The objective of this vignette is to show how to quickly build data visualizations with the ApexCharts JavaScript library, as well as to give an overview of the different graphics available.
Data used are from ggplot2
package.
library(ggplot2)
library(scales)
library(apexcharter)
Simple bar charts can be created with:
data("mpg")
apex(data = mpg, type = "column", mapping = aes(x = manufacturer))
Flipping coordinates can be done by using type = "bar"
:
apex(data = mpg, type = "bar", mapping = aes(x = manufacturer))
To create a dodge bar charts, use aesthetic fill
:
apex(data = mpg, type = "column", mapping = aes(x = manufacturer, fill = year))
For stacked bar charts, specify option stacked
in ax_chart
:
apex(data = mpg, type = "column", mapping = aes(x = manufacturer, fill = year)) %>%
ax_chart(stacked = TRUE)
Simple line charts can be created with (works with character
, Date
or POSIXct
):
data("economics")
apex(data = economics, type = "line", mapping = aes(x = date, y = uempmed))
To represent several lines, use a data.frame
in long format and the group
aesthetic:
data("economics_long")
apex(data = economics_long, type = "line", mapping = aes(x = date, y = value01, group = variable)) %>%
ax_yaxis(decimalsInFloat = 2) # number of decimals to keep
Create area charts with type = "area"
:
apex(data = economics_long, type = "area", mapping = aes(x = date, y = value01, fill = variable)) %>%
ax_yaxis(decimalsInFloat = 2) %>% # number of decimals to keep
ax_chart(stacked = TRUE) %>%
ax_yaxis(max = 4, tickAmount = 4)
Simple bar charts can be created with:
apex(data = mtcars, type = "scatter", mapping = aes(x = wt, y = mpg))
Color points according to a third variable:
apex(data = mtcars, type = "scatter", mapping = aes(x = wt, y = mpg, fill = cyl))
And change point size using z
aesthetics:
apex(data = mtcars, type = "scatter", mapping = aes(x = wt, y = mpg, z = scales::rescale(qsec)))
Simple pie charts can be created with:
<- data.frame(
poll answer = c("Yes", "No"),
n = c(254, 238)
)
apex(data = poll, type = "pie", mapping = aes(x = answer, y = n))
Simple radial charts can be created with (here we pass values directly in aes
, but you can use a data.frame
) :
apex(data = NULL, type = "radialBar", mapping = aes(x = "My value", y = 65))
Multi radial chart (more than one value):
<- data.frame(
fruits name = c('Apples', 'Oranges', 'Bananas', 'Berries'),
value = c(44, 55, 67, 83)
)
apex(data = fruits, type = "radialBar", mapping = aes(x = name, y = value))
Simple radar charts can be created with:
$model <- rownames(mtcars)
mtcars
apex(data = head(mtcars), type = "radar", mapping = aes(x = model, y = qsec))
With a grouping variable:
# extremely complicated reshaping
<- reshape(
new_mtcars data = head(mtcars),
idvar = "model",
varying = list(c("drat", "wt")),
times = c("drat", "wt"),
direction = "long",
v.names = "value",
drop = c("mpg", "cyl", "hp", "dist", "qsec", "vs", "am", "gear", "carb")
)
apex(data = new_mtcars, type = "radar", mapping = aes(x = model, y = value, group = time))
With some custom options for color mapping:
apex(mtcars, aes(rownames(mtcars), mpg), type = "polarArea") %>%
ax_legend(show = FALSE) %>%
ax_colors(col_numeric("Blues", domain = NULL)(mtcars$mpg)) %>%
ax_fill(opacity = 1) %>%
ax_stroke(width = 0) %>%
ax_tooltip(fillSeriesColor = FALSE)
Create a heatmap with :
# create some data
<- expand.grid(year = 2010:2020, month = month.name)
sales $value <- sample(-10:30, nrow(sales), TRUE)
sales
apex(
data = sales,
type = "heatmap",
mapping = aes(x = year, y = month, fill = value)
%>%
) ax_dataLabels(enabled = FALSE) %>%
ax_colors("#008FFB")
Create a treemap with:
data("mpg", package = "ggplot2")
apex(mpg, aes(x = manufacturer), "treemap")
Create a candlestick chart with:
data("candles", package = "apexcharter")
apex(
candles, aes(x = datetime, open = open, close = close, low = low, high = high),
type = "candlestick"
)