
Package ‘bayestestR’
May 2, 2022

Type Package

Title Understand and Describe Bayesian Models and Posterior
Distributions

Version 0.12.1

Maintainer Dominique Makowski <dom.makowski@gmail.com>

Description Provides utilities to describe posterior
distributions and Bayesian models. It includes point-estimates such as
Maximum A Posteriori (MAP), measures of dispersion (Highest Density
Interval - HDI; Kruschke, 2015 <doi:10.1016/C2012-0-00477-2>) and
indices used for null-hypothesis testing (such as ROPE percentage, pd
and Bayes factors).

Depends R (>= 3.4)

Imports insight (>= 0.17.0), datawizard (>= 0.4.0), graphics, methods,
stats, utils

Suggests BayesFactor, bayesQR, blavaan, bridgesampling, brms, dplyr,
effectsize, emmeans, gamm4, GGally, ggdist, ggplot2, ggridges,
glmmTMB, httr, KernSmooth, knitr, lavaan, lme4, logspline,
MASS, mclust, mediation, modelbased, parameters, patchwork,
performance, poorman, quadprog, posterior, rmarkdown, rstan,
rstanarm, see, spelling, stringr, testthat, tidyr, tweedie

License GPL-3

URL https://easystats.github.io/bayestestR/

BugReports https://github.com/easystats/bayestestR/issues

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.1.2

Config/testthat/edition 3

NeedsCompilation no

1

https://doi.org/10.1016/C2012-0-00477-2
https://easystats.github.io/bayestestR/
https://github.com/easystats/bayestestR/issues

2 R topics documented:

Author Dominique Makowski [aut, cre] (<https://orcid.org/0000-0001-5375-9967>,
@Dom_Makowski),

Daniel Lüdecke [aut] (<https://orcid.org/0000-0002-8895-3206>,
@strengejacke),

Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>,
@mattansb),

Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>,
@patilindrajeets),

Michael D. Wilson [aut] (<https://orcid.org/0000-0003-4143-7308>),
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>,
@bmwiernik),

Paul-Christian Bürkner [rev],
Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>),
Quentin F. Gronau [ctb] (<https://orcid.org/0000-0001-5510-6943>),
Sam Crawley [ctb] (<https://orcid.org/0000-0002-7847-0411>)

Repository CRAN

Date/Publication 2022-05-02 07:40:03 UTC

R topics documented:
area_under_curve . 3
as.data.frame.density . 4
as.numeric.map_estimate . 5
bayesfactor . 5
bayesfactor_inclusion . 7
bayesfactor_models . 9
bayesfactor_parameters . 13
bayesfactor_restricted . 19
bci . 23
bic_to_bf . 27
check_prior . 28
ci . 29
contr.orthonorm . 32
convert_bayesian_as_frequentist . 33
cwi . 35
density_at . 36
describe_posterior . 37
describe_prior . 41
diagnostic_draws . 42
diagnostic_posterior . 43
distribution . 45
effective_sample . 47
equivalence_test . 49
estimate_density . 52
eti . 55
hdi . 58

https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0003-4143-7308
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0002-8890-5116
https://orcid.org/0000-0002-4842-3657
https://orcid.org/0000-0001-5510-6943
https://orcid.org/0000-0002-7847-0411

area_under_curve 3

map_estimate . 61
mcse . 63
mediation . 64
model_to_priors . 67
overlap . 68
pd_to_p . 69
point_estimate . 70
p_direction . 72
p_map . 76
p_rope . 78
p_significance . 80
reshape_iterations . 82
rope . 83
rope_range . 86
sensitivity_to_prior . 88
sexit . 89
sexit_thresholds . 92
si . 93
simulate_correlation . 97
simulate_prior . 98
simulate_simpson . 99
spi . 100
weighted_posteriors . 102

Index 107

area_under_curve Area under the Curve (AUC)

Description

Based on the DescTools AUC function. It can calculate the area under the curve with a naive algo-
rithm or a more elaborated spline approach. The curve must be given by vectors of xy-coordinates.
This function can handle unsorted x values (by sorting x) and ties for the x values (by ignoring
duplicates).

Usage

area_under_curve(x, y, method = c("trapezoid", "step", "spline"), ...)

auc(x, y, method = c("trapezoid", "step", "spline"), ...)

Arguments

x Vector of x values.

y Vector of y values.

4 as.data.frame.density

method Method to compute the Area Under the Curve (AUC). Can be "trapezoid" (de-
fault), "step" or "spline". If "trapezoid", the curve is formed by connecting
all points by a direct line (composite trapezoid rule). If "step" is chosen then
a stepwise connection of two points is used. For calculating the area under a
spline interpolation the splinefun function is used in combination with integrate.

... Arguments passed to or from other methods.

See Also

DescTools

Examples

library(bayestestR)
posterior <- distribution_normal(1000)

dens <- estimate_density(posterior)
dens <- dens[dens$x > 0,]
x <- dens$x
y <- dens$y

area_under_curve(x, y, method = "trapezoid")
area_under_curve(x, y, method = "step")
area_under_curve(x, y, method = "spline")

as.data.frame.density Coerce to a Data Frame

Description

Coerce to a Data Frame

Usage

S3 method for class 'density'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

as.numeric.map_estimate 5

as.numeric.map_estimate

Convert to Numeric

Description

Convert to Numeric

Usage

S3 method for class 'map_estimate'
as.numeric(x, ...)

S3 method for class 'p_direction'
as.numeric(x, ...)

S3 method for class 'p_map'
as.numeric(x, ...)

S3 method for class 'p_significance'
as.numeric(x, ...)

Arguments

x object to be coerced or tested.

... further arguments passed to or from other methods.

bayesfactor Bayes Factors (BF)

Description

This function compte the Bayes factors (BFs) that are appropriate to the input. For vectors or single
models, it will compute BFs for single parameters(), or is hypothesis is specified, BFs for
restricted models(). For multiple models, it will return the BF corresponding to comparison
between models() and if a model comparison is passed, it will compute the inclusion BF().

For a complete overview of these functions, read the Bayes factor vignette.

https://easystats.github.io/bayestestR/articles/bayes_factors.html

6 bayesfactor

Usage

bayesfactor(
...,
prior = NULL,
direction = "two-sided",
null = 0,
hypothesis = NULL,
effects = c("fixed", "random", "all"),
verbose = TRUE,
denominator = 1,
match_models = FALSE,
prior_odds = NULL

)

Arguments

... A numeric vector, model object(s), or the output from bayesfactor_models.

prior An object representing a prior distribution (see ’Details’).

direction Test type (see ’Details’). One of 0, "two-sided" (default, two tailed), -1,
"left" (left tailed) or 1, "right" (right tailed).

null Value of the null, either a scalar (for point-null) or a range (for a interval-null).

hypothesis A character vector specifying the restrictions as logical conditions (see examples
below).

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

verbose Toggle off warnings.

denominator Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.

match_models See details.

prior_odds Optional vector of prior odds for the models. See BayesFactor::priorOdds<-.

Value

Some type of Bayes factor, depending on the input. See bayesfactor_parameters(), bayesfactor_models()
or bayesfactor_inclusion()

Note

There is also a plot()-method implemented in the see-package.

Examples

library(bayestestR)

if (require("logspline")) {
prior <- distribution_normal(1000, mean = 0, sd = 1)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

bayesfactor_inclusion 7

posterior <- distribution_normal(1000, mean = .5, sd = .3)

bayesfactor(posterior, prior = prior)
}
Not run:
rstanarm models

if (require("rstanarm")) {

model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
bayesfactor(model)

}

End(Not run)

if (require("logspline")) {
Frequentist models

m0 <- lm(extra ~ 1, data = sleep)
m1 <- lm(extra ~ group, data = sleep)
m2 <- lm(extra ~ group + ID, data = sleep)

comparison <- bayesfactor(m0, m1, m2)
comparison

bayesfactor(comparison)
}

bayesfactor_inclusion Inclusion Bayes Factors for testing predictors across Bayesian models

Description

The bf_* function is an alias of the main function.

For more info, see the Bayes factors vignette.

Usage

bayesfactor_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)

bf_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)

Arguments

models An object of class bayesfactor_models() or BFBayesFactor.

match_models See details.

prior_odds Optional vector of prior odds for the models. See BayesFactor::priorOdds<-.

... Arguments passed to or from other methods.

https://easystats.github.io/bayestestR/articles/bayes_factors.html

8 bayesfactor_inclusion

Details

Inclusion Bayes factors answer the question: Are the observed data more probable under models
with a particular effect, than they are under models without that particular effect? In other words,
on average - are models with effect X more likely to have produced the observed data than models
without effect X?

Match Models: If match_models=FALSE (default), Inclusion BFs are computed by comparing
all models with a term against all models without that term. If TRUE, comparison is restricted
to models that (1) do not include any interactions with the term of interest; (2) for interaction
terms, averaging is done only across models that containe the main effect terms from which the
interaction term is comprised.

Value

a data frame containing the prior and posterior probabilities, and log(BF) for each effect (Use
as.numeric() to extract the non-log Bayes factors; see examples).

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

Note

Random effects in the lmer style are converted to interaction terms: i.e., (X|G) will become the
terms 1:G and X:G.

Author(s)

Mattan S. Ben-Shachar

References

• Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi: 10.31234/osf.io/wgb64

• Clyde, M. A., Ghosh, J., & Littman, M. L. (2011). Bayesian adaptive sampling for variable
selection and model averaging. Journal of Computational and Graphical Statistics, 20(1), 80-
101.

• Mathot, S. (2017). Bayes like a Baws: Interpreting Bayesian Repeated Measures in JASP
Blog post.

See Also

weighted_posteriors() for Bayesian parameter averaging.

https://doi.org/10.31234/osf.io/wgb64
https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-in-jasp

bayesfactor_models 9

Examples

library(bayestestR)

Using bayesfactor_models:

mo0 <- lm(Sepal.Length ~ 1, data = iris)
mo1 <- lm(Sepal.Length ~ Species, data = iris)
mo2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
mo3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)

BFmodels <- bayesfactor_models(mo1, mo2, mo3, denominator = mo0)
(bf_inc <- bayesfactor_inclusion(BFmodels))

as.numeric(bf_inc)

Not run:
BayesFactor

library(BayesFactor)

BF <- generalTestBF(len ~ supp * dose, ToothGrowth, progress = FALSE)

bayesfactor_inclusion(BF)

compare only matched models:
bayesfactor_inclusion(BF, match_models = TRUE)

End(Not run)

bayesfactor_models Bayes Factors (BF) for model comparison

Description

This function computes or extracts Bayes factors from fitted models.

The bf_* function is an alias of the main function.

Usage

bayesfactor_models(..., denominator = 1, verbose = TRUE)

bf_models(..., denominator = 1, verbose = TRUE)

Default S3 method:
bayesfactor_models(..., denominator = 1, verbose = TRUE)

S3 method for class 'bayesfactor_models'
update(object, subset = NULL, reference = NULL, ...)

10 bayesfactor_models

S3 method for class 'bayesfactor_models'
as.matrix(x, ...)

Arguments

... Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object (see ’Details’). Ignored in as.matrix(), update(). If the following
named arguments are present, they are passed to insight::get_loglikelihood (see
details):

• estimator (defaults to "ML")
• check_response (defaults to FALSE)

denominator Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.

verbose Toggle off warnings.
object, x A bayesfactor_models() object.
subset Vector of model indices to keep or remove.
reference Index of model to reference to, or "top" to reference to the best model, or

"bottom" to reference to the worst model.

Details

If the passed models are supported by insight the DV of all models will be tested for equality (else
this is assumed to be true), and the models’ terms will be extracted (allowing for follow-up analysis
with bayesfactor_inclusion).

• For brmsfit or stanreg models, Bayes factors are computed using the bridgesampling pack-
age.

– brmsfit models must have been fitted with save_pars = save_pars(all = TRUE).
– stanreg models must have been fitted with a defined diagnostic_file.

• For BFBayesFactor, bayesfactor_models() is mostly a wraparound BayesFactor::extractBF().
• For all other model types, Bayes factors are computed using the BIC approximation. Note that

BICs are extracted from using insight::get_loglikelihood, see documentation there for options
for dealing with transformed responses and REML estimation.

In order to correctly and precisely estimate Bayes factors, a rule of thumb are the 4 P’s: Proper
Priors and Plentiful Posteriors. How many? The number of posterior samples needed for testing
is substantially larger than for estimation (the default of 4000 samples may not be enough in many
cases). A conservative rule of thumb is to obtain 10 times more samples than would be required for
estimation (Gronau, Singmann, & Wagenmakers, 2017). If less than 40,000 samples are detected,
bayesfactor_models() gives a warning.

See also the Bayes factors vignette.

Value

A data frame containing the models’ formulas (reconstructed fixed and random effects) and their
log(BF)s (Use as.numeric() to extract the non-log Bayes factors; see examples), that prints
nicely.

https://CRAN.R-project.org/package=bridgesampling
https://easystats.github.io/bayestestR/articles/bayes_factors.html

bayesfactor_models 11

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

Note

There is also a plot()-method implemented in the see-package.

Author(s)

Mattan S. Ben-Shachar

References

• Gronau, Q. F., Singmann, H., & Wagenmakers, E. J. (2017). Bridgesampling: An R package
for estimating normalizing constants. arXiv preprint arXiv:1710.08162.

• Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430), 773-795.

• Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of Mathematical
Psychology, 72, 33–37.

• Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psy-
chonomic bulletin & review, 14(5), 779-804.

• Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.
(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. doi: 10.1177/1745691611406923

Examples

With lm objects:

lm1 <- lm(mpg ~ 1, data = mtcars)
lm2 <- lm(mpg ~ hp, data = mtcars)
lm3 <- lm(mpg ~ hp + drat, data = mtcars)
lm4 <- lm(mpg ~ hp * drat, data = mtcars)
(BFM <- bayesfactor_models(lm1, lm2, lm3, lm4, denominator = 1))
bayesfactor_models(lm2, lm3, lm4, denominator = lm1) # same result
bayesfactor_models(lm1, lm2, lm3, lm4, denominator = lm1) # same result

update(BFM, reference = "bottom")
as.matrix(BFM)
as.numeric(BFM)

lm2b <- lm(sqrt(mpg) ~ hp, data = mtcars)
Set check_response = TRUE for transformed responses
bayesfactor_models(lm2b, denominator = lm2, check_response = TRUE)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1177/1745691611406923

12 bayesfactor_models

Not run:
With lmerMod objects:

if (require("lme4")) {

lmer1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
lmer2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
lmer3 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width),

data = iris
)
bayesfactor_models(lmer1, lmer2, lmer3,

denominator = 1,
estimator = "REML"

)
}

rstanarm models

(note that a unique diagnostic_file MUST be specified in order to work)
if (require("rstanarm")) {

stan_m0 <- stan_glm(Sepal.Length ~ 1,
data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df0.csv")

)
stan_m1 <- stan_glm(Sepal.Length ~ Species,

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv")

)
stan_m2 <- stan_glm(Sepal.Length ~ Species + Petal.Length,

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df2.csv")

)
bayesfactor_models(stan_m1, stan_m2, denominator = stan_m0)

}

brms models

(note the save_pars MUST be set to save_pars(all = TRUE) in order to work)
if (require("brms")) {

brm1 <- brm(Sepal.Length ~ 1, data = iris, save_all_pars = TRUE)
brm2 <- brm(Sepal.Length ~ Species, data = iris, save_all_pars = TRUE)
brm3 <- brm(

Sepal.Length ~ Species + Petal.Length,
data = iris,
save_pars = save_pars(all = TRUE)

)

bayesfactor_models(brm1, brm2, brm3, denominator = 1)
}

bayesfactor_parameters 13

BayesFactor

if (require("BayesFactor")) {

data(puzzles)
BF <- anovaBF(RT ~ shape * color + ID,
data = puzzles,
whichRandom = "ID", progress = FALSE

)
BF
bayesfactor_models(BF) # basically the same

}

End(Not run)

bayesfactor_parameters

Bayes Factors (BF) for a Single Parameter

Description

This method computes Bayes factors against the null (either a point or an interval), based on prior
and posterior samples of a single parameter. This Bayes factor indicates the degree by which the
mass of the posterior distribution has shifted further away from or closer to the null value(s) (rela-
tive to the prior distribution), thus indicating if the null value has become less or more likely given
the observed data.

When the null is an interval, the Bayes factor is computed by comparing the prior and posterior
odds of the parameter falling within or outside the null interval (Morey & Rouder, 2011; Liao et
al., 2020); When the null is a point, a Savage-Dickey density ratio is computed, which is also an
approximation of a Bayes factor comparing the marginal likelihoods of the model against a model
in which the tested parameter has been restricted to the point null (Wagenmakers et al., 2010; Heck,
2019).

Note that the logspline package is used for estimating densities and probabilities, and must be
installed for the function to work.

bayesfactor_pointnull() and bayesfactor_rope() are wrappers around bayesfactor_parameters
with different defaults for the null to be tested against (a point and a range, respectively). Aliases
of the main functions are prefixed with bf_*, like bf_parameters() or bf_pointnull().

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_parameters(

https://easystats.github.io/bayestestR/articles/bayes_factors.html

14 bayesfactor_parameters

posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

bayesfactor_pointnull(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

bayesfactor_rope(
posterior,
prior = NULL,
direction = "two-sided",
null = rope_range(posterior),
verbose = TRUE,
...

)

bf_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

bf_pointnull(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

bf_rope(
posterior,
prior = NULL,
direction = "two-sided",

bayesfactor_parameters 15

null = rope_range(posterior),
verbose = TRUE,
...

)

S3 method for class 'numeric'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

S3 method for class 'stanreg'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "smooth_terms", "sigma", "zi",
"zero_inflated", "all"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "smooth_terms", "sigma", "zi",
"zero_inflated", "all"),

parameters = NULL,
...

)

S3 method for class 'blavaan'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",

16 bayesfactor_parameters

null = 0,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
verbose = TRUE,
...

)

Arguments

posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-
resenting a posterior distribution(s) from (see ’Details’).

prior An object representing a prior distribution (see ’Details’).

direction Test type (see ’Details’). One of 0, "two-sided" (default, two tailed), -1,
"left" (left tailed) or 1, "right" (right tailed).

null Value of the null, either a scalar (for point-null) or a range (for a interval-null).

verbose Toggle off warnings.

... Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline::logspline().)

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

This method is used to compute Bayes factors based on prior and posterior distributions.

One-sided & Dividing Tests (setting an order restriction): One sided tests (controlled by
direction) are conducted by restricting the prior and posterior of the non-null values (the "al-
ternative") to one side of the null only (Morey & Wagenmakers, 2014). For example, if we have
a prior hypothesis that the parameter should be positive, the alternative will be restricted to the
region to the right of the null (point or interval). For example, for a Bayes factor comparing the
"null" of 0-0.1 to the alternative >0.1, we would set bayesfactor_parameters(null = c(0,
0.1), direction = ">").

bayesfactor_parameters 17

It is also possible to compute a Bayes factor for dividing hypotheses - that is, for a null and alter-
native that are complementary, opposing one-sided hypotheses (Morey & Wagenmakers, 2014).
For example, for a Bayes factor comparing the "null" of <0 to the alternative >0, we would set
bayesfactor_parameters(null = c(-Inf, 0)).

Value

A data frame containing the (log) Bayes factor representing evidence against the null (Use as.numeric()
to extract the non-log Bayes factors; see examples).

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results.

• When posterior is a numerical vector, prior should also be a numerical vector.

• When posterior is a data.frame, prior should also be a data.frame, with matching col-
umn order.

• When posterior is a stanreg, brmsfit or other supported Bayesian model:

– prior can be set to NULL, in which case prior samples are drawn internally.
– prior can also be a model equivalent to posterior but with samples from the priors

only. See unupdate().
– Note: When posterior is a brmsfit_multiple model, prior must be provided.

• When posterior is an emmGrid / emm_list object:

– prior should also be an emmGrid / emm_list object equivalent to posterior but created
with a model of priors samples only. See unupdate().

– prior can also be the original (posterior) model. If so, the function will try to update
the emmGrid / emm_list to use the unupdate()d prior-model. (This cannot be done for
brmsfit models.)

– Note: When the emmGrid has undergone any transformations ("log", "response", etc.),
or regriding, then prior must be an emmGrid object, as stated above.

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

18 bayesfactor_parameters

Note

There is also a plot()-method implemented in the see-package.

Author(s)

Mattan S. Ben-Shachar

References

• Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., and Grasman, R. (2010). Bayesian hypothe-
sis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive psychology,
60(3), 158-189.

• Heck, D. W. (2019). A caveat on the Savage–Dickey density ratio: The case of computing
Bayes factors for regression parameters. British Journal of Mathematical and Statistical Psy-
chology, 72(2), 316-333.

• Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

• Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

• Liao, J. G., Midya, V., & Berg, A. (2020). Connecting and contrasting the Bayes factor and
a modified ROPE procedure for testing interval null hypotheses. The American Statistician,
1-19.

• Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.
(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. doi: 10.1177/1745691611406923

Examples

library(bayestestR)
if (require("logspline")) {

prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = .5, sd = .3)
(BF_pars <- bayesfactor_parameters(posterior, prior))

as.numeric(BF_pars)
}
Not run:
rstanarm models

if (require("rstanarm") && require("emmeans") && require("logspline")) {

contrasts(sleep$group) <- contr.orthonorm # see vingette
stan_model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
bayesfactor_parameters(stan_model)
bayesfactor_parameters(stan_model, null = rope_range(stan_model))

emmGrid objects

group_diff <- pairs(emmeans(stan_model, ~group))
bayesfactor_parameters(group_diff, prior = stan_model)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1177/1745691611406923

bayesfactor_restricted 19

Or
group_diff_prior <- pairs(emmeans(unupdate(stan_model), ~group))
bayesfactor_parameters(group_diff, prior = group_diff_prior)

}

brms models

if (require("brms")) {

contrasts(sleep$group) <- contr.orthonorm # see vingette
my_custom_priors <-

set_prior("student_t(3, 0, 1)", class = "b") +
set_prior("student_t(3, 0, 1)", class = "sd", group = "ID")

brms_model <- brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors

)
bayesfactor_parameters(brms_model)

}

End(Not run)

bayesfactor_restricted

Bayes Factors (BF) for Order Restricted Models

Description

This method computes Bayes factors for comparing a model with an order restrictions on its param-
eters with the fully unrestricted model. Note that this method should only be used for confirmatory
analyses.

The bf_* function is an alias of the main function.

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
...

)

bf_restricted(posterior, hypothesis, prior = NULL, verbose = TRUE, ...)

https://easystats.github.io/bayestestR/articles/bayes_factors.html

20 bayesfactor_restricted

S3 method for class 'stanreg'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
...

)

S3 method for class 'brmsfit'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
...

)

S3 method for class 'blavaan'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
...

)

S3 method for class 'emmGrid'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
...

)

Arguments

posterior A stanreg / brmsfit object, emmGrid or a data frame - representing a posterior
distribution(s) from (see Details).

hypothesis A character vector specifying the restrictions as logical conditions (see examples
below).

prior An object representing a prior distribution (see Details).

bayesfactor_restricted 21

verbose Toggle off warnings.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

This method is used to compute Bayes factors for order-restricted models vs un-restricted models by
setting an order restriction on the prior and posterior distributions (Morey & Wagenmakers, 2013).

(Though it is possible to use bayesfactor_restricted() to test interval restrictions, it is more
suitable for testing order restrictions; see examples).

Value

A data frame containing the (log) Bayes factor representing evidence against the un-restricted
model (Use as.numeric() to extract the non-log Bayes factors; see examples). (A bool_results
attribute contains the results for each sample, indicating if they are included or not in the hypothe-
sized restriction.)

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results.

• When posterior is a numerical vector, prior should also be a numerical vector.

• When posterior is a data.frame, prior should also be a data.frame, with matching col-
umn order.

• When posterior is a stanreg, brmsfit or other supported Bayesian model:

– prior can be set to NULL, in which case prior samples are drawn internally.
– prior can also be a model equivalent to posterior but with samples from the priors

only. See unupdate().
– Note: When posterior is a brmsfit_multiple model, prior must be provided.

• When posterior is an emmGrid / emm_list object:

– prior should also be an emmGrid / emm_list object equivalent to posterior but created
with a model of priors samples only. See unupdate().

22 bayesfactor_restricted

– prior can also be the original (posterior) model. If so, the function will try to update
the emmGrid / emm_list to use the unupdate()d prior-model. (This cannot be done for
brmsfit models.)

– Note: When the emmGrid has undergone any transformations ("log", "response", etc.),
or regriding, then prior must be an emmGrid object, as stated above.

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

References

• Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

• Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

• Morey, R. D. (Jan, 2015). Multiple Comparisons with BayesFactor, Part 2 – order restrictions.
Retrieved from https://richarddmorey.org/category/order-restrictions/.

Examples

set.seed(444)
library(bayestestR)
prior <- data.frame(

A = rnorm(1000),
B = rnorm(1000),
C = rnorm(1000)

)

posterior <- data.frame(
A = rnorm(1000, .4, 0.7),
B = rnorm(1000, -.2, 0.4),
C = rnorm(1000, 0, 0.5)

)

hyps <- c(
"A > B & B > C",
"A > B & A > C",
"C > A"

)

if (getRversion() > "3.5.0") {
(b <- bayesfactor_restricted(posterior, hypothesis = hyps, prior = prior))

as.numeric(b)

if (require("see") && require("patchwork")) {
i <- attr(b, "bool_results")[["posterior"]]

bci 23

see::plots(
plot(estimate_density(posterior)),
distribution **conditional** on the restrictions
plot(estimate_density(posterior[i[[hyps[1]]],])) + ggplot2::ggtitle(hyps[1]),
plot(estimate_density(posterior[i[[hyps[2]]],])) + ggplot2::ggtitle(hyps[2]),
plot(estimate_density(posterior[i[[hyps[3]]],])) + ggplot2::ggtitle(hyps[3]),
guides = "collect"

)
}

}

Not run:
rstanarm models

if (require("rstanarm") && require("emmeans")) {

fit_stan <- stan_glm(mpg ~ wt + cyl + am,
data = mtcars, refresh = 0

)
hyps <- c(

"am > 0 & cyl < 0",
"cyl < 0",
"wt - cyl > 0"

)
bayesfactor_restricted(fit_stan, hypothesis = hyps)

emmGrid objects

replicating http://bayesfactor.blogspot.com/2015/01/multiple-comparisons-with-bayesfactor-2.html
disgust_data <- read.table(url("http://www.learnbayes.org/disgust_example.txt"), header = TRUE)

contrasts(disgust_data$condition) <- contr.orthonorm # see vignette
fit_model <- stan_glm(score ~ condition, data = disgust_data, family = gaussian())

em_condition <- emmeans(fit_model, ~condition)
hyps <- c("lemon < control & control < sulfur")

bayesfactor_restricted(em_condition, prior = fit_model, hypothesis = hyps)
> # Bayes Factor (Order-Restriction)
>
> Hypothesis P(Prior) P(Posterior) BF
> lemon < control & control < sulfur 0.17 0.75 4.49
> ---
> Bayes factors for the restricted model vs. the un-restricted model.

}

End(Not run)

bci Bias Corrected and Accelerated Interval (BCa)

24 bci

Description

Compute the Bias Corrected and Accelerated Interval (BCa) of posterior distributions.

Usage

bci(x, ...)

bcai(x, ...)

S3 method for class 'numeric'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'MCMCglmm'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'sim.merMod'
bci(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'sim'
bci(x, ci = 0.95, parameters = NULL, verbose = TRUE, ...)

S3 method for class 'emmGrid'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
bci(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
bci(

bci 25

x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'BFBayesFactor'
bci(x, ci = 0.95, verbose = TRUE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).
The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html

26 bci

limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).
However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It in-
dicates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods
of computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

References

DiCiccio, T. J. and B. Efron. (1996). Bootstrap Confidence Intervals. Statistical Science. 11(3):
189–212. 10.1214/ss/1032280214

See Also

Other ci: ci(), cwi(), eti(), hdi(), si(), spi()

Examples

posterior <- rnorm(1000)
bci(posterior)
bci(posterior, ci = c(.80, .89, .95))

https://easystats.github.io/blog/posts/bayestestr_95/

bic_to_bf 27

bic_to_bf Convert BIC indices to Bayes Factors via the BIC-approximation
method.

Description

The difference between two Bayesian information criterion (BIC) indices of two models can be
used to approximate Bayes factors via:

BF10 = e(BIC0−BIC1)/2

Usage

bic_to_bf(bic, denominator, log = FALSE)

Arguments

bic A vector of BIC values.

denominator The BIC value to use as a denominator (to test against).

log If TRUE, return the log(BF).

Value

The Bayes Factors corresponding to the BIC values against the denominator.

References

Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psycho-
nomic bulletin & review, 14(5), 779-804

Examples

bic1 <- BIC(lm(Sepal.Length ~ 1, data = iris))
bic2 <- BIC(lm(Sepal.Length ~ Species, data = iris))
bic3 <- BIC(lm(Sepal.Length ~ Species + Petal.Length, data = iris))
bic4 <- BIC(lm(Sepal.Length ~ Species * Petal.Length, data = iris))

bic_to_bf(c(bic1, bic2, bic3, bic4), denominator = bic1)

28 check_prior

check_prior Check if Prior is Informative

Description

Performs a simple test to check whether the prior is informative to the posterior. This idea, and the
accompanying heuristics, were discussed in this blogpost.

Usage

check_prior(model, method = "gelman", simulate_priors = TRUE, ...)

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

method Can be "gelman" or "lakeland". For the "gelman" method, if the SD of the
posterior is more than 0.1 times the SD of the prior, then the prior is considered
as informative. For the "lakeland" method, the prior is considered as informa-
tive if the posterior falls within the 95% HDI of the prior.

simulate_priors

Should prior distributions be simulated using simulate_prior() (default; faster)
or sampled via unupdate() (slower, more accurate).

... Currently not used.

Value

A data frame with two columns: The parameter names and the quality of the prior (which might be
"informative", "uninformative") or "not determinable" if the prior distribution could not be
determined).

References

https://statmodeling.stat.columbia.edu/2019/08/10/

Examples

Not run:
library(bayestestR)
if (require("rstanarm")) {

model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")

An extreme example where both methods diverge:
model <- stan_glm(mpg ~ wt,
data = mtcars[1:3,],
prior = normal(-3.3, 1, FALSE),
prior_intercept = normal(0, 1000, FALSE),

https://statmodeling.stat.columbia.edu/2019/08/10/

ci 29

refresh = 0
)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")
plot(si(model)) # can provide visual confirmation to the Lakeland method

}

End(Not run)

ci Confidence/Credible/Compatibility Interval (CI)

Description

Compute Confidence/Credible/Compatibility Intervals (CI) or Support Intervals (SI) for Bayesian
and frequentist models. The Documentation is accessible for:

Usage

ci(x, ...)

S3 method for class 'numeric'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'data.frame'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'sim.merMod'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'sim'
ci(x, ci = 0.95, method = "ETI", parameters = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",

30 ci

"distributional", "auxiliary"),
parameters = NULL,
verbose = TRUE,
BF = 1,
...

)

S3 method for class 'brmsfit'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
BF = 1,
...

)

S3 method for class 'BFBayesFactor'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'MCMCglmm'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, ...)

Arguments

x A stanreg or brmsfit model, or a vector representing a posterior distribution.

... Currently not used.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .95 (95%).

method Can be ’ETI’ (default), ’HDI’, ’BCI’, ’SPI’ or ’SI’.

verbose Toggle off warnings.

BF The amount of support required to be included in the support interval.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

ci 31

Details

• Bayesian models

• Frequentist models

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

When it comes to interpretation, we recommend thinking of the CI in terms of an "uncertainty" or
"compatibility" interval, the latter being defined as “Given any value in the interval and the back-
ground assumptions, the data should not seem very surprising” (Gelman & Greenland 2019).

There is also a plot()-method implemented in the see-package.

References

Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ
2019;l5381. 10.1136/bmj.l5381

See Also

Other ci: bci(), cwi(), eti(), hdi(), si(), spi()

Examples

library(bayestestR)

posterior <- rnorm(1000)
ci(posterior, method = "ETI")
ci(posterior, method = "HDI")

df <- data.frame(replicate(4, rnorm(100)))
ci(df, method = "ETI", ci = c(.80, .89, .95))
ci(df, method = "HDI", ci = c(.80, .89, .95))
Not run:
if (require("rstanarm")) {

model <- stan_glm(mpg ~ wt, data = mtcars, chains = 2, iter = 200, refresh = 0)
ci(model, method = "ETI", ci = c(.80, .89))
ci(model, method = "HDI", ci = c(.80, .89))
ci(model, method = "SI")

}

if (require("brms")) {

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/parameters/reference/ci.default.html
https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

32 contr.orthonorm

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
ci(model, method = "ETI")
ci(model, method = "HDI")
ci(model, method = "SI")

}

if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
ci(bf, method = "ETI")
ci(bf, method = "HDI")

}

if (require("emmeans")) {
model <- emtrends(model, ~1, "wt")
ci(model, method = "ETI")
ci(model, method = "HDI")
ci(model, method = "SI")

}

End(Not run)

contr.orthonorm Orthonormal Contrast Matrices for Bayesian Estimation

Description

Returns a design or model matrix of orthonormal contrasts such that the marginal prior on all ef-
fects is identical (see ’Details’). Implementation from Singmann & Gronau’s bfrms, following the
description in Rouder, Morey, Speckman, & Province (2012, p. 363).

Though using this factor coding scheme might obscure the interpretation of parameters, it is es-
sential for correct estimation of Bayes factors for contrasts and order restrictions of multi-level
factors (where k>2). See info on specifying correct priors for factors with more than 2 levels in the
Bayes factors vignette.

Usage

contr.orthonorm(n, contrasts = TRUE, sparse = FALSE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

sparse logical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

https://github.com/bayesstuff/bfrms/
https://easystats.github.io/bayestestR/articles/bayes_factors.html
https://easystats.github.io/bayestestR/articles/bayes_factors.html
https://CRAN.R-project.org/package=Matrix

convert_bayesian_as_frequentist 33

Details

When contrasts = FALSE, the returned contrasts are equivalent to contr.treatment(, contrasts
= FALSE), as suggested by McElreath (also known as one-hot encoding).

Setting Priors:
It is recommended to set 0-centered, identically-scaled priors on the dummy coded variables pro-
duced by this method. These priors then represent the distance the mean of one of the levels might
have from the overall mean.

Contrasts:
This method guarantees that any set of contrasts between the k groups will have the same mul-
tivariate prior regardless of level order; However, different contrasts within a set contrasts can
have different univariate prior shapes/scales.

For example the contrasts A - B will have the same prior as B - C, as will (A + C) - B and (B
+ A) - C, but A - B and (A + C) - B will differ.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts is FALSE.

References

• McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan.
CRC press.

• Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors
for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356-374. https://doi.org/10.1016/j.jmp.2012.08.001

Examples

contr.orthonorm(2) # Q_2 in Rouder et al. (2012, p. 363)

contr.orthonorm(5) # equivalent to Q_5 in Rouder et al. (2012, p. 363)

check decomposition
Q3 <- contr.orthonorm(3)
Q3 %*% t(Q3) ## 2/3 on diagonal and -1/3 on off-diagonal elements

convert_bayesian_as_frequentist

Convert (refit) a Bayesian model to frequentist

Description

Refit Bayesian model as frequentist. Can be useful for comparisons.

34 convert_bayesian_as_frequentist

Usage

convert_bayesian_as_frequentist(model, data = NULL, REML = TRUE)

bayesian_as_frequentist(model, data = NULL, REML = TRUE)

Arguments

model A Bayesian model.

data Data used by the model. If NULL, will try to extract it from the model.

REML For mixed effects, should models be estimated using restricted maximum likeli-
hood (REML) (TRUE, default) or maximum likelihood (FALSE)?

Examples

Rstanarm ----------------------
if (require("rstanarm")) {

Simple regressions
model <- stan_glm(Sepal.Length ~ Species,
data = iris, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

}

Not run:
if (require("rstanarm")) {

model <- stan_glm(vs ~ mpg,
family = "binomial",
data = mtcars, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

Mixed models
model <- stan_glmer(Sepal.Length ~ Petal.Length + (1 | Species),

data = iris, chains = 2, refresh = 0
)
bayesian_as_frequentist(model)

model <- stan_glmer(vs ~ mpg + (1 | cyl),
family = "binomial",
data = mtcars, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

}

End(Not run)

cwi 35

cwi Curvewise Intervals (CWI)

Description

Compute the Curvewise interval (CWI) (also called the "simultaneous interval" or "joint interval")
of posterior distributions using ggdist::curve_interval(). Whereas the more typical "pointwise
intervals" contain xx% of the posterior for a single parameter, joint/curvewise intervals contain xx%
of the posterior distribution for all parameters.

Usage

cwi(x, ...)

S3 method for class 'data.frame'
cwi(x, ci = 0.95, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

Details

Applied model predictions, pointwise intervals contain xx% of the predicted response values con-
ditional on specific predictor values. In contrast, curvewise intervals contain xx% of the predicted
response values across all predictor values. Put another way, curvewise intervals contain xx% of
the full prediction lines from the model.

For more details, see the ggdist documentation on curvewise intervals.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

https://mjskay.github.io/ggdist/articles/lineribbon.html#curve-boxplots-aka-lineribbons-with-joint-intervals-or-curvewise-intervals-

36 density_at

See Also

Other ci: bci(), ci(), eti(), hdi(), si(), spi()

Examples

library(bayestestR)

if (require("ggplot2") && require("rstanarm") && require("ggdist")) {

Generate data ===
k <- 11 # number of curves (iterations)
n <- 201 # number of rows
data <- data.frame(x = seq(-15, 15, length.out = n))

Simulate iterations as new columns
for (i in 1:k) {
data[paste0("iter_", i)] <- dnorm(data$x, seq(-5, 5, length.out = k)[i], 3)

}

Note: first, we need to transpose the data to have iters as rows
iters <- datawizard::data_transpose(data[paste0("iter_", 1:k)])

Compute Median
data$Median <- point_estimate(iters)[["Median"]]

Compute Credible Intervals ================================

Compute ETI (default type of CI)
data[c("ETI_low", "ETI_high")] <- eti(iters, ci = 0.5)[c("CI_low", "CI_high")]

Compute CWI
ggdist::curve_interval(reshape_iterations(data), iter_value .width = c(.5))

Visualization ===
ggplot(data, aes(x = x, y = Median)) +

geom_ribbon(aes(ymin = ETI_low, ymax = ETI_high), fill = "red", alpha = 0.3) +
geom_line(size = 1) +
geom_line(

data = reshape_iterations(data),
aes(y = iter_value, group = iter_group),
alpha = 0.3

)
}

density_at Density Probability at a Given Value

describe_posterior 37

Description

Compute the density value at a given point of a distribution (i.e., the value of the y axis of a value x
of a distribution).

Usage

density_at(posterior, x, precision = 2^10, method = "kernel", ...)

Arguments

posterior Vector representing a posterior distribution.

x The value of which to get the approximate probability.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

... Currently not used.

Examples

library(bayestestR)
posterior <- distribution_normal(n = 10)
density_at(posterior, 0)
density_at(posterior, c(0, 1))

describe_posterior Describe Posterior Distributions

Description

Compute indices relevant to describe and characterize the posterior distributions.

Usage

describe_posterior(posteriors, ...)

S3 method for class 'numeric'
describe_posterior(
posteriors,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,

38 describe_posterior

BF = 1,
...

)

S3 method for class 'stanreg'
describe_posterior(
posteriors,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
BF = 1,
...

)

S3 method for class 'brmsfit'
describe_posterior(
posteriors,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all", "location",
"distributional", "auxiliary"),

parameters = NULL,
BF = 1,
priors = FALSE,
...

)

describe_posterior 39

Arguments

posteriors A vector, data frame or model of posterior draws. bayestestR supports a wide
range of models (see methods("describe_posterior")) and not all of those
are documented in the ’Usage’ section, because methods for other classes mostly
resemble the arguments of the .numeric method.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .95 (95%).

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,
0.1)) or "default". If "default", the bounds are set to x +- 0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, You
can reshape them to a long format by running reshape_iterations().

bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used
if the input is a posterior, otherwise (in the case of models) ignored.

BF The amount of support required to be included in the support interval.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

priors Add the prior used for each parameter.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

40 describe_posterior

Details

One or more components of point estimates (like posterior mean or median), intervals and tests can
be omitted from the summary output by setting the related argument to NULL. For example, test =
NULL and centrality = NULL would only return the HDI (or CI).

References

• Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., \& Lüdecke, D. (2019). Indices of Effect
Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767.
doi: 10.3389/fpsyg.2019.02767

• Region of Practical Equivalence (ROPE)

• Bayes factors

Examples

library(bayestestR)

if (require("logspline")) {
x <- rnorm(1000)
describe_posterior(x)
describe_posterior(x, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(x, ci = c(0.80, 0.90))

df <- data.frame(replicate(4, rnorm(100)))
describe_posterior(df)
describe_posterior(df, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(df, ci = c(0.80, 0.90))

df <- data.frame(replicate(4, rnorm(20)))
head(reshape_iterations(describe_posterior(df, keep_iterations = TRUE)))

}
Not run:
rstanarm models

if (require("rstanarm") && require("emmeans")) {
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(model, ci = c(0.80, 0.90))

emmeans estimates

describe_posterior(emtrends(model, ~1, "wt"))

}

brms models

if (require("brms")) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")

https://doi.org/10.3389/fpsyg.2019.02767
https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html
https://easystats.github.io/bayestestR/articles/bayes_factors.html

describe_prior 41

describe_posterior(model, ci = c(0.80, 0.90))
}

BayesFactor objects

if (require("BayesFactor")) {

bf <- ttestBF(x = rnorm(100, 1, 1))
describe_posterior(bf)
describe_posterior(bf, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(bf, ci = c(0.80, 0.90))

}

End(Not run)

describe_prior Describe Priors

Description

Returns a summary of the priors used in the model.

Usage

describe_prior(model, ...)

S3 method for class 'brmsfit'
describe_prior(
model,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all", "location",
"distributional", "auxiliary"),

parameters = NULL,
...

)

Arguments

model A Bayesian model.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

42 diagnostic_draws

Examples

Not run:
library(bayestestR)

rstanarm models

if (require("rstanarm")) {

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

}

brms models

if (require("brms")) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

}

BayesFactor objects

if (require("BayesFactor")) {

bf <- ttestBF(x = rnorm(100, 1, 1))
describe_prior(bf)

}

End(Not run)

diagnostic_draws Diagnostic values for each iteration

Description

Returns the accumulated log-posterior, the average Metropolis acceptance rate, divergent transi-
tions, treedepth rather than terminated its evolution normally.

Usage

diagnostic_draws(posteriors, ...)

Arguments

posteriors A stanreg, stanfit, brmsfit, or blavaan object.

... Currently not used.

diagnostic_posterior 43

Examples

Not run:
set.seed(333)

if (require("brms", quietly = TRUE)) {
model <- brm(mpg ~ wt * cyl * vs,
data = mtcars,
iter = 100, control = list(adapt_delta = 0.80),
refresh = 0

)
diagnostic_draws(model)

}

End(Not run)

diagnostic_posterior Posteriors Sampling Diagnostic

Description

Extract diagnostic metrics (Effective Sample Size (ESS), Rhat and Monte Carlo Standard Error
MCSE).

Usage

diagnostic_posterior(posteriors, diagnostic = c("ESS", "Rhat"), ...)

S3 method for class 'stanreg'
diagnostic_posterior(
posteriors,
diagnostic = "all",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
diagnostic_posterior(
posteriors,
diagnostic = "all",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

44 diagnostic_posterior

Arguments

posteriors A stanreg, stanfit, brmsfit, or blavaan object.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

... Currently not used.

effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

component Which type of parameters to return, such as parameters for the conditional
model, the zero-inflated part of the model, the dispersion term, the instrumental
variables or marginal effects be returned? Applies to models with zero-inflated
and/or dispersion formula, or to models with instrumental variables (so called
fixed-effects regressions), or models with marginal effects from mfx. May be
abbreviated. Note that the conditional component is also called count or mean
component, depending on the model. There are three convenient shortcuts:
component = "all" returns all possible parameters. If component = "location",
location parameters such as conditional, zero_inflated, smooth_terms, or
instruments are returned (everything that are fixed or random effects - depend-
ing on the effects argument - but no auxiliary parameters). For component =
"distributional" (or "auxiliary"), components like sigma, dispersion,
beta or precision (and other auxiliary parameters) are returned.

parameters Regular expression pattern that describes the parameters that should be returned.

Details

Effective Sample (ESS) should be as large as possible, although for most applications, an effective
sample size greater than 1000 is sufficient for stable estimates (Bürkner, 2017). The ESS corre-
sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of “how much independent information there is in autocorrelated
chains” (Kruschke 2015, p182-3).

Rhat should be the closest to 1. It should not be larger than 1.1 (Gelman and Rubin, 1992) or
1.01 (Vehtari et al., 2019). The split Rhat statistic quantifies the consistency of an ensemble of
Markov chains.

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is de-
fined as standard deviation of the chains divided by their effective sample size (the formula for
mcse() is from Kruschke 2015, p. 187). The MCSE “provides a quantitative suggestion of how big
the estimation noise is”.

References

• Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical science, 7(4), 457-472.

• Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., \& Bürkner, P. C. (2019). Rank-
normalization, folding, and localization: An improved Rhat for assessing convergence of
MCMC. arXiv preprint arXiv:1903.08008.

distribution 45

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

Examples

Not run:
rstanarm models

if (require("rstanarm", quietly = TRUE)) {
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
diagnostic_posterior(model)

}

brms models

if (require("brms", quietly = TRUE)) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
diagnostic_posterior(model)

}

End(Not run)

distribution Empirical Distributions

Description

Generate a sequence of n-quantiles, i.e., a sample of size n with a near-perfect distribution.

Usage

distribution(type = "normal", ...)

distribution_custom(n, type = "norm", ..., random = FALSE)

distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)

distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_binom(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)

distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)

distribution_chisq(n, df, ncp = 0, random = FALSE, ...)

distribution_gamma(n, shape, scale = 1, random = FALSE, ...)

46 distribution

distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)

distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_gaussian(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_nbinom(n, size, prob, mu, phi, random = FALSE, ...)

distribution_poisson(n, lambda = 1, random = FALSE, ...)

distribution_student(n, df, ncp, random = FALSE, ...)

distribution_t(n, df, ncp, random = FALSE, ...)

distribution_student_t(n, df, ncp, random = FALSE, ...)

distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)

distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)

rnorm_perfect(n, mean = 0, sd = 1)

Arguments

type Can be any of the names from base R’s Distributions, like "cauchy", "pois" or
"beta".

... Arguments passed to or from other methods.

n the number of observations

random Generate near-perfect or random (simple wrappers for the base R r* functions)
distributions.

shape1 non-negative parameters of the Beta distribution.

shape2 non-negative parameters of the Beta distribution.

ncp non-centrality parameter.

size number of trials (zero or more).

prob probability of success on each trial.

location location and scale parameters.

scale location and scale parameters.

df degrees of freedom (non-negative, but can be non-integer).

shape shape and scale parameters. Must be positive, scale strictly.

mean vector of means.

sd vector of standard deviations.

mu the mean

phi Corresponding to glmmTMB’s implementation of nbinom distribution, where size=mu/phi.

lambda vector of (non-negative) means.

effective_sample 47

xi For tweedie distributions, the value of xi such that the variance is var(Y) = phi
* mu^xi.

power Alias for xi.

min lower and upper limits of the distribution. Must be finite.

max lower and upper limits of the distribution. Must be finite.

Details

When random = FALSE, these function return q*(ppoints(n), ...).

Examples

library(bayestestR)
x <- distribution(n = 10)
plot(density(x))

x <- distribution(type = "gamma", n = 100, shape = 2)
plot(density(x))

effective_sample Effective Sample Size (ESS)

Description

This function returns the effective sample size (ESS).

Usage

effective_sample(model, ...)

S3 method for class 'brmsfit'
effective_sample(
model,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'stanreg'
effective_sample(
model,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

48 effective_sample

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Effective Sample (ESS) should be as large as possible, altough for most applications, an effective
sample size greater than 1,000 is sufficient for stable estimates (Bürkner, 2017). The ESS corre-
sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of “how much independent information there is in autocorrelated
chains” (Kruschke 2015, p182-3).

Value

A data frame with two columns: Parameter name and effective sample size (ESS).

References

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

• Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal
of Statistical Software, 80(1), 1-28

Examples

Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
effective_sample(model)

End(Not run)

equivalence_test 49

equivalence_test Test for Practical Equivalence

Description

Perform a Test for Practical Equivalence for Bayesian and frequentist models.

Usage

equivalence_test(x, ...)

Default S3 method:
equivalence_test(x, ...)

S3 method for class 'data.frame'
equivalence_test(x, range = "default", ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

50 equivalence_test

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. In models with one response,
range should be a vector of length two (e.g., c(-0.1, 0.1)). In multivariate
models, range should be a list with a numeric vectors for each response vari-
able. Vector names should correspond to the name of the response variables. If
"default" and input is a vector, the range is set to c(-0.1, 0.1). If "default"
and input is a Bayesian model, rope_range() is used.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Documentation is accessible for:

• Bayesian models

• Frequentist models

For Bayesian models, the Test for Practical Equivalence is based on the "HDI+ROPE decision
rule" (Kruschke, 2014, 2018) to check whether parameter values should be accepted or rejected
against an explicitly formulated "null hypothesis" (i.e., a ROPE). In other words, it checks the
percentage of the 89% HDI that is the null region (the ROPE). If this percentage is sufficiently low,
the null hypothesis is rejected. If this percentage is sufficiently high, the null hypothesis is accepted.

Using the ROPE and the HDI, Kruschke (2018) suggests using the percentage of the 95% (or 89%,
considered more stable) HDI that falls within the ROPE as a decision rule. If the HDI is completely
outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely
covers the HDI, i.e., all most credible values of a parameter are inside the region of practical equiv-
alence, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null
hypothesis. If the full ROPE is used (i.e., 100% of the HDI), then the null hypothesis is rejected or
accepted if the percentage of the posterior within the ROPE is smaller than to 2.5% or greater than
97.5%. Desirable results are low proportions inside the ROPE (the closer to zero the better).

Some attention is required for finding suitable values for the ROPE limits (argument range). See
’Details’ in rope_range() for further information.

Multicollinearity: Non-independent covariates

When parameters show strong correlations, i.e. when covariates are not independent, the joint

https://easystats.github.io/bayestestR/reference/equivalence_test.html
https://easystats.github.io/parameters/reference/equivalence_test.lm.html

equivalence_test 51

parameter distributions may shift towards or away from the ROPE. In such cases, the test for prac-
tical equivalence may have inappropriate results. Collinearity invalidates ROPE and hypothesis
testing based on univariate marginals, as the probabilities are conditional on independence. Most
problematic are the results of the "undecided" parameters, which may either move further towards
"rejection" or away from it (Kruschke 2014, 340f).

equivalence_test() performs a simple check for pairwise correlations between parameters, but
as there can be collinearity between more than two variables, a first step to check the assumptions
of this hypothesis testing is to look at different pair plots. An even more sophisticated check is the
projection predictive variable selection (Piironen and Vehtari 2017).

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the HDI.

• ROPE_low, ROPE_high The limits of the ROPE. These values are identical for all parameters.

• ROPE_Percentage The proportion of the HDI that lies inside the ROPE.

• ROPE_Equivalence The "test result", as character. Either "rejected", "accepted" or "unde-
cided".

• HDI_low , HDI_high The lower and upper HDI limits for the parameters.

Note

There is a print()-method with a digits-argument to control the amount of digits in the output,
and there is a plot()-method to visualize the results from the equivalence-test (for models only).

References

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/
2515245918771304

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press

• Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711–735. doi: 10.1007/s112220169649y

Examples

library(bayestestR)

equivalence_test(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 0, 1), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))

https://easystats.github.io/see/articles/bayestestR.html
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1007/s11222-016-9649-y

52 estimate_density

print more digits
test <- equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))
print(test, digits = 4)
Not run:
library(rstanarm)
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)
equivalence_test(model, ci = c(.50, 1))

plot result
test <- equivalence_test(model)
plot(test)

library(emmeans)
equivalence_test(emtrends(model, ~1, "wt"))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)
equivalence_test(model, ci = c(.50, .99))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
equivalence_test(bf)
equivalence_test(bf, ci = c(.50, .99))

End(Not run)

estimate_density Density Estimation

Description

This function is a wrapper over different methods of density estimation. By default, it uses the base
R density with by default uses a different smoothing bandwidth ("SJ") from the legacy default
implemented the base R density function ("nrd0"). However, Deng \& Wickham suggest that
method = "KernSmooth" is the fastest and the most accurate.

Usage

estimate_density(x, ...)

S3 method for class 'data.frame'
estimate_density(
x,
method = "kernel",
precision = 2^10,
extend = FALSE,
extend_scale = 0.1,

estimate_density 53

bw = "SJ",
ci = NULL,
select = NULL,
at = NULL,
group_by = NULL,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

precision Number of points of density data. See the n parameter in density.

extend Extend the range of the x axis by a factor of extend_scale.

extend_scale Ratio of range by which to extend the x axis. A value of 0.1 means that the x
axis will be extended by 1/10 of the range of the data.

bw See the eponymous argument in density. Here, the default has been changed
for "SJ", which is recommended.

ci The confidence interval threshold. Only used when method = "kernel". This
feature is experimental, use with caution.

select Character vector of column names. If NULL (the default), all numeric variables
will be selected. Other arguments from datawizard::find_columns() (such
as exclude) can also be used.

at Optional character vector. If not NULL and input is a data frame, density estima-
tion is performed for each group (subsets) indicated by at. See examples.

group_by Deprecated in favour of at.

Note

There is also a plot()-method implemented in the see-package.

References

Deng, H., & Wickham, H. (2011). Density estimation in R. Electronic publication.

Examples

library(bayestestR)

set.seed(1)
x <- rnorm(250, mean = 1)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

54 estimate_density

Basic usage
density_kernel <- estimate_density(x) # default method is "kernel"

hist(x, prob = TRUE)
lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2)
lines(density_kernel$x, density_kernel$CI_low, col = "gray", lty = 2)
lines(density_kernel$x, density_kernel$CI_high, col = "gray", lty = 2)
legend("topright",

legend = c("Estimate", "95% CI"),
col = c("black", "gray"), lwd = 2, lty = c(1, 2)

)

Other Methods
density_logspline <- estimate_density(x, method = "logspline")
density_KernSmooth <- estimate_density(x, method = "KernSmooth")
density_mixture <- estimate_density(x, method = "mixture")

hist(x, prob = TRUE)
lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2)
lines(density_logspline$x, density_logspline$y, col = "red", lwd = 2)
lines(density_KernSmooth$x, density_KernSmooth$y, col = "blue", lwd = 2)
lines(density_mixture$x, density_mixture$y, col = "green", lwd = 2)

Extension
density_extended <- estimate_density(x, extend = TRUE)
density_default <- estimate_density(x, extend = FALSE)

hist(x, prob = TRUE)
lines(density_extended$x, density_extended$y, col = "red", lwd = 3)
lines(density_default$x, density_default$y, col = "black", lwd = 3)

Multiple columns
head(estimate_density(iris))
head(estimate_density(iris, select = "Sepal.Width"))

Grouped data
head(estimate_density(iris, at = "Species"))
head(estimate_density(iris$Petal.Width, at = iris$Species))
Not run:
rstanarm models

library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
head(estimate_density(model))

library(emmeans)
head(estimate_density(emtrends(model, ~1, "wt")))

brms models

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
estimate_density(model)

eti 55

End(Not run)

eti Equal-Tailed Interval (ETI)

Description

Compute the Equal-Tailed Interval (ETI) of posterior distributions using the quantiles method.
The probability of being below this interval is equal to the probability of being above it. The ETI
can be used in the context of uncertainty characterisation of posterior distributions as Credible
Interval (CI).

Usage

eti(x, ...)

S3 method for class 'numeric'
eti(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
eti(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
eti(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for

56 eti

example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).
The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval
limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).
However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It in-
dicates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods
of computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/blog/posts/bayestestr_95/

eti 57

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

See Also

Other ci: bci(), ci(), cwi(), hdi(), si(), spi()

Examples

library(bayestestR)

posterior <- rnorm(1000)
eti(posterior)
eti(posterior, ci = c(.80, .89, .95))

df <- data.frame(replicate(4, rnorm(100)))
eti(df)
eti(df, ci = c(.80, .89, .95))
Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
eti(model)
eti(model, ci = c(.80, .89, .95))

library(emmeans)
eti(emtrends(model, ~1, "wt"))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
eti(model)
eti(model, ci = c(.80, .89, .95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
eti(bf)
eti(bf, ci = c(.80, .89, .95))

End(Not run)

58 hdi

hdi Highest Density Interval (HDI)

Description

Compute the Highest Density Interval (HDI) of posterior distributions. All points within this
interval have a higher probability density than points outside the interval. The HDI can be used in
the context of uncertainty characterisation of posterior distributions as Credible Interval (CI).

Usage

hdi(x, ...)

S3 method for class 'numeric'
hdi(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
hdi(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
hdi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
hdi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’

hdi 59

section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).
The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval
limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).
However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It in-
dicates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods
of computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/blog/posts/bayestestr_95/

60 hdi

(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

There is also a plot()-method implemented in the see-package.

Author(s)

Credits go to ggdistribute and HDInterval.

References

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

• McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman and Hall/CRC.

See Also

Other interval functions, such as hdi(), eti(), bci(), spi(), si(), cwi().

Other ci: bci(), ci(), cwi(), eti(), si(), spi()

Examples

library(bayestestR)

posterior <- rnorm(1000)
hdi(posterior, ci = .89)
hdi(posterior, ci = c(.80, .90, .95))

df <- data.frame(replicate(4, rnorm(100)))
hdi(df)
hdi(df, ci = c(.80, .90, .95))
Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
hdi(model)
hdi(model, ci = c(.80, .90, .95))

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://rdrr.io/cran/ggdistribute/src/R/stats.R
https://github.com/mikemeredith/HDInterval

map_estimate 61

library(emmeans)
hdi(emtrends(model, ~1, "wt"))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
hdi(model)
hdi(model, ci = c(.80, .90, .95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
hdi(bf)
hdi(bf, ci = c(.80, .90, .95))

End(Not run)

map_estimate Maximum A Posteriori probability estimate (MAP)

Description

Find the Highest Maximum A Posteriori probability estimate (MAP) of a posterior, i.e., the
value associated with the highest probability density (the "peak" of the posterior distribution). In
other words, it is an estimation of the mode for continuous parameters. Note that this function relies
on estimate_density, which by default uses a different smoothing bandwidth ("SJ") compared to
the legacy default implemented the base R density function ("nrd0").

Usage

map_estimate(x, precision = 2^10, method = "kernel", ...)

S3 method for class 'numeric'
map_estimate(x, precision = 2^10, method = "kernel", ...)

S3 method for class 'stanreg'
map_estimate(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
map_estimate(
x,

62 map_estimate

precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'data.frame'
map_estimate(x, precision = 2^10, method = "kernel", ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Value

A numeric value if x is a vector. If x is a model-object, returns a data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• MAP_Estimate The MAP estimate for the posterior or each model parameter.

Examples

Not run:
library(bayestestR)

posterior <- rnorm(10000)
map_estimate(posterior)

plot(density(posterior))

mcse 63

abline(v = map_estimate(posterior), col = "red")

library(rstanarm)
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)

End(Not run)

mcse Monte-Carlo Standard Error (MCSE)

Description

This function returns the Monte Carlo Standard Error (MCSE).

Usage

mcse(model, ...)

S3 method for class 'stanreg'
mcse(
model,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

64 mediation

Details

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is defined
as standard deviation of the chains divided by their effective sample size (the formula for mcse()
is from Kruschke 2015, p. 187). The MCSE “provides a quantitative suggestion of how big the
estimation noise is”.

References

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic
Press.

Examples

Not run:
library(bayestestR)
library(rstanarm)

model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
mcse(model)

End(Not run)

mediation Summary of Bayesian multivariate-response mediation-models

Description

mediation() is a short summary for multivariate-response mediation-models, i.e. this function
computes average direct and average causal mediation effects of multivariate response models.

Usage

mediation(model, ...)

S3 method for class 'brmsfit'
mediation(
model,
treatment,
mediator,
response = NULL,
centrality = "median",
ci = 0.95,
method = "ETI",
...

)

S3 method for class 'stanmvreg'

mediation 65

mediation(
model,
treatment,
mediator,
response = NULL,
centrality = "median",
ci = 0.95,
method = "ETI",
...

)

Arguments

model A brmsfit or stanmvreg object.

... Not used.

treatment Character, name of the treatment variable (or direct effect) in a (multivariate
response) mediator-model. If missing, mediation() tries to find the treatment
variable automatically, however, this may fail.

mediator Character, name of the mediator variable in a (multivariate response) mediator-
model. If missing, mediation() tries to find the treatment variable automati-
cally, however, this may fail.

response A named character vector, indicating the names of the response variables to be
used for the mediation analysis. Usually can be NULL, in which case these vari-
ables are retrieved automatically. If not NULL, names should match the names
of the model formulas, names(insight::find_response(model, combine =
TRUE)). This can be useful if, for instance, the mediator variable used as pre-
dictor has a different name from the mediator variable used as response. This
might occur when the mediator is transformed in one model, but used "as is"
as response variable in the other model. Example: The mediator m is used as
response variable, but the centered version m_center is used as mediator vari-
able. The second response variable (for the treatment model, with the mediator
as additional predictor), y, is not transformed. Then we could use response like
this: mediation(model, response = c(m = "m_center", y = "y")).

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to .95 (95%).

method Can be ’ETI’ (default), ’HDI’, ’BCI’, ’SPI’ or ’SI’.

Details

mediation() returns a data frame with information on the direct effect (mean value of posterior
samples from treatment of the outcome model), mediator effect (mean value of posterior samples
from mediator of the outcome model), indirect effect (mean value of the multiplication of the pos-
terior samples from mediator of the outcome model and the posterior samples from treatment
of the mediation model) and the total effect (mean value of sums of posterior samples used for the
direct and indirect effect). The proportion mediated is the indirect effect divided by the total effect.

66 mediation

For all values, the 89% credible intervals are calculated by default. Use ci to calculate a differ-
ent interval.

The arguments treatment and mediator do not necessarily need to be specified. If missing,
mediation() tries to find the treatment and mediator variable automatically. If this does not work,
specify these variables.

The direct effect is also called average direct effect (ADE), the indirect effect is also called av-
erage causal mediation effects (ACME). See also Tingley et al. 2014 and Imai et al. 2010.

Value

A data frame with direct, indirect, mediator and total effect of a multivariate-response mediation-
model, as well as the proportion mediated. The effect sizes are median values of the posterior
samples (use centrality for other centrality indices).

Note

There is an as.data.frame() method that returns the posterior samples of the effects, which can
be used for further processing in the different bayestestR package.

References

• Imai, K., Keele, L. and Tingley, D. (2010) A General Approach to Causal Mediation Analysis,
Psychological Methods, Vol. 15, No. 4 (December), pp. 309-334.

• Tingley, D., Yamamoto, T., Hirose, K., Imai, K. and Keele, L. (2014). mediation: R package
for Causal Mediation Analysis, Journal of Statistical Software, Vol. 59, No. 5, pp. 1-38.

See Also

The mediation package for a causal mediation analysis in the frequentist framework.

Examples

Not run:
library(mediation)
library(brms)
library(rstanarm)

load sample data
data(jobs)
set.seed(123)

linear models, for mediation analysis
b1 <- lm(job_seek ~ treat + econ_hard + sex + age, data = jobs)
b2 <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data = jobs)
mediation analysis, for comparison with Stan models
m1 <- mediate(b1, b2, sims = 1000, treat = "treat", mediator = "job_seek")

Fit Bayesian mediation model in brms

model_to_priors 67

f1 <- bf(job_seek ~ treat + econ_hard + sex + age)
f2 <- bf(depress2 ~ treat + job_seek + econ_hard + sex + age)
m2 <- brm(f1 + f2 + set_rescor(FALSE), data = jobs, cores = 4, refresh = 0)

Fit Bayesian mediation model in rstanarm
m3 <- stan_mvmer(

list(
job_seek ~ treat + econ_hard + sex + age + (1 | occp),
depress2 ~ treat + job_seek + econ_hard + sex + age + (1 | occp)

),
data = jobs,
cores = 4,
refresh = 0

)

summary(m1)
mediation(m2, centrality = "mean", ci = .95)
mediation(m3, centrality = "mean", ci = .95)

End(Not run)

model_to_priors Convert model’s posteriors to priors (EXPERIMENTAL)

Description

Convert model’s posteriors to (normal) priors.

Usage

model_to_priors(model, scale_multiply = 3, ...)

Arguments

model A Bayesian model.

scale_multiply The SD of the posterior will be multiplied by this amount before being set as a
prior to avoid overly narrow priors.

... Other arguments for insight::get_prior() or describe_posterior.

Examples

Not run:
brms models

if (require("brms")) {

formula <- brms::brmsformula(mpg ~ wt + cyl, center = FALSE)

model <- brms::brm(formula, data = mtcars, refresh = 0)
priors <- model_to_priors(model)

68 overlap

priors <- brms::validate_prior(priors, formula, data = mtcars)
priors

model2 <- brms::brm(formula, data = mtcars, prior = priors, refresh = 0)
}

End(Not run)

overlap Overlap Coefficient

Description

A method to calculate the overlap coefficient between two empirical distributions (that can be used
as a measure of similarity between two samples).

Usage

overlap(
x,
y,
method_density = "kernel",
method_auc = "trapezoid",
precision = 2^10,
extend = TRUE,
extend_scale = 0.1,
...

)

Arguments

x Vector of x values.

y Vector of x values.

method_density Density estimation method. See estimate_density().

method_auc Area Under the Curve (AUC) estimation method. See area_under_curve().

precision Number of points of density data. See the n parameter in density.

extend Extend the range of the x axis by a factor of extend_scale.

extend_scale Ratio of range by which to extend the x axis. A value of 0.1 means that the x
axis will be extended by 1/10 of the range of the data.

... Currently not used.

pd_to_p 69

Examples

library(bayestestR)

x <- distribution_normal(1000, 2, 0.5)
y <- distribution_normal(1000, 0, 1)

overlap(x, y)
plot(overlap(x, y))

pd_to_p Convert between Probability of Direction (pd) and p-value.

Description

Enables a conversion between Probability of Direction (pd) and p-value.

Usage

pd_to_p(pd, direction = "two-sided", ...)

p_to_pd(p, direction = "two-sided", ...)

convert_p_to_pd(p, direction = "two-sided", ...)

convert_pd_to_p(pd, direction = "two-sided", ...)

Arguments

pd A Probability of Direction (pd) value (between 0 and 1).

direction What type of p-value is requested or provided. Can be "two-sided" (default,
two tailed) or "one-sided" (one tailed).

... Arguments passed to or from other methods.

p A p-value.

Examples

pd_to_p(pd = 0.95)
pd_to_p(pd = 0.95, direction = "one-sided")

70 point_estimate

point_estimate Point-estimates of posterior distributions

Description

Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior
distributions.

Usage

point_estimate(x, ...)

S3 method for class 'numeric'
point_estimate(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...)

S3 method for class 'stanreg'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'BFBayesFactor'
point_estimate(x, centrality = "all", dispersion = FALSE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’

point_estimate 71

section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

threshold For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to
0.5) of observations to be trimmed from each end of the vector before the mean
is computed.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Note

There is also a plot()-method implemented in the see-package.

References

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., \& Lüdecke, D. (2019). Indices of Effect
Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767.
doi: 10.3389/fpsyg.2019.02767

Examples

library(bayestestR)

point_estimate(rnorm(1000))
point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE)
point_estimate(rnorm(1000), centrality = c("median", "MAP"))

df <- data.frame(replicate(4, rnorm(100)))
point_estimate(df, centrality = "all", dispersion = TRUE)
point_estimate(df, centrality = c("median", "MAP"))
Not run:
rstanarm models

library(rstanarm)
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.3389/fpsyg.2019.02767

72 p_direction

emmeans estimates

library(emmeans)
point_estimate(emtrends(model, ~1, "wt"), centrality = c("median", "MAP"))

brms models

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))

BayesFactor objects

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
point_estimate(bf, centrality = "all", dispersion = TRUE)
point_estimate(bf, centrality = c("median", "MAP"))

End(Not run)

p_direction Probability of Direction (pd)

Description

Compute the Probability of Direction (pd, also known as the Maximum Probability of Effect -
MPE). It varies between 50% and 100% (i.e., 0.5 and 1) and can be interpreted as the probability
(expressed in percentage) that a parameter (described by its posterior distribution) is strictly posi-
tive or negative (whichever is the most probable). It is mathematically defined as the proportion of
the posterior distribution that is of the median’s sign. Although differently expressed, this index is
fairly similar (i.e., is strongly correlated) to the frequentist p-value.

Note that in some (rare) cases, especially when used with model averaged posteriors (see weighted_posteriors()
or brms::posterior_average), pd can be smaller than 0.5, reflecting high credibility of 0.

Usage

p_direction(x, ...)

pd(x, ...)

S3 method for class 'numeric'
p_direction(x, method = "direct", null = 0, ...)

S3 method for class 'data.frame'

p_direction 73

p_direction(x, method = "direct", null = 0, ...)

S3 method for class 'MCMCglmm'
p_direction(x, method = "direct", null = 0, ...)

S3 method for class 'emmGrid'
p_direction(x, method = "direct", null = 0, ...)

S3 method for class 'stanreg'
p_direction(
x,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
method = "direct",
null = 0,
...

)

S3 method for class 'brmsfit'
p_direction(
x,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
method = "direct",
null = 0,
...

)

S3 method for class 'BFBayesFactor'
p_direction(x, method = "direct", null = 0, ...)

Arguments

x Vector representing a posterior distribution. Can also be a Bayesian model
(stanreg, brmsfit or BayesFactor).

... Currently not used.

method Can be "direct" or one of methods of density estimation, such as "kernel",
"logspline" or "KernSmooth". If "direct" (default), the computation is
based on the raw ratio of samples superior and inferior to 0. Else, the result
is based on the Area under the Curve (AUC) of the estimated density function.

null The value considered as a "null" effect. Traditionally 0, but could also be 1 in
the case of ratios.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

74 p_direction

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

What is the pd?: The Probability of Direction (pd) is an index of effect existence, ranging from
50% to 100%, representing the certainty with which an effect goes in a particular direction (i.e., is
positive or negative). Beyond its simplicity of interpretation, understanding and computation, this
index also presents other interesting properties:

• It is independent from the model: It is solely based on the posterior distributions and does
not require any additional information from the data or the model.

• It is robust to the scale of both the response variable and the predictors.
• It is strongly correlated with the frequentist p-value, and can thus be used to draw parallels

and give some reference to readers non-familiar with Bayesian statistics.

Relationship with the p-value: In most cases, it seems that the pd has a direct correspondence
with the frequentist one-sided p-value through the formula ponesided = 1 − pd

100 and to the two-
sided p-value (the most commonly reported one) through the formula ptwosided = 2 ∗ (1− pd

100).
Thus, a two-sided p-value of respectively .1, .05, .01 and .001 would correspond approximately
to a pd of 95%, 97.5%, 99.5% and 99.95%. See also pd_to_p().

Methods of computation: The most simple and direct way to compute the pd is to 1) look
at the median’s sign, 2) select the portion of the posterior of the same sign and 3) compute the
percentage that this portion represents. This "simple" method is the most straightforward, but its
precision is directly tied to the number of posterior draws. The second approach relies on density
estimation. It starts by estimating the density function (for which many methods are available),
and then computing the area under the curve (AUC) of the density curve on the other side of 0.

Strengths and Limitations: Strengths: Straightforward computation and interpretation. Ob-
jective property of the posterior distribution. 1:1 correspondence with the frequentist p-value.

Limitations: Limited information favoring the null hypothesis.

Value

Values between 0.5 and 1 corresponding to the probability of direction (pd).

Note that in some (rare) cases, especially when used with model averaged posteriors (see weighted_posteriors()
or brms::posterior_average), pd can be smaller than 0.5, reflecting high credibility of 0. To de-
tect such cases, the method = "direct" must be used.

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

p_direction 75

References

Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

See Also

pd_to_p() to convert between Probability of Direction (pd) and p-value.

Examples

library(bayestestR)

Simulate a posterior distribution of mean 1 and SD 1
--
posterior <- rnorm(1000, mean = 1, sd = 1)
p_direction(posterior)
p_direction(posterior, method = "kernel")

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))
p_direction(df)
p_direction(df, method = "kernel")
Not run:
rstanarm models

if (require("rstanarm")) {

model <- rstanarm::stan_glm(mpg ~ wt + cyl,
data = mtcars,
chains = 2, refresh = 0

)
p_direction(model)
p_direction(model, method = "kernel")

}

emmeans

if (require("emmeans")) {

p_direction(emtrends(model, ~1, "wt"))
}

brms models

if (require("brms")) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
p_direction(model)
p_direction(model, method = "kernel")

}

BayesFactor objects

https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767

76 p_map

if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
p_direction(bf)
p_direction(bf, method = "kernel")

}

End(Not run)

p_map Bayesian p-value based on the density at the Maximum A Posteriori
(MAP)

Description

Compute a Bayesian equivalent of the p-value, related to the odds that a parameter (described by
its posterior distribution) has against the null hypothesis (h0) using Mills’ (2014, 2017) Objective
Bayesian Hypothesis Testing framework. It corresponds to the density value at 0 divided by the
density at the Maximum A Posteriori (MAP).

Usage

p_map(x, precision = 2^10, method = "kernel", ...)

p_pointnull(x, precision = 2^10, method = "kernel", ...)

S3 method for class 'stanreg'
p_map(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
p_map(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

p_map 77

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Note that this method is sensitive to the density estimation method (see the section in the examples
below).

Strengths and Limitations: Strengths: Straightforward computation. Objective property of the
posterior distribution.

Limitations: Limited information favoring the null hypothesis. Relates on density approxima-
tion. Indirect relationship between mathematical definition and interpretation. Only suitable for
weak / very diffused priors.

References

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

• Mills, J. A. (2018). Objective Bayesian Precise Hypothesis Testing. University of Cincinnati.

See Also

Jeff Mill’s talk

Examples

library(bayestestR)

p_map(rnorm(1000, 0, 1))

https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://www.youtube.com/watch?v=Ip8Ci5KUVRc

78 p_rope

p_map(rnorm(1000, 10, 1))
Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
p_map(model)

library(emmeans)
p_map(emtrends(model, ~1, "wt"))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
p_map(model)

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
p_map(bf)

Robustness to density estimation method
set.seed(333)
data <- data.frame()
for (iteration in 1:250) {

x <- rnorm(1000, 1, 1)
result <- data.frame(
"Kernel" = p_map(x, method = "kernel"),
"KernSmooth" = p_map(x, method = "KernSmooth"),
"logspline" = p_map(x, method = "logspline")

)
data <- rbind(data, result)

}
data$KernSmooth <- data$Kernel - data$KernSmooth
data$logspline <- data$Kernel - data$logspline

summary(data$KernSmooth)
summary(data$logspline)
boxplot(data[c("KernSmooth", "logspline")])

End(Not run)

p_rope Probability of being in the ROPE

Description

Compute the proportion of the whole posterior distribution that doesn’t lie within a region of prac-
tical equivalence (ROPE). It is equivalent to running rope(..., ci = 1).

Usage

p_rope(x, ...)

p_rope 79

S3 method for class 'numeric'
p_rope(x, range = "default", ...)

S3 method for class 'stanreg'
p_rope(
x,
range = "default",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
p_rope(
x,
range = "default",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. In models with one response,
range should be a vector of length two (e.g., c(-0.1, 0.1)). In multivariate
models, range should be a list with a numeric vectors for each response vari-
able. Vector names should correspond to the name of the response variables. If
"default" and input is a vector, the range is set to c(-0.1, 0.1). If "default"
and input is a Bayesian model, rope_range() is used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

80 p_significance

Examples

library(bayestestR)

p_rope(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
p_rope(x = mtcars, range = c(-0.1, 0.1))

p_significance Practical Significance (ps)

Description

Compute the probability of Practical Significance (ps), which can be conceptualized as a unidirec-
tional equivalence test. It returns the probability that effect is above a given threshold corresponding
to a negligible effect in the median’s direction. Mathematically, it is defined as the proportion of the
posterior distribution of the median sign above the threshold.

Usage

p_significance(x, ...)

S3 method for class 'numeric'
p_significance(x, threshold = "default", ...)

S3 method for class 'stanreg'
p_significance(
x,
threshold = "default",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
p_significance(
x,
threshold = "default",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

p_significance 81

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

threshold The threshold value that separates significant from negligible effect. If "default",
the range is set to 0.1 if input is a vector, and based on rope_range() if a
Bayesian model is provided.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

verbose Toggle off warnings.

Details

p_significance() returns the proportion of a probability distribution (x) that is outside a certain
range (the negligible effect, or ROPE, see argument threshold). If there are values of the dis-
tribution both below and above the ROPE, p_significance() returns the higher probability of a
value being outside the ROPE. Typically, this value should be larger than 0.5 to indicate practical
significance. However, if the range of the negligible effect is rather large compared to the range
of the probability distribution x, p_significance() will be less than 0.5, which indicates no clear
practical significance.

Value

Values between 0 and 1 corresponding to the probability of practical significance (ps).

Note

There is also a plot()-method implemented in the see-package.

Examples

library(bayestestR)

Simulate a posterior distribution of mean 1 and SD 1
--
posterior <- rnorm(1000, mean = 1, sd = 1)
p_significance(posterior)

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

82 reshape_iterations

p_significance(df)
Not run:
rstanarm models

if (require("rstanarm")) {

model <- rstanarm::stan_glm(mpg ~ wt + cyl,
data = mtcars,
chains = 2, refresh = 0

)
p_significance(model)

}

End(Not run)

reshape_iterations Reshape estimations with multiple iterations (draws) to long format

Description

Reshape a wide data.frame of iterations (such as posterior draws or bootsrapped samples) as columns
to long format. Instead of having all iterations as columns (e.g., iter_1, iter_2, ...), will return
3 columns with the *_index (the previous index of the row), the *_group (the iteration number)
and the *_value (the value of said iteration).

Usage

reshape_iterations(x, prefix = c("draw", "iter", "iteration", "sim"))

reshape_draws(x, prefix = c("draw", "iter", "iteration", "sim"))

Arguments

x A data.frame containing posterior draws obtained from estimate_response or
estimate_link.

prefix The prefix of the draws (for instance, "iter_" for columns named as iter_1, iter_2, iter_3).
If more than one are provided, will search for the first one that matches.

Value

Data frame of reshaped draws in long format.

Examples

if (require("rstanarm")) {
model <- stan_glm(mpg ~ am, data = mtcars, refresh = 0)
draws <- insight::get_predicted(model)
long_format <- reshape_iterations(draws)
head(long_format)

rope 83

}

rope Region of Practical Equivalence (ROPE)

Description

Compute the proportion of the HDI (default to the 89% HDI) of a posterior distribution that lies
within a region of practical equivalence.

Usage

rope(x, ...)

S3 method for class 'numeric'
rope(x, range = "default", ci = 0.95, ci_method = "ETI", verbose = TRUE, ...)

S3 method for class 'stanreg'
rope(
x,
range = "default",
ci = 0.95,
ci_method = "ETI",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
rope(
x,
range = "default",
ci = 0.95,
ci_method = "ETI",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

84 rope

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. In models with one response,
range should be a vector of length two (e.g., c(-0.1, 0.1)). In multivariate
models, range should be a list with a numeric vectors for each response vari-
able. Vector names should correspond to the name of the response variables. If
"default" and input is a vector, the range is set to c(-0.1, 0.1). If "default"
and input is a Bayesian model, rope_range() is used.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

ci_method The type of interval to use to quantify the percentage in ROPE. Can be ’HDI’
(default) or ’ETI’. See ci().

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

ROPE: Statistically, the probability of a posterior distribution of being different from 0 does not
make much sense (the probability of a single value null hypothesis in a continuous distribution is
0). Therefore, the idea underlining ROPE is to let the user define an area around the null value
enclosing values that are equivalent to the null value for practical purposes (Kruschke 2010, 2011,
2014).

Kruschke (2018) suggests that such null value could be set, by default, to the -0.1 to 0.1 range of
a standardized parameter (negligible effect size according to Cohen, 1988). This could be gener-
alized: For instance, for linear models, the ROPE could be set as 0 +/- .1 * sd(y). This ROPE
range can be automatically computed for models using the rope_range function.

Kruschke (2010, 2011, 2014) suggests using the proportion of the 95% (or 89%, considered more
stable) HDI that falls within the ROPE as an index for "null-hypothesis" testing (as understood
under the Bayesian framework, see equivalence_test()).

Sensitivity to parameter’s scale: It is important to consider the unit (i.e., the scale) of the
predictors when using an index based on the ROPE, as the correct interpretation of the ROPE as
representing a region of practical equivalence to zero is dependent on the scale of the predictors.

rope 85

Indeed, the percentage in ROPE depend on the unit of its parameter. In other words, as the ROPE
represents a fixed portion of the response’s scale, its proximity with a coefficient depends on the
scale of the coefficient itself.

Multicollinearity: Non-independent covariates: When parameters show strong correlations,
i.e. when covariates are not independent, the joint parameter distributions may shift towards or
away from the ROPE. Collinearity invalidates ROPE and hypothesis testing based on univariate
marginals, as the probabilities are conditional on independence. Most problematic are parameters
that only have partial overlap with the ROPE region. In case of collinearity, the (joint) distri-
butions of these parameters may either get an increased or decreased ROPE, which means that
inferences based on rope() are inappropriate (Kruschke 2014, 340f).

rope() performs a simple check for pairwise correlations between parameters, but as there can be
collinearity between more than two variables, a first step to check the assumptions of this hypoth-
esis testing is to look at different pair plots. An even more sophisticated check is the projection
predictive variable selection (Piironen and Vehtari 2017).

Strengths and Limitations: Strengths: Provides information related to the practical relevance
of the effects.

Limitations: A ROPE range needs to be arbitrarily defined. Sensitive to the scale (the unit)
of the predictors. Not sensitive to highly significant effects.

Note

There is also a plot()-method implemented in the see-package.

References

• Cohen, J. (1988). Statistical power analysis for the behavioural sciences.

• Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in
cognitive sciences, 14(7), 293-300. doi: 10.1016/j.tics.2010.05.001.

• Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and
model comparison. Perspectives on Psychological Science, 6(3), 299-312. doi: 10.1177/
1745691611406925.

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press. doi: 10.1177/2515245918771304.

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/
2515245918771304.

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

• Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711–735. doi: 10.1007/s112220169649y

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1016/j.tics.2010.05.001
https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1007/s11222-016-9649-y

86 rope_range

Examples

library(bayestestR)

rope(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 0, 1), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 1, 1), ci = c(.90, .95))
Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
rope(model)
rope(model, ci = c(.90, .95))

library(emmeans)
rope(emtrends(model, ~1, "wt"), ci = c(.90, .95))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
rope(model)
rope(model, ci = c(.90, .95))

library(brms)
model <- brms::brm(brms::mvbind(mpg, disp) ~ wt + cyl, data = mtcars)
rope(model)
rope(model, ci = c(.90, .95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
rope(bf)
rope(bf, ci = c(.90, .95))

End(Not run)

rope_range Find Default Equivalence (ROPE) Region Bounds

Description

This function attempts at automatically finding suitable "default" values for the Region Of Practical
Equivalence (ROPE).

Usage

rope_range(x, ...)

Default S3 method:
rope_range(x, verbose = TRUE, ...)

rope_range 87

Arguments

x A stanreg, brmsfit or BFBayesFactor object.

... Currently not used.

verbose Toggle warnings.

Details

Kruschke (2018) suggests that the region of practical equivalence could be set, by default, to a range
from -0.1 to 0.1 of a standardized parameter (negligible effect size according to Cohen, 1988).

• For linear models (lm), this can be generalised to [−0.1 ∗ SDy, 0.1 ∗ SDy].

\item For **logistic models**, the parameters expressed in log odds
ratio can be converted to standardized difference through the formula
\ifelse{html}{\out{π/√(3)}}{\eqn{\pi/\sqrt{3}}}, resulting in a
range of `-0.18` to `0.18`.

\item For other models with **binary outcome**, it is strongly
recommended to manually specify the rope argument. Currently, the same
default is applied that for logistic models.

\item For models from **count data**, the residual variance is used.
This is a rather experimental threshold and is probably often similar to
`-0.1, 0.1`, but should be used with care!

\item For **t-tests**, the standard deviation of the response is
used, similarly to linear models (see above).

\item For **correlations**, `-0.05, 0.05` is used, i.e., half
the value of a negligible correlation as suggested by Cohen's (1988)
rules of thumb.

\item For all other models, `-0.1, 0.1` is used to determine the
ROPE limits, but it is strongly advised to specify it manually.

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances
in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304.

Examples

Not run:
if (require("rstanarm")) {

model <- stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,

https://doi.org/10.1177/2515245918771304

88 sensitivity_to_prior

refresh = 0
)
rope_range(model)

model <- stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)
rope_range(model)

}

if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
rope_range(model)

}

if (require("BayesFactor")) {
model <- ttestBF(mtcars[mtcars$vs == 1, "mpg"], mtcars[mtcars$vs == 0, "mpg"])
rope_range(model)

model <- lmBF(mpg ~ vs, data = mtcars)
rope_range(model)

}

End(Not run)

sensitivity_to_prior Sensitivity to Prior

Description

Computes the sensitivity to priors specification. This represents the proportion of change in some
indices when the model is fitted with an antagonistic prior (a prior of same shape located on the
opposite of the effect).

Usage

sensitivity_to_prior(model, index = "Median", magnitude = 10, ...)

Arguments

model A Bayesian model (stanreg or brmsfit).

index The indices from which to compute the sensitivity. Can be one or multiple names
of the columns returned by describe_posterior. The case is important here
(e.g., write ’Median’ instead of ’median’).

magnitude This represent the magnitude by which to shift the antagonistic prior (to test
the sensitivity). For instance, a magnitude of 10 (default) means that the mode
wil be updated with a prior located at 10 standard deviations from its original
location.

... Arguments passed to or from other methods.

sexit 89

See Also

DescTools

Examples

Not run:
library(bayestestR)

rstanarm models

if (require("rstanarm")) {

model <- rstanarm::stan_glm(mpg ~ wt, data = mtcars)
sensitivity_to_prior(model)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
sensitivity_to_prior(model, index = c("Median", "MAP"))

}

brms models

if (require("brms")) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
sensitivity_to_prior(model)

}

End(Not run)

sexit Sequential Effect eXistence and sIgnificance Testing (SEXIT)

Description

The SEXIT is a new framework to describe Bayesian effects, guiding which indices to use. Ac-
cordingly, the sexit() function returns the minimal (and optimal) required information to describe
models’ parameters under a Bayesian framework. It includes the following indices:

• Centrality: the median of the posterior distribution. In probabilistic terms, there is 50% of
probability that the effect is higher and lower. See point_estimate().

• Uncertainty: the 95% Highest Density Interval (HDI). In probabilistic terms, there is 95% of
probability that the effect is within this confidence interval. See ci().

• Existence: The probability of direction allows to quantify the certainty by which an effect
is positive or negative. It is a critical index to show that an effect of some manipulation
is not harmful (for instance in clinical studies) or to assess the direction of a link. See
p_direction().

• Significance: Once existence is demonstrated with high certainty, we can assess whether the
effect is of sufficient size to be considered as significant (i.e., not negligible). This is a useful
index to determine which effects are actually important and worthy of discussion in a given
process. See p_significance().

90 sexit

• Size: Finally, this index gives an idea about the strength of an effect. However, beware, as
studies have shown that a big effect size can be also suggestive of low statistical power (see
details section).

Usage

sexit(x, significant = "default", large = "default", ci = 0.95, ...)

Arguments

x Vector representing a posterior distribution. Can also be a Bayesian model
(stanreg, brmsfit or BayesFactor).

significant, large

The threshold values to use for significant and large probabilities. If left to
’default’, will be selected through sexit_thresholds(). See the details section
below.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

... Currently not used.

Details

Rationale: The assessment of "significance" (in its broadest meaning) is a pervasive issue in
science, and its historical index, the p-value, has been strongly criticized and deemed to have
played an important role in the replicability crisis. In reaction, more and more scientists have
tuned to Bayesian methods, offering an alternative set of tools to answer their questions. However,
the Bayesian framework offers a wide variety of possible indices related to "significance", and the
debate has been raging about which index is the best, and which one to report.
This situation can lead to the mindless reporting of all possible indices (with the hopes that with
that the reader will be satisfied), but often without having the writer understanding and interpreting
them. It is indeed complicated to juggle between many indices with complicated definitions and
subtle differences.
SEXIT aims at offering a practical framework for Bayesian effects reporting, in which the focus
is put on intuitiveness, explicitness and usefulness of the indices’ interpretation. To that end, we
suggest a system of description of parameters that would be intuitive, easy to learn and apply,
mathematically accurate and useful for taking decision.
Once the thresholds for significance (i.e., the ROPE) and the one for a "large" effect are explicitly
defined, the SEXIT framework does not make any interpretation, i.e., it does not label the effects,
but just sequentially gives 3 probabilities (of direction, of significance and of being large, respec-
tively) as-is on top of the characteristics of the posterior (using the median and HDI for centrality
and uncertainty description). Thus, it provides a lot of information about the posterior distribution
(through the mass of different ’sections’ of the posterior) in a clear and meaningful way.

Threshold selection: One of the most important thing about the SEXIT framework is that it
relies on two "arbitrary" thresholds (i.e., that have no absolute meaning). They are the ones
related to effect size (an inherently subjective notion), namely the thresholds for significant and
large effects. They are set, by default, to 0.05 and 0.3 of the standard deviation of the outcome
variable (tiny and large effect sizes for correlations according to Funder \& Ozer, 2019). However,

sexit 91

these defaults were chosen by lack of a better option, and might not be adapted to your case. Thus,
they are to be handled with care, and the chosen thresholds should always be explicitly reported
and justified.

• For linear models (lm), this can be generalised to [0.05∗SDy] and [0.3∗SDy] for significant
and large effects, respectively.

• For logistic models, the parameters expressed in log odds ratio can be converted to standard-
ized difference through the formula π/

√
3, resulting a threshold of 0.09 and 0.54.

• For other models with binary outcome, it is strongly recommended to manually specify the
rope argument. Currently, the same default is applied that for logistic models.

• For models from count data, the residual variance is used. This is a rather experimental
threshold and is probably often similar to 0.05 and 0.3, but should be used with care!

• For t-tests, the standard deviation of the response is used, similarly to linear models (see
above).

• For correlations,0.05 and 0.3 are used.
• For all other models, 0.05 and 0.3 are used, but it is strongly advised to specify it manually.

Examples: The three values for existence, significance and size provide a useful description of
the posterior distribution of the effects. Some possible scenarios include:

• The probability of existence is low, but the probability of being large is high: it suggests that
the posterior is very wide (covering large territories on both side of 0). The statistical power
might be too low, which should warrant any confident conclusion.

• The probability of existence and significance is high, but the probability of being large is very
small: it suggests that the effect is, with high confidence, not large (the posterior is mostly
contained between the significance and the large thresholds).

• The 3 indices are very low: this suggests that the effect is null with high confidence (the
posterior is closely centred around 0).

Value

A dataframe and text as attribute.

References

• Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR: Describing Effects
and their Uncertainty, Existence and Significance within the Bayesian Framework. Journal of
Open Source Software, 4(40), 1541. doi: 10.21105/joss.01541

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

Examples

Not run:
library(bayestestR)

s <- sexit(rnorm(1000, -1, 1))
s
print(s, summary = TRUE)

https://doi.org/10.21105/joss.01541
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767

92 sexit_thresholds

s <- sexit(iris)
s
print(s, summary = TRUE)

if (require("rstanarm")) {
model <- rstanarm::stan_glm(mpg ~ wt * cyl,
data = mtcars,
iter = 400, refresh = 0

)
s <- sexit(model)
s
print(s, summary = TRUE)

}

End(Not run)

sexit_thresholds Find Effect Size Thresholds

Description

This function attempts at automatically finding suitable default values for a "significant" (i.e., non-
negligible) and "large" effect. This is to be used with care, and the chosen threshold should always
be explicitly reported and justified. See the detail section in sexit() for more information.

Usage

sexit_thresholds(x, ...)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances
in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304.

Examples

sexit_thresholds(rnorm(1000))
Not run:
if (require("rstanarm")) {

model <- stan_glm(
mpg ~ wt + gear,
data = mtcars,

https://doi.org/10.1177/2515245918771304

si 93

chains = 2,
iter = 200,
refresh = 0

)
sexit_thresholds(model)

model <- stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)
sexit_thresholds(model)

}

if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
sexit_thresholds(model)

}

if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
sexit_thresholds(bf)

}

End(Not run)

si Compute Support Intervals

Description

A support interval contains only the values of the parameter that predict the observed data better
than average, by some degree k; these are values of the parameter that are associated with an updat-
ing factor greater or equal than k. From the perspective of the Savage-Dickey Bayes factor, testing
against a point null hypothesis for any value within the support interval will yield a Bayes factor
smaller than 1/k.

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

S3 method for class 'numeric'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

S3 method for class 'stanreg'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,

https://easystats.github.io/bayestestR/articles/bayes_factors.html

94 si

effects = c("fixed", "random", "all"),
component = c("conditional", "location", "zi", "zero_inflated", "all",
"smooth_terms", "sigma", "distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "zi", "zero_inflated", "all",
"smooth_terms", "sigma", "distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'blavaan'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "zi", "zero_inflated", "all",
"smooth_terms", "sigma", "distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'emmGrid'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

S3 method for class 'data.frame'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

Arguments

posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-
resenting a posterior distribution(s) from (see ’Details’).

prior An object representing a prior distribution (see ’Details’).

BF The amount of support required to be included in the support interval.

verbose Toggle off warnings.

... Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline::logspline().)

si 95

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

This method is used to compute support intervals based on prior and posterior distributions. For
the computation of support intervals, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative - note that by default, brms::brm()
uses flat priors for fixed-effects; see example below).

Choosing a value of BF: The choice of BF (the level of support) depends on what we want our
interval to represent:

• A BF = 1 contains values whose credibility is not decreased by observing the data.
• A BF > 1 contains values who received more impressive support from the data.
• A BF < 1 contains values whose credibility has not been impressively decreased by observing

the data. Testing against values outside this interval will produce a Bayes factor larger than
1/BF in support of the alternative. E.g., if an SI (BF = 1/3) excludes 0, the Bayes factor against
the point-null will be larger than 3.

Value

A data frame containing the lower and upper bounds of the SI.
Note that if the level of requested support is higher than observed in the data, the interval will be
[NA,NA].

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results.

• When posterior is a numerical vector, prior should also be a numerical vector.

• When posterior is a data.frame, prior should also be a data.frame, with matching col-
umn order.

96 si

• When posterior is a stanreg, brmsfit or other supported Bayesian model:

– prior can be set to NULL, in which case prior samples are drawn internally.
– prior can also be a model equivalent to posterior but with samples from the priors

only. See unupdate().
– Note: When posterior is a brmsfit_multiple model, prior must be provided.

• When posterior is an emmGrid / emm_list object:

– prior should also be an emmGrid / emm_list object equivalent to posterior but created
with a model of priors samples only. See unupdate().

– prior can also be the original (posterior) model. If so, the function will try to update
the emmGrid / emm_list to use the unupdate()d prior-model. (This cannot be done for
brmsfit models.)

– Note: When the emmGrid has undergone any transformations ("log", "response", etc.),
or regriding, then prior must be an emmGrid object, as stated above.

Note

There is also a plot()-method implemented in the see-package.

References

Wagenmakers, E., Gronau, Q. F., Dablander, F., & Etz, A. (2018, November 22). The Support
Interval. doi: 10.31234/osf.io/zwnxb

See Also

Other ci: bci(), ci(), cwi(), eti(), hdi(), spi()

Examples

library(bayestestR)

prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = .5, sd = .3)

si(posterior, prior)
Not run:
rstanarm models

library(rstanarm)
contrasts(sleep$group) <- contr.orthonorm # see vingette
stan_model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
si(stan_model)
si(stan_model, BF = 3)

emmGrid objects

library(emmeans)
group_diff <- pairs(emmeans(stan_model, ~group))
si(group_diff, prior = stan_model)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.31234/osf.io/zwnxb

simulate_correlation 97

brms models

library(brms)
contrasts(sleep$group) <- contr.orthonorm # see vingette
my_custom_priors <-

set_prior("student_t(3, 0, 1)", class = "b") +
set_prior("student_t(3, 0, 1)", class = "sd", group = "ID")

brms_model <- brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors

)
si(brms_model)

End(Not run)

simulate_correlation Data Simulation

Description

Simulate data with specific characteristics.

Usage

simulate_correlation(n = 100, r = 0.5, mean = 0, sd = 1, names = NULL, ...)

simulate_ttest(n = 100, d = 0.5, names = NULL, ...)

simulate_difference(n = 100, d = 0.5, names = NULL, ...)

Arguments

n The number of observations to be generated.

r A value or vector corresponding to the desired correlation coefficients.

mean A value or vector corresponding to the mean of the variables.

sd A value or vector corresponding to the SD of the variables.

names A character vector of desired variable names.

... Arguments passed to or from other methods.

d A value or vector corresponding to the desired difference between the groups.

Examples

Correlation --------------------------------
data <- simulate_correlation(r = 0.5)
plot(data$V1, data$V2)

98 simulate_prior

cor.test(data$V1, data$V2)
summary(lm(V2 ~ V1, data = data))

Specify mean and SD
data <- simulate_correlation(r = 0.5, n = 50, mean = c(0, 1), sd = c(0.7, 1.7))
cor.test(data$V1, data$V2)
round(c(mean(data$V1), sd(data$V1)), 1)
round(c(mean(data$V2), sd(data$V2)), 1)
summary(lm(V2 ~ V1, data = data))

Generate multiple variables
cor_matrix <- matrix(c(

1.0, 0.2, 0.4,
0.2, 1.0, 0.3,
0.4, 0.3, 1.0

),
nrow = 3
)

data <- simulate_correlation(r = cor_matrix, names = c("y", "x1", "x2"))
cor(data)
summary(lm(y ~ x1, data = data))

t-test --------------------------------
data <- simulate_ttest(n = 30, d = 0.3)
plot(data$V1, data$V0)
round(c(mean(data$V1), sd(data$V1)), 1)
diff(t.test(data$V1 ~ data$V0)$estimate)
summary(lm(V1 ~ V0, data = data))
summary(glm(V0 ~ V1, data = data, family = "binomial"))

Difference --------------------------------
data <- simulate_difference(n = 30, d = 0.3)
plot(data$V1, data$V0)
round(c(mean(data$V1), sd(data$V1)), 1)
diff(t.test(data$V1 ~ data$V0)$estimate)
summary(lm(V1 ~ V0, data = data))
summary(glm(V0 ~ V1, data = data, family = "binomial"))

simulate_prior Returns Priors of a Model as Empirical Distributions

Description

Transforms priors information to actual distributions.

Usage

simulate_prior(model, n = 1000, ...)

simulate_simpson 99

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

n Size of the simulated prior distributions.

... Currently not used.

See Also

unupdate() for directly sampling from the prior distribution (useful for complex priors and de-
signs).

Examples

Not run:
library(bayestestR)
if (require("rstanarm")) {

model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
simulate_prior(model)

}

End(Not run)

simulate_simpson Simpson’s paradox dataset simulation

Description

Simpson’s paradox, or the Yule-Simpson effect, is a phenomenon in probability and statistics, in
which a trend appears in several different groups of data but disappears or reverses when these
groups are combined.

Usage

simulate_simpson(
n = 100,
r = 0.5,
groups = 3,
difference = 1,
group_prefix = "G_"

)

Arguments

n The number of observations for each group to be generated (minimum 4).

r A value or vector corresponding to the desired correlation coefficients.

groups Number of groups (groups can be participants, clusters, anything).

difference Difference between groups.

group_prefix The prefix of the group name (e.g., "G_1", "G_2", "G_3", ...).

100 spi

Value

A dataset.

Examples

data <- simulate_simpson(n = 10, groups = 5, r = 0.5)

if (require("ggplot2")) {
ggplot(data, aes(x = V1, y = V2)) +
geom_point(aes(color = Group)) +
geom_smooth(aes(color = Group), method = "lm") +
geom_smooth(method = "lm")

}

spi Shortest Probability Interval (SPI)

Description

Compute the Shortest Probability Interval (SPI) of posterior distributions. The SPI is a more
computationally stable HDI. The implementation is based on the algorithm from the SPIn package.

Usage

spi(x, ...)

S3 method for class 'numeric'
spi(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
spi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
spi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),

spi 101

parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

The SPI is an alternative method to the HDI (hdi()) to quantify uncertainty of (posterior) distri-
butions. The SPI is said to be more stable than the HDI, because, the "HDI can be noisy (that is,
have a high Monte Carlo error)" (Liu et al. 2015). Furthermore, the HDI is sensitive to additional
assumptions, in particular assumptions related to the different estimation methods, which can make
the HDI less accurate or reliable (see also discussion here).

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

The code to compute the SPI was adapted from the SPIn package, and slightly modified to be
more robust for Stan models. Thus, credits go to Ying Liu for the original SPI algorithm and R
implementation.

https://twitter.com/betanalpha/status/1479107186030624771

102 weighted_posteriors

References

Liu, Y., Gelman, A., & Zheng, T. (2015). Simulation-efficient shortest probability intervals. Statis-
tics and Computing, 25(4), 809–819. https://doi.org/10.1007/s11222-015-9563-8

See Also

Other ci: bci(), ci(), cwi(), eti(), hdi(), si()

Examples

library(bayestestR)

posterior <- rnorm(1000)
spi(posterior)
spi(posterior, ci = c(.80, .89, .95))

df <- data.frame(replicate(4, rnorm(100)))
spi(df)
spi(df, ci = c(.80, .89, .95))
Not run:
library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
spi(model)

End(Not run)

weighted_posteriors Generate posterior distributions weighted across models

Description

Extract posterior samples of parameters, weighted across models. Weighting is done by comparing
posterior model probabilities, via bayesfactor_models().

Usage

weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)

S3 method for class 'data.frame'
weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)

S3 method for class 'stanreg'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,

weighted_posteriors 103

effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'brmsfit'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'blavaan'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'BFBayesFactor'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
iterations = 4000

)

Arguments

... Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object.

prior_odds Optional vector of prior odds for the models compared to the first model (or the
denominator, for BFBayesFactor objects). For data.frames, this will be used
as the basis of weighting.

missing An optional numeric value to use if a model does not contain a parameter that
appears in other models. Defaults to 0.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

104 weighted_posteriors

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

iterations For BayesFactor models, how many posterior samples to draw.

Details

Note that across models some parameters might play different roles. For example, the parame-
ter A plays a different role in the model Y ~ A + B (where it is a main effect) than it does in the
model Y ~ A + B + A:B (where it is a simple effect). In many cases centering of predictors (mean
subtracting for continuous variables, and effects coding via contr.sum or orthonormal coding via
contr.orthonorm() for factors) can reduce this issue. In any case you should be mindful of this
issue.

See bayesfactor_models() details for more info on passed models.

Note that for BayesFactor models, posterior samples cannot be generated from intercept only
models.

This function is similar in function to brms::posterior_average.

Value

A data frame with posterior distributions (weighted across models) .

Note

For BayesFactor < 0.9.12-4.3, in some instances there might be some problems of duplicate
columns of random effects in the resulting data frame.

References

• Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model
mixing. Journal of the American Statistical Association, 91(435), 1197-1208.

• Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi: 10.31234/osf.io/wgb64

• Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology,
part IV: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-
113.

• van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A
cautionary note on estimating effect size.

See Also

bayesfactor_inclusion() for Bayesian model averaging.

https://doi.org/10.31234/osf.io/wgb64

weighted_posteriors 105

Examples

if (require("rstanarm") && require("see")) {
stan_m0 <- stan_glm(extra ~ 1,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df0.csv")

)

stan_m1 <- stan_glm(extra ~ group,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df1.csv")

)

res <- weighted_posteriors(stan_m0, stan_m1)

plot(eti(res))
}

With BayesFactor
if (require("BayesFactor")) {

extra_sleep <- ttestBF(formula = extra ~ group, data = sleep)

wp <- weighted_posteriors(extra_sleep)

describe_posterior(extra_sleep, test = NULL)
describe_posterior(wp$delta, test = NULL) # also considers the null

}

weighted prediction distributions via data.frames
if (require("rstanarm")) {

m0 <- stan_glm(
mpg ~ 1,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df0.csv"),
refresh = 0

)

m1 <- stan_glm(
mpg ~ carb,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv"),
refresh = 0

)

106 weighted_posteriors

Predictions:
pred_m0 <- data.frame(posterior_predict(m0))
pred_m1 <- data.frame(posterior_predict(m1))

BFmods <- bayesfactor_models(m0, m1)

wp <- weighted_posteriors(pred_m0, pred_m1,
prior_odds = as.numeric(BFmods)[2]

)

look at first 5 prediction intervals
hdi(pred_m0[1:5])
hdi(pred_m1[1:5])
hdi(wp[1:5]) # between, but closer to pred_m1

}

Index

∗ ci
bci, 23
ci, 29
cwi, 35
eti, 55
hdi, 58
si, 93
spi, 100

’BCI’, 30, 65
’ETI’, 30, 65
’HDI’, 30, 65
’SI’, 30, 65
’SPI’, 30, 65

area under the curve, 74
Area under the Curve (AUC), 73
area_under_curve, 3
area_under_curve(), 68
as.data.frame.density, 4
as.matrix.bayesfactor_models

(bayesfactor_models), 9
as.numeric.map_estimate, 5
as.numeric.p_direction

(as.numeric.map_estimate), 5
as.numeric.p_map

(as.numeric.map_estimate), 5
as.numeric.p_significance

(as.numeric.map_estimate), 5
auc (area_under_curve), 3

bayesfactor, 5
bayesfactor_inclusion, 7
bayesfactor_inclusion(), 6, 104
bayesfactor_models, 9
bayesfactor_models(), 6, 7, 10, 102, 104
bayesfactor_parameters, 13
bayesfactor_parameters(), 6
bayesfactor_pointnull

(bayesfactor_parameters), 13
bayesfactor_restricted, 19

bayesfactor_rope
(bayesfactor_parameters), 13

bayesian_as_frequentist
(convert_bayesian_as_frequentist),
33

bcai (bci), 23
bci, 23, 31, 36, 57, 60, 96, 102
bci(), 39, 60
bf_inclusion (bayesfactor_inclusion), 7
bf_models (bayesfactor_models), 9
bf_parameters (bayesfactor_parameters),

13
bf_pointnull (bayesfactor_parameters),

13
bf_restricted (bayesfactor_restricted),

19
bf_rope (bayesfactor_parameters), 13
bic_to_bf, 27

check_prior, 28
ci, 26, 29, 36, 57, 60, 96, 102
ci(), 84, 89
contr.bayes (contr.orthonorm), 32
contr.orthonorm, 32
contr.orthonorm(), 104
convert_bayesian_as_frequentist, 33
convert_p_to_pd (pd_to_p), 69
convert_pd_to_p (pd_to_p), 69
cwi, 26, 31, 35, 57, 60, 96, 102
cwi(), 60

datawizard::find_columns(), 53
density, 61, 73
density estimation, 73, 74
density_at, 36
describe_posterior, 37, 67
describe_prior, 41
dgCMatrix, 32
diagnostic_draws, 42
diagnostic_posterior, 43

107

108 INDEX

distribution, 45
distribution_beta (distribution), 45
distribution_binom (distribution), 45
distribution_binomial (distribution), 45
distribution_cauchy (distribution), 45
distribution_chisq (distribution), 45
distribution_chisquared (distribution),

45
distribution_custom (distribution), 45
distribution_gamma (distribution), 45
distribution_gaussian (distribution), 45
distribution_mixture_normal

(distribution), 45
distribution_nbinom (distribution), 45
distribution_normal (distribution), 45
distribution_poisson (distribution), 45
distribution_student (distribution), 45
distribution_student_t (distribution),

45
distribution_t (distribution), 45
distribution_tweedie (distribution), 45
distribution_uniform (distribution), 45
Distributions, 46

effective_sample, 47
equivalence_test, 49
equivalence_test(), 84
estimate_density, 52, 61
estimate_density(), 68
eti, 26, 31, 36, 55, 60, 96, 102
eti(), 39, 60

HDI, 26, 50, 56, 59, 84
hdi, 26, 31, 36, 57, 58, 96, 102
hdi(), 39, 60, 101

insight::get_loglikelihood, 10

logspline::logspline(), 16, 94

map_estimate, 61
mcse, 63
mediation, 64
model_to_priors, 67

overlap, 68

p_direction, 72
p_direction(), 39, 89
p_map, 76

p_pointnull (p_map), 76
p_rope, 78
p_significance, 80
p_significance(), 89
p_to_pd (pd_to_p), 69
pd (p_direction), 72
pd_to_p, 69
pd_to_p(), 74, 75
point_estimate, 70
point_estimate(), 89

reshape_draws (reshape_iterations), 82
reshape_iterations, 82
reshape_iterations(), 39
rnorm_perfect (distribution), 45
ROPE, 50
rope, 83
rope(), 39
rope_range, 84, 86
rope_range(), 50, 79, 81, 84

sensitivity_to_prior, 88
sexit, 89
sexit(), 92
sexit_thresholds, 92
sexit_thresholds(), 90
si, 26, 31, 36, 57, 60, 93, 102
si(), 39, 60
simulate_correlation, 97
simulate_difference

(simulate_correlation), 97
simulate_prior, 98
simulate_prior(), 28
simulate_simpson, 99
simulate_ttest (simulate_correlation),

97
spi, 26, 31, 36, 57, 60, 96, 100
spi(), 25, 39, 56, 59, 60

unupdate(), 17, 21, 22, 28, 96, 99
update.bayesfactor_models

(bayesfactor_models), 9

weighted_posteriors, 102
weighted_posteriors(), 8, 72, 74

	area_under_curve
	as.data.frame.density
	as.numeric.map_estimate
	bayesfactor
	bayesfactor_inclusion
	bayesfactor_models
	bayesfactor_parameters
	bayesfactor_restricted
	bci
	bic_to_bf
	check_prior
	ci
	contr.orthonorm
	convert_bayesian_as_frequentist
	cwi
	density_at
	describe_posterior
	describe_prior
	diagnostic_draws
	diagnostic_posterior
	distribution
	effective_sample
	equivalence_test
	estimate_density
	eti
	hdi
	map_estimate
	mcse
	mediation
	model_to_priors
	overlap
	pd_to_p
	point_estimate
	p_direction
	p_map
	p_rope
	p_significance
	reshape_iterations
	rope
	rope_range
	sensitivity_to_prior
	sexit
	sexit_thresholds
	si
	simulate_correlation
	simulate_prior
	simulate_simpson
	spi
	weighted_posteriors
	Index

