Package 'attenuation'

November 8, 2019

Type Package
Title Correcting for Attenuation Due to Measurement Error
Version 1.0.0
Description Confidence curves, confidence intervals and p-values forcorrelation coefficients corrected for attenuation due to measurement error.Implements the methods described in Moss (2019, arxiv:1911.01576).
License MIT + file LICENSE
URL https://github.com/JonasMoss/attenuation/
BugReports https://github.com/JonasMoss/attenuation/issues
Encoding UTF-8
LazyData true
Suggests testhat, covr, spelling
RoxygenNote 6.1.1
Language en-US
NeedsCompilation no
Author Jonas Moss [aut, cre] (https://orcid.org/0000-0002-6876-6964)
Maintainer Jonas Moss jonas.gjertsen@gmail.com
Repository CRAN
Date/Publication 2019-11-08 09:00:02 UTC
R topics documented:
cc 2
ci 3
lines.ccaf 3
plot.ccaf 4
print.ccaf 5
p_value 5
Index 7

Description

Confidence curves for attenuated correlation coefficients.

Usage

```
cc(r, N, lower = -1, upper = 1, by = 0.001, method = "corr",
    k = NULL)
```


Arguments

r
$N \quad$ Numeric vector of three positive integers. $N[i]$ is the sample size for $r[i]$.
lower Lower bound for the curve. Defaults to -1.
upper Upper bound for the curve. Defaults to 1.
by Increment of the sequence from lower to upper.
method The type of confidence curve. Can be "corr", "cronbach", "HS" or "free". See the details of p_{-}value.
$k \quad$ Numeric vector of two positive integers. $k[i]$ is the number of testlets for the for $r[i+1]$. Only needed for method "cronbach".

Value

An object of class ccaf.

Examples

```
r = c(0.20, sqrt(0.45), sqrt(0.55))
N = c(100, 100, 100)
plot(cc(r, N))
```

Calculate a confidence interval for an attenuated correlation coefficient.

Description

Calculate a confidence interval for an attenuated correlation coefficient.

Usage

ci(r, N, level $=0.95$, method $=$ "corr", k = NULL)

Arguments

r
$N \quad$ Numeric vector of three positive integers. $N[i]$ is the sample size for $r[i]$.
level
method
$k \quad$ Numeric vector of two positive integers. $k[i]$ is the number of testlets for the for $r[i+1]$. Only needed for method "cronbach".

Value

Numeric in $[0,1]$. The p-value under null-hypothesis rho.

Examples

$r=c(0.20, \operatorname{sqrt}(0.45), \operatorname{sqrt}(0.55))$
$N=c(100,100,100)$
ci(r, N) \# Calculates 95\% confidence set for rho.
lines.ccaf Add a plot a confidence curve of attenuated correlation coefficients.

Description

Add a plot a confidence curve of attenuated correlation coefficients.

Usage

\#\# S3 method for class 'ccaf'
lines(x, type $=" l "$, col $=" r e d 3 ", ~ l w d=2, \ldots$)

Arguments

x
type
col
lwd
...

An object of class ccaf. The confidence curve to plot.
The type of plot.
The color of the curve. The thickness of the curve.

Passed to lines.

Value
An invisible copy of x.

```
plot.ccaf
```

Plot a confidence curve of attenuated correlation coefficients.

Description

Plot a confidence curve of attenuated correlation coefficients.

Usage

```
## S3 method for class 'ccaf'
plot(x, y, level = 0.95, ...)
```


Arguments

x	An object of class ccaf. The confidence curve to plot.
y	Ignored; supported for compatibility with the plot generic.
level	Level to highlight. Defaults to 0.95. If NULL, highlights no level.
\ldots	Passed to plot.

Value

An invisible copy of x.

```
print.ccaf Print method for ccaf
```


Description

Print method for ccaf

Usage

\#\# S3 method for class 'ccaf'
print(x, digits = 3, ...)

Arguments

x	Object of class ccaf.
digits	Passed to signif.
\ldots	Ignored.

Value
Invisible copy of x.
p_value Calculate the p-value for an attenuated correlation coefficient.

Description

This function calculates four types of p-values for correlations coefficients corrected for attenuation, chosen in "method". The different p-values are described in Moss (2019). "corr" is the correlation based p-value, "cronbach" is the Cronbach alpha based p-value, "HS" is the Hunter-Schmidt pvalue, while "free" is the correlation based p-value without positive constraints.

Usage

p_value(rho, r, N, method = "corr", k = NULL)

Arguments

rho Numeric vector in $[-1,1]$. The correlation under the null hypothesis.
$r \quad$ Numeric vector of three elements in [-1,1]. r [1] is the correlation between the noisy measures X^{\prime} and $Y^{\prime}, r[2]$ is the correlation between the noisy X^{\prime} and the true X , while r [3] is the correlation between the noisy Y^{\prime} and the true Y . They are the square root of the reliabilities. Must be positive method to "corr" and "cronbach".

N Numeric vector of three positive integers. N[i] is the sample size for r [i].
method The type of p-value. Can be "corr", "cronbach", "HS" or "free". See the details.
$k \quad$ Numeric vector of two positive integers. $k[i]$ is the number of testlets for the for $r[i+1]$. Only needed for method "cronbach".

Value

Numeric in $[0,1]$. The p-value under the null-hypothesis that the true correlation is rho.

Examples

$r=c(0.20, \operatorname{sqrt}(0.45), \operatorname{sqrt}(0.55))$
$N=c(100,100,100)$
p_value(rho $=0, r, N$) \# Tests rho $=0$.

Index

cc, 2
ci, 3
lines.ccaf, 3
p_value, 2, 3, 5
plot.ccaf, 4
print.ccaf, 5

