
Package ‘arrApply’
March 8, 2019

Type Package

Title Apply a Function to a Margin of an Array

Version 2.1

Date 2019-03-08

Author Serguei Sokol

Maintainer Serguei Sokol <sokol@insa-toulouse.fr>

Description High performance variant of apply() for a fixed set of functions.
Considerable speedup is a trade-off for universality, user defined
functions cannot be used with this package. However, 21 most currently employed
functions are available for usage. They can be divided in three types:
reducing functions (like mean(), sum() etc., giving a scalar when applied to a vector),
mapping function (like normalise(), cumsum() etc., giving a vector of the same length
as the input vector) and finally, vector reducing function (like diff() which produces
result vector of a length different from the length of input vector).
Optional or mandatory additional arguments required by some functions
(e.g. norm type for norm() or normalise() functions) can be
passed as named arguments in '...'.

License GPL (>= 2)

Imports Rcpp (>= 0.12.0)

LinkingTo Rcpp, RcppArmadillo

Suggests testthat

RoxygenNote 6.1.1

SystemRequirements C++11

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-03-08 15:02:45 UTC

R topics documented:
arrApply . 2

Index 4

1

2 arrApply

arrApply High Performance Variant of apply()

Description

High performance variant of apply() for a fixed set of functions. Considerable speedup is a trade-off
for universality, user defined functions cannot be used with arrApply. However, 20 most currently
employed functions are available for usage. They can be divided in three types: reducing functions
(like mean(), sum() etc., giving a scalar when applied to a vector), mapping function (like nor-
malise(), cumsum() etc., giving a vector of the same length as the input vector) and finally, vector
reducing function (like diff() which produces result vector of a length different from the length of
input vector). Optional or mandatory additional arguments required by some functions (e.g. norm
type for norm() or normalise() functions) can be passed as named arguments in ’...’.

Usage

arrApply(arr, idim = 1L, fun = "sum", ...)

Arguments

arr numeric array of arbitrary dimension

idim integer, dimension number along which a function must be applied

fun character string, function name to be applied

... additional named parameters. Optional parameters can be helpful for the fol-
lowing functions: sd(), var() [norm_type: 0 normalisation using N-1 entries
(default); 1 normalisation using N entries]; norm() [p: integer >= 1 (default=2)
or one of "-inf", "inf", "fro".] normalise() [p: integer >= 1, default=2] diff()
[k: integer >= 1 (default=1) number of recursive application of diff(). The size
of idim-th dimension will be reduced by k.] trapz() [x: numerical vector of
the same length as idim-th size of arr] Mandatory parameter: multv(), divv(),
addv(), subv() [v: numerical vector of the same length as idim-th size of arr]

Details

The following functions can be used as argument ’fun’ (brackets [] indicate additional parameters
that can be passed in ’...’): - reducing functions: sum(), prod(), all(), any(), min(), max(), mean(),
median(), sd() [norm_type], var() [norm_type], norm() [p], trapz() [x] (trapezoidal integration with
respect to spacing in x, if x is provided, otherwise unit spacing is used), range(); - mapping func-
tions: normalise() [p], cumsum(), cumprod(), multv() [v] (multiply a given dimension by a vector
v, term by term), divv() [v] (divide by a vector v), addv() [v] (add a vector v), subv() [v] (subtract a
vector v); - vector reducing function: diff() [k].

RcppArmadillo is used to do the job in very fast way but it comes at price of not allowing NA in the
input numeric array. Vectors are allowed at input. They are considered as arrays of dimension 1.
So in this case, idim can only be 1. NB. Here, range() is different from R version of the homonym
function. In Armadillo, when applied to a vector, it returns a scalar max-min, while in R, it return a
2-component vector (min, max).

arrApply 3

Value

output array of dimension cut by 1 (the idim-th dimension will disappear for reducing functions)
or of the same dimension as the input arr for mapping and vector reducing functions. For vector
reducing functions, the idim-th dimension will be different from idim-th dimension of arr. The type
of result (numeric or logical) depends on the function applied, logical for all() and any(), numerical
– for all other functions.

Author(s)

Serguei Sokol <sokol at insa-toulouse.fr>

Examples

arr=matrix(1:12, 3, 4)
v1=arrApply(arr, 2, "mean")
v2=rowMeans(arr)
stopifnot(all(v1==v2))

arr=array(1:24, dim=2:4) # dim(arr)=c(2, 3, 4)
mat=arrApply(arr, 2, "prod") # dim(mat)=c(2, 4), the second dimension is cut out
stopifnot(all(mat==apply(arr, c(1, 3), prod)))

Index

arrApply, 2

4

	arrApply
	Index

