inf, -3, -Inf)
hi <- c¢(Inf, Inf, Inf, Inf, Inf, Inf, Inf)

fitl_cstr <- aldvmm::aldvmm(eq5d ~ hr | 1,
daf,
c(0.883, -0.594),
28
init,
1o,
hi)

summary (fitl_cstr)

Table 5: Regression results of modell with the "L-BFGS-B" method, parameter constraints and user-defined
starting values

Estimate Std. Err. z P>z| [95% Conf. Intervall
Ely[X, c]
Compl (Intercept) -0.092 0.009  -10.805 0.000 -0.109 -0.075
hr 0.232 0.002 101.849 0.000 0.228 0.237
Insigma -1.641 0.009 -183.981 0.000 -1.658 -1.623
Comp?2 (Intercept) 0.393 NaN NaN  NaN NaN NaN
hr 2.525 7.479 0.338 0.736 -12.135 17.184
Insigma -0.765 NaN NaN  NaN NaN NaN
Ple|X]
Compl (Intercept) 6.852 0.539 12.717  0.000 5.796 7.908

N =10549 1 =-627.78 AIC = 1269.55 BIC = 1320.40

5.1.4 Single-component model

As the solution of the “hjn” algorithm included a component with very low probability, we also estimate a
single-component model.

fit <- aldvmm::aldvmm(eq5d ~ hr,

df,
c(0.883, -0.594),
1,
"zero",
"nlminb")

10



summary (fit)

The coefficients of the single-component model are relatively similar to the parameters in the second component
of model 1 from the “hjn” algorithm (table 6). The Akaike information criterion amounts to 1’°275.61 which
is larger than the values of the “nlminb” (-1’398.65) and “hjn” (-66’100.87) solutions of the two-component
model and thus suggests worse fit of the single-component model.?

Table 6: Regression results of modell with 1 component, zero starting values in "nlminb" algorithm

Estimate Std. Err. z P>[z| [95% Conf. Intervall

BRI%,
Compl (Intercept) -0.089 0.009  -10.410 0.000 -0.105 -0.072
hr 0.232 0.002  101.468 0.000 0.227 0.236
Insigma -1.636 0.009 -184.242  0.000 -1.654 -1.619

N =10549 11 =-634.81 AIC =1275.61 BIC = 1297.40

5.2 Model 2

As an alternative specification, we explore model 2 with a coefficient of the Oxford Hip score in the
multinomial logit model of component membership. For this fit, we use the method “nlminb” with estimates
from Hernandez Alava and Wailoo (2015) as starting values.

init <- ¢(-.40293118, .30502755, .22614716, .14801581, -.70755741, 0,
-1.2632051, -2.4541401)

fit2 <- aldvmm::aldvmm(eq5d ~ hr | hr,

af,
c(0.883, -0.594),
2,

init,

"nIlminb")
summary (£it2)

The Akaike information criterion of model 2 fitted using the “nlminb” method amounts to -1’862.44 which is
smaller than the Akaike information criterion of model 1 (-1’398.65) with the same method. The smaller
Akaike information criterion suggests that the increase in the log-likelihood after inclusion of a coefficient of
the Oxford Hip Score on the probability of component membership is sufficiently large to justify the extra
parameter.3

5.3 Comparison to STATA® results

To validate the R implementation of adjusted limited dependent variable mixture models, we estimate the
four models presented in Hernandez Alava and Wailoo (2015) as reference cases in R and STATA®.4

1. Model 1 with default options
2. Model 1 with parameter constraints
3. Model 1 with initial values from constant-only model

4. Model 2 with user-defined initial values

2In the aldvmm() output, smaller values of the Akaike information criterion indicate better goodness of fit.
31In the aldvmm() output, smaller values of the Akaike information criterion indicate better goodness of fit.
4The STATA® and R code for model estimation is included in the appendix.
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Table 7: Regression results of model 2 with user-defined starting values in the "nlminb" algorithm

Estimate Std. Err. z P>z] [95% Conf. Intervall
E[y|X, ]
Compl (Intercept) -0.119 0.015 -7.932  0.000 -0.149 -0.090
hr 0.080 0.006 13.665  0.000 0.069 0.092
Insigma -1.872 0.035  -53.692 0.000 -1.940 -1.804
Comp?2 (Intercept) 0.201 0.006 31.772  0.000 0.189 0.213
hr 0.156 0.002 94.616  0.000 0.153 0.159
Insigma -2.213 0.011 -202.408 0.000 -2.235 -2.192
Plc|X]
Compl (Intercept) 1.774 0.131 13.534  0.000 1.517 2.031
hr -1.353 0.044  -30.574 0.000 -1.439 -1.266

N =10549 11 =939.22 AIC =-1862.44 BIC =-1804.33

The parameter estimates and standard errors obtained in R are very similar to the results from STATA®
(table 8 and table 9). R did not obtain any standard errors in reference model 2 while STATA® returned
standard errors for the first component and the probability of belonging to component 1. Although reference
models 1 and 3 yield different parameter estimates, they converged at the same log-likelihood which further
supports the hypothesis of multiple local optima of the likelihood. The log-likelihood is consistently smaller
in R than in STATA®, but the relative ordering of models is consistent across platforms.

Table 8: Comparison of point estimates to the results of the STATA package

) ) ®) @
R STATA R STATA R STATA R STATA
E[y[X, c]
Compl (Intercept) -0.431  -0.427  -0.092  -0.092  0.236 0.236  0.003 0.006
hr 0.313 0.312 0.232 0.232  0.146 0.146  0.097 0.095
Insigma -1.248 -1.251 -1.641 -1.641  -2.462 -2.463  -1.268 -1.274
Comp?2 (Intercept) 0.236 0.236 100.000 100.000 -0.431 -0.427  0.182 0.182
hr 0.146 0.146 0.000 0.000 0.313 0.312 0.161 0.161
Insigma -2.462 -2.463 0.000 0.000 -1.248 -1.251 -2.281 -2.280
Plc|X]
Compl (Intercept) -0.728  -0.725 6.856 6.855  0.728 0.725  2.445 2.448
hr -1.390  -1.393
N=10549 1 706.32 715.84  -627.78 -613.7  706.32 715.84 941.36 953.2
Table 9: Comparison of standard errors to the results of the STATA package.
6 ) @) @
R STATA R STATA R STATA R STATA
Ely[X, ¢
Compl (Intercept)  0.022 0.022 NA 0.009  0.007 0.007  0.028 0.028
hr 0.007 0.006 NA 0.002 0.002 0.002 0.012 0.012
Insigma 0.022 0.021 NA 0.009 0.018 -0.018 0.031 0.032
Comp?2 (Intercept)  0.007 0.007 NA 0.022 0.022  0.007 0.007
hr 0.002 0.002 NA 0.007 0.006  0.002 0.002
Insigma 0.018 0.018 NA 0.022 0.021 0.013 0.013
Plc|X]
Compl (Intercept)  0.061 0.061 NA 0.540  0.061 0.061  0.172 0.172
hr 0.057 0.056
N =10549 1 706.32  715.84 -627.78  -613.7 706.32  715.84 941.36 953.2
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Fitted values show very similar marginal distributions on both platforms (figure 7). R does not return fitted
values in reference case 2. The summary statistics of differences in fitted values between R and STATA®
suggest that individual predictions are quite similar across platforms as well (table 10).

Standard errors of fitted values differ visibly between platforms (figure 8 and table 11). The difference
is particularly pronounced in reference case 1, but the standard errors from STATA® seem quite extreme
compared to all other reference cases. R does not return standard errors of fitted values in reference case 2.
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Figure 7: Fitted values in R and STATA
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Figure 8: Standard errors of fitted values in R and STATA
The comparison of the R and STATA® packages showed that the R implementation sometimes behaves

differently than the STATA® package, but the results are not indicative of technical errors in the R
implementation.
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Table 10: Summary statistics of differences of fitted values in R and STATA (positive values suggest larger

values in STATA)

Ref. case 1 Ref. case 2 Ref. case 3 Ref. case 4
Min. -0.000038 -0.000038 -0.000051
1st Qu. -0.000036 -0.000036 -0.000044
Median -0.000033 -0.000033 0.000008
Mean 0.000037 0.000037 0.000035
3rd Qu. 0.000047 0.000047 0.000070
Max. 0.000567 0.000567 0.002319

Table 11: Summary statistics of differences of standard errors of fitted values in R and STATA (positive

values suggest larger values in STATA)

Ref. case 1 Ref. case 2 Ref. case 3 Ref. case 4
Min. 0.005897 -0.002063 -0.016984
1st Qu. 0.006898 -0.000551 -0.000823
Median 0.008690 0.000189 -0.000364
Mean 0.008917 0.000171 -0.000515
3rd Qu. 0.011050 0.001054 0.000354
Max. 0.013830 0.001530 0.000792

6 Discussion

Adjusted limited dependent variable mixture models are powerful tools for regression analysis of health state
utilities. Unlike standard regression models, adjusted limited dependent variable mixture models account for
limits, gaps and multi-modal distributions.

The comparison of different optimization methods with EQ-5D-3L utility data from English patients after hip
replacement in 2011 and 2012 (NHS Digital 2013) shows that the likelihood function can be challenging to
maximize and can converge at extreme solutions. Parameter estimates vary considerably across optimization
methods and even across methods with the same maximum log-likelihood. However, fitted values are very
similar across the four reference cases which suggests that the model is more robust for the identification of
incremental and average marginal effects than for parameter identification.

The ‘aldvmm’ package offers a variety of optimization algorithms and methods for generating initial values
which is an important strength in such challenging situations. It is essential to assess different optimization
algorithms and methods for initial values before interpreting the parameter estimates or predictions of
adjusted limited dependent variable mixture models.

The analysis of the EQ-5D-3L utility data also suggests that simpler models with fewer components should
be considered when multi-component models are difficult to fit. Even single-component adjusted limited
dependent variable mixture models can improve fit compared to traditional regression techniques because
they account for limits and gaps.

Although coefficients can be interpreted as marginal effects within each component, they cannot interpreted
in terms of overall expected values. Thus, average marginal effects and average treatment effects need to be
calculated from predictions using the generic function predict(). Standard errors of marginal effects or average
treatment effects can be calculated using the standard errors of fitted values for observed and counterfactual
covariate values.

In situations with repeated utility measures, the ‘aldvmm’ package only allows fixed effects estimations with
individual/group and time fixed effects which can be an important limitation in the analysis of clinical data.
However, time fixed effects can be an appropriate modeling strategy in the presence of general time trends
and dynamic selection in the population, e.g. because health state utilities decrease over time and treated
individuals survive longer and thus are over-represented in later measurements. In light of the trade-off
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between the efficiency of the random effects model and the causal interpretation of treatment effects in a
fixed-effects model it is recommended to assess the uncorrelatedness of random effects with the treatment
using the Hausman test in a generalized linear model.

Possible extensions of the ‘aldvmm’ package could include adjusted limited dependent variable beta mixture
models (Gray and Herndndez Alava 2018), a mixed model implementation for repeated measures and a
method for the calculation of average marginal effects and their standard errors.
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8 Appendix

8.1 Example calculation of average treatment effects on the treated

# Create treatment indicator

df$treated <- as.numeric(df$SEX == "2")

# Fit model

formula <- eqbd ~ treated + hr | 1

fit <- aldvmm(formula,
data = df,
psi = ¢(-0.594, 0.883))

# Predict treated

# Subsample of treated observations
tmpdfl <- df [df$treated == 1, ]

# Design matriz for treated observations
X1 <- aldvmm.mm(data = tmpdfl,
formula = fit$formula,
ncmp = fit$k,
lcoef = fit$label$lcoef)

# Average expected outcome of treated observations
meanl <- mean(predict(fit,

newdata = tmpdfl,

type = "fit",

se.fit = TRUE) [["yhat"]], na.rm = TRUE)

# Predict counterfactual

# Subsample of counterfactual observations
tmpdf0 <- tmpdfl

rm(tmpdf1l)

tmpdfO$treated <- 0

# Design matriz for counterfactual observations
X0 <- aldvmm.mm(data = tmpdfo,

formula = fit$formula,

ncmp = fit$k,

lcoef = fit$label$lcoef)

# Average expected outcome of counterfactual osbervations
mean0 <- mean(predict(fit,

newdata = tmpdfO,

type = "fit",
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TRUE) [["yhat"]], TRUE)
rm(tmpdf0)

# Standard error of ATET

# _______________________
atet.grad <- numDeriv::jacobian( function(z) {
yhatl <- aldvmm.pred( z,
X1,
rep(0, nrow(X1[[111)),
fit$psi,
fit$k,
fit$dist,
fit$label$lcoef,
fit$label$lcmp,
fit$label$lcpar) [["yhat"]]
yhatO <- aldvmm.pred( z,
X0,
rep(0, nrow(X0[[1]11)),
fit$psi,
fit$k,
fit$dist,
fit$label$lcoef,
fit$label$lcmp,
fit$label$lcpar) [["yhat"]]
mean(yhatl - yhatO, TRUE)
I

fit$coef)
se.atet <- sqrt(atet.grad %*)% fit$cov ¥x% t(atet.grad))

# Summarize

# __________
out <- data.frame( meanl - meanO,
se.atet,
(meanl - mean0) / se.atet)
out$p <- 2xstats::pnorm(abs(out$z), FALSE)

out$ul <- out$atet + stats::gqnorm((1 + 0.95)/2) * out$se
out$ll <- out$atet - stats::gqnorm((1 + 0.95)/2) * out$se

print (out)

8.2 Covariance matrices across optimization methods

Covariance matrices were incomplete or missing entirely (FALSE) in multiple optimization approaches (table
12)
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Table 12: Covariance matrix by optimization method

Nelder-Mead BFGS CG L-BFGS-B nlminb Recgmin Rvmmin hjn
Zero FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
random FALSE TRUE FALSE FALSE TRUE TRUE  FALSE FALSE
constant FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
sann TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

8.3 Modified Hosmer-Lemeshow test

# Number of percentiles
ngroup <- 10

# Extract expected values and restiduals
yhat <- fitl_all[["zero"]][["Nelder-Mead"]] [["pred"]][["yhat"]]
res <- fitl_all[["zero"]] [["Nelder-Mead"]][["pred"]][["res"]]

# Make groups
group <- as.numeric(cut(yhat, ngroup) , TRUE)

# Auziliary regression
aux <- stats::1lm(res ~ factor(group))

# Data set of predictions from auziliary regressions
newdf <- data.frame( unique (group) [order (unique (group))])
predict <- predict(aux,
newdf,
TRUE,
'confidence’',
0.95)

plotdat <- as.data.frame(rbind(
cbind( newdf$group,
"mean",
predict$fit[ , 'fit'l),
cbind( newdf$group,
"1,
predict$fit[ , 'lwr']),
cbind( newdf$group,
1t
predict$fit[ , 'upr'l)
))

# Make plot
plot <- ggplot2::ggplot(plotdat, aes( factor(as.numeric(group)),
as.numeric(value),
factor(outcome))) +
geom_line (aes( factor (outcome)))
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Figure 9: Mean residuals over deciles of expected values, “Nelder-Mead” with “zero” starting values
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Figure 10: Mean residuals over deciles of expected values, “BFGS” with “zero” starting values
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Figure 11: Mean residuals over deciles of expected values, “hjn” with “zero” starting values
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8.4 R code for the estimation of reference cases

# (1) Reference case 1 with default optimization settings
fitl_default <- aldvmm::aldvmm(eq5d ~ hr | 1,

data = df,

psi = ¢(0.883, -0.594),
ncmp = 2,

init.method = "zero",
optim.method = "nlminb")

# (2) Reference case 1 with user—-defined initial values and constraints on parameters
init <- c(0, 0, 0, 0, 0, 0, 0.7283)

lo <- c(-Inf, -Inf, -3, -Inf, -Inf, -3, -Inf)

hi <- c¢(Inf, Inf, Inf, Inf, Inf, Inf, Inf)

fitl_cstr <- aldvmm::aldvmm(eq5d ~ hr | 1,
data = df,
psi = ¢(0.883, -0.594),
ncmp = 2,
init.est = init,
init.lo = lo,
init.hi = hi)

# (3) Reference case 1 with initial values from constant-only model
fitl_const <- aldvmm::aldvmm(eqbd ~ hr | 1,

data = df,

psi = ¢(0.883, -0.594),
ncmp = 2,

init.method = "constant",

optim.method = "nlminb")
# (4) Reference case 2 with user-defined initial values.
init <- c(-.40293118, .30502755, .22614716, .14801581, -.70755741, O,
-1.2632051, -2.4541401)

fit2 <- aldvmm::aldvmm(eq5d ~ hr | hr,

data = df,
psi = c(0.883, -0.594),
ncmp = 2,

init.est = init,
optim.method = "nlminb")
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8.5 STATA® code for the estimation of reference cases

* (1) Reference case 1
aldvmm eqbd hr, ncomponents(Q)

* (2) Reference case 1 with constraints
matrix input a = (0, 0, O, O, 0, 0, 0.7283)
constraint 1 [Comp_2]:hr10 = 0

constraint 2 [Comp_2]:_cons = 100
constraint 3 [Ilns_2]:_cons = 1e-30

aldvmm eqbd hr, ncomp(2) from(a) c(1 2 3)

* (3) Reference case 1 initital values from constant-only model
aldvmm eqbd hr, ncomp(2) inim(cons)

* (4) Reference case 2 user-defined initial values

matrix input start = (.14801581, .22614716, .30502755, -.40293118, O,
-.70755741, -2.4541401, -1.2632051)

aldvmm eqbd hr, ncomp(2) prob(hr) from(start)
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