Package ‘async’

May 26, 2022

Title Asynchronous Code Constructs: Generators, Yield, Async, Await
Version 0.2.1
Date 2022-05-15

URL https://crowding.github.io/async/,
https://github.com/crowding/async/

BugReports https://github.com/crowding/async/issues

Description Write sequential-looking code that pauses and resumes.
gen() creates a generator, an iterator that returns a
value and pauses each time it reaches a yield() call.
async() creates a promise, which runs until it reaches
a call to await(), then resumes when information is available.
These work similarly to generator and async constructs
from 'Python' or 'JavaScript'. Objects produced are
compatible with the 'iterators' and 'promises’ packages.

License GPL-2

Encoding UTF-8

Depends R (>=3.5.0)

Imports nseval (>= 0.4), iterators, itertools, later, promises

Suggests rmarkdown, testthat (>= 3.0.0), knitr, magrittr, audio,
profvis, covr

RoxygenNote 7.1.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Peter Meilstrup [aut, cre]

Maintainer Peter Meilstrup <peter.meilstrup@gmail.com>
Repository CRAN

Date/Publication 2022-05-26 08:30:02 UTC

https://crowding.github.io/async/
https://github.com/crowding/async/
https://github.com/crowding/async/issues

2 async

R topics documented:

async-package L. e e 2
ASYNIC . v v v v e e e e e e e e e e e e e e e e 2
delay e 4
O, . v it e e e e 5
pausables 6
Index 7
async-package The async package.
Description

The async package allows you to write sequential-looking code that can pause, return control to R,
then pick up where it left off. Async constructs include generators and async/await blocks.

Details

A generator runs until it yields a value and then stops, returning control to R until another value
is requested. An async block can pause and return control to R until some data is available, then
resume. Generators implement the iterator interface, while async blocks implement the promise
interface.

* gen(...) creates a generator (an iterator); within a generator use yield(x) to return a value.

e async(...) creates an async block (a promise); within the async write await(x) to pause
on x (another promise).

Author(s)

Peter Meilstrup

async Create an asynchronous task from sequential code.

Description

async({...}), with an expression written in its argument, allows that expression to be evalu-
ated in an asynchronous, or non-blocking manner. async returns an object with class c("async”,
"promise”) which implements the promise interface.

Usage

async(expr, ..., split_pipes = TRUE, trace = trace_)
await(prom)

with_prefix(prefix)

async 3

Arguments
expr An expression, to be executed asynchronously.
Undocumented.
split_pipes Rewrite chained calls that use await (see below)
trace Enable verbose logging by passing a function to trace, like async(trace=cat,
{...}). trace should take a character argument. Helper with_prefix makes a
function that prints a message with the given prefix. You can also say something
like trace=browser for "single stepping" through an async.
prom A promise, or something that can be converted to such by promises: :as.promise().
prefix Character prefix to print before the trace.
Details

An example Shiny app using async/await is on Github: https://github.com/crowding/cranwhales-await

When an async object is activated, it will evaluate its expression until it reaches the keyword await.
The async object will return to its caller and preserve the partial state of its evaluation. When the
awaited value is resolved, evaluation continues from where the async left off.

When an async block finishes (either by reaching the end, or using return()), the promise resolves
with the resulting value. If the async block stops with an error, the promise is rejected with that
error.

The syntax rules for an async are analogous to those for gen(); await must appear only within
the arguments of functions for which there is a pausable implementation (See [pausables()]).
By default split_pipes=TRUE is enabled and this will reorder some expressions to satisfy this
requirement.

Async blocks and generators are conceptually related and share much of the same underlying mech-
anism. You can think of one as "output" and the other as "input". A generator pauses until a value
is requested, runs until it has a value to output, then pauses again. An async runs until it requires an
external value, pauses until it receives the value, then continues.

When split_pipes=FALSE, await() can only appear in the arguments of pausables and not or-
dinary R functions. This is a inconvenience as it prevents using await() in a pipeline. async by
default has split_pipes=TRUE which enables some syntactic sugar: if an await() appears in the
leftmost, unnamed, argument of an R function, the pipe will be "split" at that call using a temporary
variable. For instance,

async(makeRequest() |> await() |> sort())

will be effectively rewritten to something like

async({.tmp <- await(makeRequest()); sort(.tmp)})

This works only so long as await appears in calls that evaluate their leftmost arguments normally.
split_pipes can backfire if the outer call has other side effects; for instance suppressWarnings(await(x))

will be rewritten as {.tmp <- await(x); suppressWarnings(x)3}, which would defeat the pur-
pose.

https://github.com/crowding/cranwhales-await

4 delay

Value

async() returns an object with class "promise" as described by the promises package (i.e. not the
promises used in R’s lazy evaluation.)

In the context of an async, await(x) returns the resolved value of a promise X, or stops with an
error.

Examples

myAsync <- async(for (i in 1:4) {
await(delay(5))
cat(i, "\n")

}, trace=with_prefix("myAsync"))

delay Asynchronous pause.

Description

"delay" returns a promise which resolves only after the specified number of seconds. This uses the
R event loop via later. In an [async] construct you can use await(delay(secs)) to yield control,
for example if you need to poll in a loop

Usage

delay(secs, expr = NULL)

Arguments
secs The promise will resolve after at least this many seconds.
expr The value to resolve with; will be forced after the delay.
Value

An object with class "promise".

Examples

print a message after a few seconds
async({await(delay(10)); cat("Time's up!\n")3})

gen 5

gen Create an iterator using sequential code.

Description

gen({...}) with an expression written in its argument, creates a generator, which acts like a block
of code whose execution can pause and resume. From the "inside," a generator looks like you are
writing sequential code with loops, branches and such, writing values to the outside world by calling
yield(). From the "outside," a generator behaves like an iterator over an indefinite collection.

Usage
gen(expr, ..., split_pipes = FALSE, trace = trace_)
yield(expr)
Arguments
expr An expression, to be turned into an iterator.
. Undocumented.
split_pipes Silently rewrite expressions where "yield" appears in chained calls. See async.
trace Optional tracing function for debugging. See async.
Details

When nextElemis called on a generator, the generator executes its given expression until it reaches
acalltoyield(...). nextElemreturns argument to yield is returne, and the generator’s execution
state is preserved. The generator will resume on the next call to nextElem().

The generator expression is evaluated in a local environment.

Generators are not based on forking or parallel OS processes; they run in the same thread as their
caller. The control flow in a generator is interleaved with that of the R code which queries it.

A generator expression can use any R functions, but a call to yield may only appear in some po-
sitions. This package has several built-in pausables, equivalents to R’s base control flow functions,
such as if, while, tryCatch, <-, {3}, | | and so on. A call to yield may only appear in an argument
of one of these pausable functions. So this random walk generator:

rwalk <- gen({x <- 0; repeat {x <- yield(x + rnorm(1))3}})

is legal, because yield appears within arguments to {}, repeat, and <-, for which this package has
pausable definitions. However, this:

rwalk <- gen({x <- rnorm(1); repeat {x <- rnorm(1) + yield(x)}})

is not legal, because yield appears in an argument to +, which does not have a pausable definition.

Value

An object with class "iterator".

6 pausables

pausables Pausable functions.

Description

async and gen rely on "pausable" workalikes for R functions like if, while, and so on. pausables()
scans for and returns a list of all pausable functions visible in the present environment and in at-
tached packages.

Usage

pausables(envir = caller(), packages = base::.packages())

Arguments
envir The environment to search (defaulting to the calling environment).
packages Which packages to search; defaults to currently loaded packages. You can scan
all packages with pausables(packages=base: : .packages(all.available=TRUE))
Details

It is possible for a third party package to define pausable functions. To do this:

1. Define and export a function yourname and an ordinary R implementation (the pausable ver-
sion is only used when there is an await or yield in the arguments.)

2. Also define a function yourname_cps in your package namespace. (It does not need to be
exported.) yourname_cps should have the pausable (callback based) implementation.

The API for pausable functions is not yet fixed, but it is described in source file cps.r along with
implementations for R builtins.

Value

A list of expressions (either names or : : : calls)

Index

async, 2, 5, 6
async(...), 2
async-package, 2
await (async), 2
await(x), 2

delay, 4

gen, 5,6
gen(), 3
gen(...),2

iterator, 2,5
later, 4

pausables, 3,5, 6
promise, 2

promises, 4
promises::as.promise(), 3

with_prefix (async), 2

yield (gen), 5
yield(x), 2

	async-package
	async
	delay
	gen
	pausables
	Index

