We recommend exploring the simulation settings interactively in the shiny apps using run_app("bsimsH")
app for the homogeneous habitat case and the run_app("bsimsHER")
app for the stratified habitat case. The apps represent the simulation layers as tabs, the last tab presenting the settings that can be copied onto the clipboard and pasted into the R session or code. In simple situations, comparing results from a few different settings might be enough.
Let us consider the following simple comparison: we want to see how much of an effect does roads have when the only effect is that the road stratum is unsuitable. Otherwise there are no behavioral or detectability effects of the road.
library(bSims)
<- c(2, 4, 6, 8, 10)
tint <- c(0.5, 1, 1.5, 2, Inf) # unlimited
rint
## no road
<- bsims_all(
b1 road = 0,
density = c(1, 1, 0),
tint = tint,
rint = rint)
## road
<- bsims_all(
b2 road = 0.5,
density = c(1, 1, 0),
tint = tint,
rint = rint)
b1#> bSims wrapper object with settings:
#> road : 0
#> density: 1, 1, 0
#> tint : 2, 4, 6, 8, 10
#> rint : 0.5, 1, 1.5, 2, Inf
b2#> bSims wrapper object with settings:
#> road : 0.5
#> density: 1, 1, 0
#> tint : 2, 4, 6, 8, 10
#> rint : 0.5, 1, 1.5, 2, Inf
The bsims_all
function accepts all the arguments we discussed before for the simulation layers. Unspecified arguments will be taken to be the default value. However, bsims_all
does not evaluate these arguments, but it creates a closure with the settings. Realizations can be drawn as:
$new()
b1#> bSims transcript
#> 1 km x 1 km
#> stratification: H
#> total abundance: 95
#> duration: 10 min
#> detected: 13 heard
#> 1st event detected by breaks:
#> [0, 2, 4, 6, 8, 10 min]
#> [0, 50, 100, 150, 200, Inf m]
$new()
b2#> bSims transcript
#> 1 km x 1 km
#> stratification: HR
#> total abundance: 85
#> duration: 10 min
#> detected: 3 heard
#> 1st event detected by breaks:
#> [0, 2, 4, 6, 8, 10 min]
#> [0, 50, 100, 150, 200, Inf m]
Run multiple realizations is done as:
<- 25 # number of runs
B <- b1$replicate(B)
bb1 <- b2$replicate(B) bb2
The replicate function takes an argument for the number of replicates (B
) and returns a list of transcript objects with B elements. The cl
argument can be used to parallelize the work, it can be a numeric value on Unix/Linux/OSX, or a cluster object on any OS. The recover = TRUE
argument allows to run simulations with error catching.
Simulated objects returned by bsims_all
will contain different realizations and all the conditionally independent layers. Use a customized layered approach if former layers are meant to be kept identical across runs.
In more complex situations the shiny apps will help identifying corner cases that are used to define a gradient of settings for single or multiple simulation options. Let us consider the following scenario: we would like to evaluate how the estimates are changing with increasing road width. We will use the expand_list
function which creates a list from all combinations of the supplied inputs. Note that we need to wrap vectors inside list()
to avoid interpreting those as values to iterate over.
<- expand_list(
s road = c(0, 0.5, 1),
density = list(c(1, 1, 0)),
tint = list(tint),
rint = list(rint))
str(s)
#> List of 3
#> $ :List of 4
#> ..$ road : num 0
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
#> $ :List of 4
#> ..$ road : num 0.5
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
#> $ :List of 4
#> ..$ road : num 1
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
We now can use this list of settings to run simulations for each. The following illustrates the use of multiple cores:
<- lapply(s, bsims_all)
b <- 4 # number of cores to use
nc library(parallel)
<- makeCluster(nc)
cl <- lapply(b, function(z) z$replicate(B, cl=cl))
bb stopCluster(cl)
In some cases, we want to evaluate crossed effects of multiple settings. For example, road width and spatial pattern (random vs. clustered):
<- expand_list(
s road = c(0, 0.5),
xy_fun = list(
NULL,
function(d) exp(-d^2/1^2) + 0.5*(1-exp(-d^2/4^2))),
density = list(c(1, 1, 0)),
tint = list(tint),
rint = list(rint))
str(s)
#> List of 4
#> $ :List of 5
#> ..$ road : num 0
#> ..$ xy_fun : NULL
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
#> $ :List of 5
#> ..$ road : num 0.5
#> ..$ xy_fun : NULL
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
#> $ :List of 5
#> ..$ road : num 0
#> ..$ xy_fun :function (d)
#> .. ..- attr(*, "srcref")= 'srcref' int [1:8] 5 5 5 53 5 53 5 5
#> .. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x0000000020ecde00>
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf
#> $ :List of 5
#> ..$ road : num 0.5
#> ..$ xy_fun :function (d)
#> .. ..- attr(*, "srcref")= 'srcref' int [1:8] 5 5 5 53 5 53 5 5
#> .. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x0000000020ecde00>
#> ..$ density: num [1:3] 1 1 0
#> ..$ tint : num [1:5] 2 4 6 8 10
#> ..$ rint : num [1:5] 0.5 1 1.5 2 Inf