autostsm: Automatic Structural Time Series Models
Automatic model selection for structural time series decomposition into trend, cycle, and seasonal components, plus optionality for structural interpolation, using the Kalman filter.
Koopman, Siem Jan and Marius Ooms (2012) "Forecasting Economic Time Series Using Unobserved Components Time Series Models" <doi:10.1093/oxfordhb/9780195398649.013.0006>.
Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
Version: |
3.0.1 |
Depends: |
R (≥ 3.5.0) |
Imports: |
maxLik (≥ 1.5-2), forecast (≥ 8.15), lubridate (≥ 1.7), ggplot2 (≥ 3.3), gridExtra (≥ 2.3), strucchange (≥ 1.5), foreach (≥ 1.5), doSNOW (≥ 1.0.19), parallel (≥ 4.1.1), lmtest (≥ 0.9-38), ggrepel (≥ 0.9), progress (≥ 1.2), sandwich (≥ 3.0), data.table (≥ 1.14) |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
knitr, rmarkdown, testthat |
Published: |
2022-06-08 |
Author: |
Alex Hubbard |
Maintainer: |
Alex Hubbard <hubbard.alex at gmail.com> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
yes |
Materials: |
README NEWS |
In views: |
TimeSeries |
CRAN checks: |
autostsm results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=autostsm
to link to this page.