Package ‘bdpopt’

March 30, 2016

Version 1.0-1

Date 2016-03-29

Title Optimisation of Bayesian Decision Problems

Author Sebastian Jobjornsson [aut, cre]

Maintainer Sebastian Jobjornsson <jobjorns@chalmers.se>
Depends R (>=3.0.2)

Description Optimisation of the expected utility in single-stage and multi-
stage Bayesian decision problems. The expected utility is estimated by simulation. For single-
stage problems, JAGS is used to draw MCMC samples.

SystemRequirements JAGS (>= 3.4.0) (see
http://mcmc-jags.sourceforge.net)

Imports rjags (>= 3-15), coda (>=0.17-1), parallel (>= 3.0.2)
License GPL-2

LazyData true

Encoding latinl

NeedsCompilation no

Repository CRAN

Date/Publication 2016-03-30 10:14:45

R topics documented:

create.normal.model oL 2
create.normal.model.fromfile. L0000 3
create.utility.function oL 4
diagmemeldist oL 6
diag.meme.list.simmodel L. Lo 7
evallel e e e e 8
eval.eu.simmodel 9
eval.on.grid 10
eval.on.grid.simmodel 11
fit.gpr . . . 12

Index

create.normal.model

fitgprsimmodel 13
fitloess L e e 14
fitloess.sim.model 15
DLOPL . . o o o e 15
OPLIMISE.EU v v v e it it e e e e e 17
optimise.eu.simmodel oL oo 18
optimise.sequential.eu Lo 19
optimise.sequential.normal.euo oL Lo 20
plotsimmodel 21
print.simmodel L 23
sequential.dp L. 23
sequential.normal.dp L 25
simmodel 26

28

create.normal.model Create Normal Emax Model

Description

Create a simulation model object for optimisation of the dose and sample size for a (or several,
parallel) phase III clinical trial given phase II data. There is one efficacy response and one safety
response obtained as sample means for each group of patients given a specific dose. These are both
normal given the true populations means. The population means for efficacy and safety are in turn
modeled using two independent Emax models.

Usage

create.normal.model(theta.mu, theta.tau, eta.mu, eta.tau,

n.II, d.II, YE.II, YS.II, sigmaE, sigmaS, k.III, path.to.package = NA)
Arguments

theta.mu A numeric, atomic vector with four elements that contains the mean parameters
for the prior distributions for the efficacy model.

theta. tau A numeric, atomic vector with four elements that contains the precision param-
eters for the prior distributions for the efficacy model.

eta.mu A numeric, atomic vector with four elements that contains the mean parameters
for the prior distributions for the safety model.

eta.tau A numeric, atomic vector with four elements that contains the precision param-
eters for the prior distributions for the safety model.

n.II A numeric, atomic vector of positive integers containing the group sample sizes
corresponding to the phase II efficacy and safety responses.

d.II A numeric, atomic vector containing the group dose levels corresponding to the

phase II efficacy and safety responses.

create.normal.model.from.file 3

YE.II

YS.II

sigmakE

sigma$S

k.III

path.to.package

Details

A numeric, atomic vector containing the observed sample means for the efficacy
responses in the phase II trial.

A numeric, atomic vector containing the observed sample means for the safety
responses in the phase II trial.

The population standard deviation for an individual efficacy response. The pop-
ulation standard deviation for a group response is then obtained by dividing by
the square root of the group sample size.

The population standard deviation for an individual safety response. The pop-
ulation standard deviation for a group response is then obtained by dividing by
the square root of the group sample size.

A positive integer specifying the number of independent phase III trials, each of
which consists of a single group. The sample size and dose is the same for all
phase I trials.

The search path to the installation directory of bdpopt. For the default value,
the function will attempt to find the path using search.

Note that n.II, d.II, YE.II and YS.II must all be of the same length. Using the notation of the
JAGS manual, the prior distributions for theta and eta are given by

theta[i] ~ dnorm(theta.mu[i], theta.taul[il),

etal[i] ~ dnorm(eta.mul[i], eta.taul[i]),fori = 1, 2, and

theta[i] ~ dlnorm(theta.muli], theta.taulil),

etal[i] ~ dlnorm(eta.mul[i], eta.taul[i]),fori = 3, 4.

Value

A simulation model object of class sim.model, created using the data supplied as the arguments
and the JAGS model file ‘normal_model_jags_model.R’.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

create.normal.model.from.file

create.normal.model.from.file

Create Normal Emax Model From File

4 create.utility.function

Description

Create a simulation model object for optimisation of the dose and sample size for a (or several, paral-
lel) phase III clinical trial given phase II data. There is one efficacy response and one safety response
obtained as sample means for each group of patients given a specific dose. These are both normal
given the true populations means. The population means for efficacy and safety are in turn modeled
using two independent Emax models. This function uses the file ‘normal_model_jags_data.R’
to specify the parameters of the model instead of the user supplying these as arguments (as for
create.normal.model).

Usage

create.normal.model.from.file(path.to.package = NA)

Arguments

path.to.package
The search path to the installation directory of bdpopt. For the default value,
the function will attempt to find the path using search.
Details
See the argument description of create.normal.model for the objects that have to be specified in
‘normal_model_jags_data.R’.
Value
A simulation model object of class sim.model, created using the JAGS data file ‘normal_model_jags_data.R’
and the JAGS model file ‘normal_model_jags_model.R’.
Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

create.normal.model

create.utility. function
Create Utility Function For The Normal Model

Description

Create a utility function to be used together with a normal simulation model object created using
create.normal.model or create.normal.model.from.file.

create.utility.function 5

Usage

create.utility.function(model, n.min, sig.level, safety.max, cE, cS, p,
fixed.cost, cost.per.sample)

Arguments

model A model object created using create.normal.model or create.normal.model. from.file.

n.min The minimum group sample size for each phase III group trial required by the
regulatory authority in order to consider market approval.

sig.level The significance level used by the regulatory authority when performing the
one-sided hypothesis tests for acceptable efficacy and safety levels in the phase
M1 trial.

safety.max A parameter defining the maximum safety threshold in the significance test for
an acceptable safety level.

cE A constant defining the utility gain per unit of efficacy.

cS A constant defining the utility gain per unit of safety. The absolute value of this
number defines the utility loss, and hence cS should typically be less than or
equal to zero.

p A number between 0 and 1 which weighs the relative contribution of the ob-
served responses and the true population means to the utility upon regulatory
approval. A value of 1 corresponds to no contribution made by the population
means.

fixed.cost The fixed cost of performing the phase III trials.

cost.per.sample
The cost per observation in the phase III trials.

Details
The utility function has the form:
RA.decision * gain - trial.cost
where

gain = p * (cE * mean(YE) + cS * mean(YS)) + (1 - p) * (cE * mean(muE)
+ ¢S * mean(muS))

trail.cost = fixed.cost + cost.per.sample * k.III * n.III

Value

An R function to be used together with model when calling eval.on.grid, fit.gpr, fit.loess
and optimise.eu.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

6 diag.mcmc.list

diag.mcmc.list MCMC List For Diagnostic Evaluation

Description

Get the memc. 1ist object obtained when running the JAGS model corresponding to model. Diag-
nostic functions provided by the coda package may then be applied in order to check that there is
a sufficent amount of adaptation and burn in for the application. This is a generic function for S3
objects.

Usage

diag.mcmc.list(model, utility.fun, data,
n.iter, n.burn.in, n.adapt = 1000, n.chains = 1, inits = NULL)

Arguments

model Simulation model object of class sim.model created using
sim.model or create.normal.model.

utility.fun An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model

specification.

data A named list of R objects which, when combined with the named objects in
model$data, leads to a complete specification of the data for the JAGS model.

n.iter The number of iterations in the JAGS MCMC simulation.

n.burn.in The number of burn in iterations prior to the JAGS MCMC simulation.

n.adapt The number of adaptation iterations prior to the burn in phase and subsequent
JAGS MCMC simulation.

n.chains The number of parallel MCMC chains to run.

inits The initial values for the chain(s) passed on to the function rjags: : jags.model,
unless equal to its default value NULL, in which case JAGS chooses default initial
values.

Details

The purpose of this function is to make it possible for the user diagnose the JAGS output (e.g., using
the coda package) and select appropriate values for n.iter, n.burn.in and n.adapt.

Value

An object of type memc. 1ist, as produced by rjags: :coda.samples.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

diag.memc.list.sim.model 7

diag.mcmc.list.sim.model

MCMC List For Diagnostic Evaluation

Description

diag.mcmc.list method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
diag.mcmc.list(model, utility.fun, data,
n.iter, n.burn.in, n.adapt = 1000, n.chains = 1, inits = NULL)

Arguments

model

utility.fun

data

n.iter
n.burn.in

n.adapt

n.chains

inits

Details

Simulation model object of class sim.model created using
sim.model or create.normal.model.

An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model
specification.

A named list of R objects which, when combined with the named objects in
model$data, leads to a complete specification of the data for the JAGS model.

The number of iterations in the JAGS MCMC simulation.
The number of burn in iterations prior to the JAGS MCMC simulation.

The number of adaptation iterations prior to the burn in phase and subsequent
JAGS MCMC simulation.

The number of parallel MCMC chains to run.

The initial values for the chain(s) passed on to the function rjags: : jags.model,
unless equal to its default value NULL, in which case JAGS chooses default initial
values.

See diag.mcmc. list for further documentation.

eval.eu

eval.eu

Evaluate Expected Utility

Description

Simulate an estimate of the expected utility for a specific completion of the JAGS data, i.e., for a
specific point in the decision space. This is a generic function for S3 objects.

Usage

eval.eu(model, utility.fun, data,

n.iter, n.burn.

Arguments

model

utility.fun

data

n.iter
n.burn.in

n.adapt

inits

independent.SE

Details

in, n.adapt = 1000, inits = NULL, independent.SE = FALSE)

Simulation model object of class sim.model created using
sim.model or create.normal.model.

An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model
specification.

A named list of R objects which, when combined with the named objects in
model$data, leads to a complete specification of the data for the JAGS model.

The number of iterations in the JAGS MCMC simulation.
The number of burn iterations prior to the JAGS MCMC simulation.

The number of adaptation iterations prior to the burn in and JAGS MCMC sim-
ulation.

The initial values for the chain passed on to the function rjags: : jags.model,
unless equal to its default value NULL, in which case JAGS chooses default initial
values.

If TRUE, then the standard errors of the sample means used to estimate the ex-
pected utility will be computed under the assumption of i.i.d. sampling. If
FALSE, the standard errors are instead computed using the coda: : spectrum@. ar
function.

This function is called by eval.on.grid, but also allows the user to evaluate the expected utility
for a specific combination of values for the decision variables of the problem.

Value

A list with components

mean
SE

Sample mean of the simulated utilities.

Standard error of the sample mean.

eval.eu.sim.model

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

eval.on.grid

eval.eu.sim.model

Evaluate Expected Utility

Description

eval.eu method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
eval.eu(model, utility.fun, data,
n.iter, n.burn.in, n.adapt = 1000, inits = NULL, independent.SE = FALSE)

Arguments

model

utility.fun

data

n.iter
n.burn.in

n.adapt

inits

independent.SE

Details

Simulation model object of class sim.model created using
sim.model or create.normal.model.

An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model
specification.

A named list of R objects which, when combined with the named objects in
model$data, leads to a complete specification of the data for the JAGS model.

The number of iterations in the JAGS MCMC simulation.
The number of burn iterations prior to the JAGS MCMC simulation.

The number of adaptation iterations prior to the burn in and JAGS MCMC sim-
ulation.

The initial values for the chain passed on to the function rjags: : jags.model,
unless equal to its default value NULL, in which case JAGS chooses default initial
values.

If TRUE, then the standard errors of the sample means used to estimate the ex-
pected utility will be computed under the assumption of i.i.d. sampling. If
FALSE, the standard errors are instead computed using the coda: : spectrum@.ar
function.

See eval. eu for further documentation.

10 eval.on.grid

eval.on.grid Evaluate Expected Utility On A Grid

Description

Evaluate the expected utility on a grid using MCMC samples from JAGS. The grid is a subset of
the space for the decision variables.

Usage

eval.on.grid(model, utility.fun, grid.spec.list,
n.iter, n.burn.in, n.adapt = 1000, independent.SE = FALSE, parallel = FALSE)

Arguments

model Simulation model object of class sim.model created using
sim.model or create.normal.model.

utility.fun An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model
specification.

grid.spec.list A nonempty list of array grid specifications. An array grid specification is a list
of two componenents. The first component is a dimension vector, giving the
dimensions of the array. The second component is a list of vectors of length
equal to the product of the dimension vector. Each such vector has the form
c(lower, upper, step). These are passed to the function seq in order to
generate a range of values for each component of the array.

n.iter The number of iterations in the JAGS MCMC simulation for each grid point.

n.burn.in The number of burn in iterations prior to the JAGS MCMC simulation for each
grid point.

n.adapt The number of adaptation iterations prior to the burn in phase and subsequent

JAGS MCMC simulation for each grid point.

independent.SE If TRUE, then the standard errors of the sample means used to estimate the ex-
pected utility will be computed under the assumption of i.i.d. sampling. If
FALSE, the standard errors are instead computed using the coda: : spectrum@. ar
function.

parallel Logical equal to TRUE if the simulation should be done in parallel on a multi-core
processor. The default value FALSE leads to single-core evaluation.

Value

A new simulation model object constructed from the object given as the first argument and the simu-
lation results. The updated components in the new object are model$sim.points, model$sim.means,
model$sim.SEs and model$grid.spec.list. See sim.model for a description of these compo-
nents.

eval.on.grid.sim.model

Author(s)

11

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

eval.eu

eval.on.grid.sim.

model
Evaluate Expected Utility On A Grid

Description

eval.on.grid method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
eval.on.grid(model, utility.fun, grid.spec.list,
n.iter, n.burn.in, n.adapt = 1000, independent.SE = FALSE, parallel = FALSE)

Arguments

model

utility.fun

grid.spec.list

n.iter
n.burn.in

n.adapt

independent.SE

parallel

Simulation model object of class sim.model created using
sim.model or create.normal.model.

An R function defining the utility for the decision problem. It must be possible
to extract the argument names of the function supplied with formals, and the
argument names must constitute a subset of the names used in the JAGS model
specification.

A nonempty list of array grid specifications. An array grid specification is a list
of two componenents. The first component is a dimension vector, giving the
dimensions of the array. The second component is a list of vectors of length
equal to the product of the dimension vector. Each such vector has the form
c(lower, upper, step). These are passed to the function seq in order to
generate a range of values for each component of the array.

The number of iterations in the JAGS MCMC simulation for each grid point.
The number of burn in iterations prior to the JAGS MCMC simulation for each
grid point.

The number of adaptation iterations prior to the burn in phase and subsequent
JAGS MCMC simulation for each grid point.

If TRUE, then the standard errors of the sample means used to estimate the ex-
pected utility will be computed under the assumption of i.i.d. sampling. If
FALSE, the standard errors are instead computed using the coda: : spectrum@. ar
function.

Logical equal to TRUE if the simulation should be done in parallel on a multi-core
processor. The default value FALSE leads to single-core evaluation.

12 fit.gpr
Details
See eval.on.grid for further documentation.
fit.gpr Fit A Gaussian Process Regression Function
Description

Fit a GPR regression function to the estimated expected utility values obtained through simulation
via JAGS by calling eval.on.grid. This is a generic function for S3 objects.

Usage

fit.gpr(model, start, gr = TRUE, method = "L-BFGS-B",

lower =

Arguments

model

start

gr

method

lower

upper

control

Details

@, upper = Inf, control = list())

A model object obtained as the return value from eval.on.grid.

Start value passed on to optim when performing the marginal likelihood optimi-
sation to find appropriate values for the hyperparameters for the GPR regression
function.

Set to TRUE if gradient information should be passed to optim. If false, optim
uses a finite difference approximation of the gradient when performing the opti-
misation of the hyperparameters.

The optimisation method to be used by optim. One of "Nelder-Mead", "BFGS",
"CG", "L-BFGS-B", "SANN" or "Brent".

A numeric, atomic vector containing the lower limits for the hyperparameters.
The first entry is for the standard deviation parameter and the remaining entries
are for the length parameters. If supplied, all elements must be >= 0.

A numeric, atomic vector containing the upper limits for the hyperparameters.
The first entry is for the standard deviation parameter and the remaining entries
are for the length parameters.

A list of control parameters passed on to optim.

The fitting operation consists of maximising the marginal likelihood of the hyperparameters for
a GPR model based on a squared-exponential covariance model. This is done by minimising a
function proportional to the negative marginal likelihood. The number of hyperparameters for this
model equals 1 + the number of decision variables of the decision model. The first hyperparameter
is a standard deviation and the rest consists of a length parameter for each decision dimension.

The optimisation strategy depends on the value of method. If "L-BFGS-B" is used, then the argu-
ments lower and upper are passed on as specified to optim as the lower and upper limits for the
optimisation of the hyperparameters. If any other value is provided for method, then optim will be

fit.gpr.sim.model

13

used to minimise a function defined to be equal to the objective function when the hyperparameter
argument x satisfies x >= lower, x <= upper and equal to Inf otherwise. The actual lower and
upper limits passed to optim in this latter case are -Inf and Inf, respectively.

Value

A new simulation model object constructed from the object given as the first argument and the GPR
regression results. The updated components in the new object are model$regression. fun and
model$gpr.hyper.params. See sim.model for a description of these components.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

fit.loess

fit.gpr.sim.model

Fit A Gaussian Process Regression Function

Description

fit.gpr method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
fit.gpr(model, start, gr = TRUE, method = "L-BFGS-B”,

lower

Arguments

model

start

gr

method

lower

@, upper = Inf, control = list())

A model object obtained as the return value from eval.on.grid.

Start value passed on to optim when performing the marginal likelihood optimi-
sation to find appropriate values for the hyperparameters for the GPR regression
function.

Set to TRUE if gradient information should be passed to optim. If false, optim
uses a finite difference approximation of the gradient when performing the opti-
misation of the hyperparameters.

The optimisation method to be used by optim. One of "Nelder-Mead", "BFGS",
"CG", "L-BFGS-B", "SANN" or "Brent".

A numeric, atomic vector containing the lower limits for the hyperparameters.
The first entry is for the standard deviation parameter and the remaining entries
are for the length parameters. If supplied, all elements must be >= 0.

14 fit.loess

upper A numeric, atomic vector containing the upper limits for the hyperparameters.
The first entry is for the standard deviation parameter and the remaining entries
are for the length parameters.

control A list of control parameters passed on to optim.

Details

See fit.gpr for further documentation.

fit.loess Fit A Local Polynomial Regression Function

Description
Fit a local polynomial regression function to the estimated expected utility values obtained through
simulation via JAGS by calling eval.on.grid. This is a generic function for S3 objects.

Usage

fit.loess(model, span = 0.75, degree = 2)

Arguments
model A model object obtained as the return value from eval.on.grid.
span A parameter which controls the degree of smoothing.
degree The degree of the polynomials to be used, normally 1 or 2.
Details

This function calls loess in package stats to perform a regression. Note that the number of decision
variables must be between 1 and 4, since this is the range supported by loess.

The formula passed as formula to loess has the form "y ~ x1 + x2" (for two decision variables,
and correspondingly for any other number between 1 and 4). The span and degree arguments are
passed on to loess as given. Further, surface = "direct” is used as a loess control value in
order to allow for extrapolation for the fitted function. For the remaining arguments of loess, the
default values are used.

Value

A new simulation model object constructed from the object given as the first argument and the local
polynomial regression results. The updated components in the new object are model$regression. fun
and model$gpr.hyper.params (set to NA). See sim.model for a description of these components.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

fit.loess.sim.model 15

See Also

fit.gpr

fit.loess.sim.model Fit A Local Polynomial Regression Function

Description

fit.loess method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
fit.loess(model, span = 0.75, degree = 2)

Arguments
model A model object obtained as the return value from eval.on.grid.
span A parameter which controls the degree of smoothing.
degree The degree of the polynomials to be used, normally 1 or 2.
Details

See fit.loess for further documentation.

n.opt Optimise A Simple Normal Model

Description

Find an approximation of the optimal sample size and corresponding expected utility for a simple
phase III clinical trial model with a single, normally distributed response and a utility function of a
fixed form.

Usage

n.opt(nu = @, tau = 1, sigma = 1, alpha = 0.025,
gain.constant = 1, gain.function = function(X, mu) @,
fixed.cost = @, sample.cost = 0.005,

k=1, n.min = 1, n.max = 50, n.step = 1,

n.iter = 10000, n.burn.in = 1000, n.adapt = 1000,
regression.type = "loess”,

plot.results = TRUE, independent.SE = FALSE,

parallel = FALSE, path.to.package = NA)

16 n.opt

Arguments

nu The mean of the conjugate normal prior distribution for the unknown population
mean.

tau The standard deviation of the conjugate normal prior distribution for the un-
known population mean.

sigma The known population standard deviation for each individual response in the
trial.

alpha The significance level in the one-sided test used by the regulatory authority to

decide upon marketing approval for the new treatment.

gain.constant A constant utility gain received upon treatment approval. The total gain consists
of the sum of gain.constant and gain. function.

gain.function A variable utility gain obtained in addition to the constant utility gain upon treat-
ment approval.

fixed.cost The fixed cost of performing the trial.

sample.cost The marginal cost per observation for the trial.

k The number independent, parallel trials. Must be an integer greater than zero.

n.min Lower limit for the one-dimensional grid for the sample size.

n.max Upper limit for the one-dimensional grid for the sample size.

n.step The step size of the grid for the sample size.

n.iter The number of iterations in the JAGS MCMC simulation.

n.burn.in The number of burn iterations prior to the JAGS MCMC simulation.

n.adapt The number of adaptation iterations prior to the burn in and JAGS MCMC sim-
ulation.

regression.type
If set to "loess"”, the default value, then local polynomial regression will be
used (via a call to fit.loess) to fit the grid simulation results. If set to "gpr”,
GPR regression will be used instead. For any other value, no regression is per-
formed and the optimisation done will consist of a maximisation over the values
corresponding to the grid points.

plot.results Setto TRUE if a plot of the results of the simulation over the grid is to be con-
structed.

independent.SE If TRUE, then the standard errors of the sample means used to estimate the ex-
pected utility will be computed under the assumption of i.i.d. sampling. If
FALSE, the standard errors are instead computed using the coda: : spectrum@. ar
function.

parallel Set to TRUE if the simulations over the grid should be done in parallel on a multi-
core processor. The default value FALSE leads to single-core computations.

path.to.package
The search path to the installation directory of bdpopt. For the default value,
the function will attempt to find the path using search.

optimise.eu 17

Value

A list with components

ns A numeric, atomic vector containing the sample size grid points.
eus A numeric, atomic vector containing the sample means of the simulated ex-
pected utilities corresponding to the sample size grid points.
opt.arg The optimal sample size found by maximising the estimated expected utility.
opt.eu The estimated optimal utility corresponding to the optimal sample size found.
Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

optimise.eu

optimise.eu Optimise Expected Utility

Description

Optimisation of expected utility, either directly over the results of a grid evaluation performed by
eval.on.grid or by optimisation of the regression function constructed by fit.gpr or fit.loess.
This is a generic function for an S3 object.

Usage

optimise.eu(model, start, method = "L-BFGS-B",
lower = -Inf, upper = Inf, control = list())

Arguments

model A simulation model object returned by eval.on.grid, fit.gpr or fit.loess.
Specifying any method other than "Grid” requires that the object has been ob-
tained from fit.gpr or fit.loess.

start The start value when performing the search for a maximum. Passed on to optim.

method The optimisation method to be used. Must be one of "Nelder-Mead”, "BFGS”,
"CG", "L-BFGS-B", "SANN", "Brent"” or "Grid".

lower A numeric, atomic vector giving the lower limits for the decision variables when
performing the maximisation.

upper A numeric, atomic vector giving the upper limits for the decision variables when

performing the maximisation.

control A list of control parameters passed on to optim.

18

Details

optimise.eu.sim.model

The optimisation strategy depends on the value of method. All arguments except model are ignored
if the method "Grid” is used. If "L-BFGS-B" is used, then the arguments lower and upper are
passed on as specified to optim as the lower and upper limits for the optimisation of the decision
variables. If any other value is provided for method, then optim will be used to maximise a func-
tion defined to be equal to the objective function when the decision variable argument x satisfies
x >= lower, x <= upper and equal to -Inf otherwise. The actual lower and upper limits passed
to optim in this last case are -Inf and Inf, respectively.

Value

A list with components

opt.arg
opt.eu

Author(s)

A named vector containing the optimal values for the decision variables.

An estimate of the optimal expected utility.

Sebastian Jobjornsson <jobjorns@chalmers.se>

optimise.eu.sim.model Optimise Expected Utility

Description

optimise.eu method for objects of class sim.model.

Usage

S3 method for class 'sim.model'
optimise.eu(model, start, method = "L-BFGS-B",

lower =

Arguments

model

start

method

lower

upper

control

-Inf, upper = Inf, control = list())

A simulation model object returned by eval.on.grid, fit.gpr or fit.loess.
Specifying any method other than "Grid" requires that the object has been ob-
tained from fit.gpr or fit.loess.

The start value when performing the search for a maximum. Passed on to optim.
The optimisation method to be used. Must be one of "Nelder-Mead”, "BFGS”,
"CG", "L-BFGS-B", "SANN", "Brent” or "Grid".

A numeric, atomic vector giving the lower limits for the decision variables when
performing the maximisation.

A numeric, atomic vector giving the upper limits for the decision variables when
performing the maximisation.

A list of control parameters passed on to optim.

optimise.sequential.eu 19

Details

See optimise. eu for further documentation.

optimise.sequential.eu
Optimise Sequential Expected Utility

Description

Optimise the expected utility for a sequential decision problem. The optimisation proceeds by back-
ward induction, computing the optimal decision and corresponding expected utility at each stage
over a grid for the current state summarising the posterior distribution of the unknown parameter.

Usage

optimise.sequential.eu(dp, mins, maxs, steps, n.sims, state.start = NA)

Arguments
dp A decision problem object constructed by calling sequential.dp.
mins A numeric, atomic vector specifying the lower boundary of the grid points for
each dimension of the state vector.
maxs A numeric, atomic vector specifying the upper boundary of the grid points for
each dimension of the state vector.
steps A numeric, atomic vector specifying the step size between grid points for each
dimension of the state vector.
n.sims A numeric, atomic vector of length equal to dp$n. stages specifying the number
of simulation draws to perform at each stage.
state.start An optional start value for the state. If provided, this value effectively deter-
mines a fixed prior for the parameter of the decision problem (before the first
stage). The first stage computations will then only be performed for this partic-
ular value. If the default value NA is used, computations for the first stage will
be performed for all grid points, as for the subsequent stages.
Value

If state.start equals NA, then the value returned is a list with components

opt.decision Function taking a stage and a state into the optimal decision corresponding to
the closest grid point at that stage.

opt.utility Function taking a stage and a state into the optimal expected utility correspond-
ing to the closest grid point at that stage.

If an explicit value for state.start is provided, the value returned is a list with components

20 optimise.sequential.normal.eu

opt.stagel.decision
Optimal stage 1 decision.

opt.stagel.utility
Optimal stage 1 utility.

opt.decision Function taking a stage (greater than 1) and a state into the optimal decision
corresponding to the closest grid point at that stage.

opt.utility Function taking a stage (greater than 1) and a state into the optimal expected
utility corresponding to the closest grid point at that stage.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

optimise.sequential.normal.eu

optimise.sequential.normal.eu
Optimise A Sequential Normal Decision Problem

Description

Optimise a sequential normal decision problem constructed by a call to the function sequential.normal. dp.

Usage

optimise.sequential.normal.eu(dp, range, step.size,
prior.mean = @, n.sims = 1000, plot.results = TRUE)

Arguments
dp A sequential normal decision problem created by a call to sequential.normal.dp.
range The range of the one-dimensional grid for the state. All grid points will lie in
the interval c(prior.mean - range / 2, prior.mean + range / 2).
step.size The step size between the grid points for the state.
prior.mean Defines the mid-point of the grid for the state.
n.sims The number of random draws for simulations used to estimate the expected util-

ity for a decision at each stage.

plot.results If TRUE, construct a plot of the optimal policy.

plot.sim.model

Details

21

The plot has the stage number on the x-axis. The y-axis levels of the points (one for each stage)
shows the cutoff levels for when it is optimal to continue (for all but the last stage) or finalise (for
the last stage). It will be optimal to continue or finalise if the posterior mean of the parameter at a
given stage is above the level of the point at that stage.

If no cutoff point can be established in the interior of the region defined by the interval
I=c(prior.mean - range / 2, prior.mean + range / 2),then a cross will be used instead
of a circle to indicate the level of the stage. If the cross is located at prior.mean + range / 2,
it is optimal to continue for no state in L. If the cross is located at prior.mean - range / 2,itis
optimal to continue for all states in L.

Value

A list with components

opt.decision

opt.utility

Author(s)

Function taking a stage and a state into the optimal decision corresponding to
the closest grid point at that stage.

Function taking a stage and a state into the optimal expected utility correspond-
ing to the closest grid point at that stage.

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

optimise.sequential.eu

plot.sim.model

Plot The Results Contained In Simulation Model Object

Description

Plot method for an object of class sim.model.

Usage

S3 method for class 'sim.model'
plot(x, main.var.name = NULL, main.var.min = -Inf,

main.var.max

= Inf, fixed = list(), no.legends = FALSE,

no.reg = FALSE, reg.steps = 100, ...)

22

Arguments

X

main.var.name

main.var.min

main.var.max

fixed

no.legends

no.reg

reg.steps

Details

plot.sim.model

A simulation model object obtained as output from eval.on.grid, fit.gpr or
fit.loess.

A name for the main variable to be used when plotting. This defines the variable
that varies along the x-axis of the plot. The full name of the variable must be
given as a string, i.e., the name must include array brackets and array indices.

The minimum value for the main variable.
The maximum value for the main variable.

A list of vectors with named entries. Each such vector defines a set of fixed
values for the remaining decision variables. The number of curves in the plot
will be equal to the length of fixed. Note that the names of the entries must be
written in full array notation, including explicit brackets and indices.

By default, legends are included with numbers corresponding to the entries of
fixed. Set no.legends to TRUE to remove it.

Set to TRUE in order so suppress plotting of the regression curves.
The number of steps to use when plotting the regression curves.

Not used.

The simulation grid points included in the plot are selected as follows:

1. All points for which the value of the decision variable defined by main. var.name is not within
the region defined by main.var.min and main.var.max are excluded from the total set of grid

points.

2. For the points remaining, any point which does not correspond to a value listed in fixed is

excluded.

In the special case when there is only one decision variable, only the model x needs to be specified.
In the special case when there are only two decision variables, fixed may also be given as a vector.
It then specifies the values of the secondary variable and one curve will be drawn for each value.

The default behaviour is to also plot the fitted regression function if it is available, with one curve
corresponding to each of the point sets defined by the entries of fixed.

Value

Returns NULL.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

print.sim.model 23

print.sim.model Print Status Of Simulation Model Object

Description

Print method for an object of class sim.model. Outputs some very concise information about the
given model object.

Usage
S3 method for class 'sim.model'
print(x, ...)
Arguments
X The simulation model object.
Not used.
Details

Prints the JAGS model used. If a simulation over a grid has been performed, prints the number of
simulation points. Prints a message stating whether or not regression has been performed. Prints
the hyperparameters of a GPR regression if available.

Value

Returns NULL.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

sequential.dp Construct A Sequential Decision Problem

Description
Construct a sequential decision problem. The object constructed is just a list with components
named as the arguments to the function.

Usage

sequential.dp(n.stages, post.sample, pred.sample, update.state,
term.decisions, term.obs.decisions, cont.decisions,
term.utility.fun, term.obs.utility.fun, cont.utility.fun)

24 sequential.dp

Arguments
n.stages The number of stages in the sequential decision problem.
post.sample A function taking a stage, a state and the simulation iteration count into a random
sample from the posterior distribution of the model parameter given the value of
the state when being at the given stage.
pred.sample A function taking a stage, a list of parameter values and a decision into a list

of random samples from the conditional distributions of the observable variable
at the given stage. The i:th value in the list returned should be a sample from
the predictive distribution conditioned on the i:th entry in the list of parameter
values.

update.state A function that takes a stage, a state, a decision d and a list of observations into
a list of updated states. The updated values should be the ones obtained when
combining the observations in order with the original state, given d.

term.decisions A list the length of which must be equal to n.stages. The i:th element of the
list specifies the terminal decisions available at stage i.

term.obs.decisions
A list the length of which must be equal to n.stages. The i:th element of the
list specifies the terminal observation decisions available at stage i.

cont.decisions A list the length of which must be equal to n.stages. The i:th element of the
list specifies the continuation decisions available at stage i.
term.utility.fun
A list of terminal utility functions of length equal to n.stages. Each element
of the list should be a function mapping a pair (d, theta) into to a numeric
value, where d is a decision and theta is a parameter value.
term.obs.utility.fun
A list of terminal utility functions of length equal to n. stages. Each element of
the list should be a function mapping a triple (d, X, theta) into to a numeric
value, where d is a decision, X is an observation and theta is a parameter value.
cont.utility.fun
A list of terminal utility functions of length equal to n.stages. Each element
of the list should be a function mapping a pair (d, X) into to a numeric value,
where d is a decision and X is an observation.

Details

For any stage i, at least one of the elements of the decision lists must be nonempty, i.e., the sum of
length(term.decisions[[i]]), length(term.obs.decisions[[i]]) and length(cont.decisions[[i]]
must be greater than or equal to 1.

For the last stage, all decisions must be terminal decisions, i.e., length(cont.decisions[[n.stages]])
must equal 0 and the sum of length(term.decisions[[n.stages]]) and
length(term.obs.decisions[[n.stages]]) must be greater than or equal to 1.

Value

A list for which the components have the same names and are in the same order as the arguments to
the function.

sequential.normal.dp 25

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

sequential.normal.dp

sequential.normal.dp Create A Sequential Normal Decision Problem

Description

Create an object representing a sequential normal decision problem. A single observation with a
normal distribution is made at each stage. The parameter is a true population mean with a conjugate
normal prior. Under the assumption of a known population standard deviation, the variance of
the posterior distribution for the parameter does not depend on the observations as is known at
each stage. This implies that the state is one-dimensional and equals the mean of the posterior
distribution for the parameter at each stage.

Usage

sequential.normal.dp(n.stages, group.size, tau, sigma,
stage.cost, final.cost, final.gain)

Arguments
n.stages The number of stages of the sequential decision problem.
group.size The sample size at each stage. The individal samples are combined into a group
mean, which is the single observation at each stage.
tau The standard deviation of the prior for the unknown population mean before the
first stage.
sigma The population standard deviation for a single individual. The standard devia-
tion for the group response is this value divided by the square root of group. size.
stage.cost The cost of proceeding to the next stage.
final.cost The cost payed at the final stage if a finalisation decision is taken (if a stopping
decision is taken, this cost is not payed).
final.gain A constant which is multiplied with the true population mean in order to obtain
the utility gain at the final stage, if a finalisation decision is taken (if a stopping
decision is taken, this gain is not included in the total utility).
Details

In all stages but the last, the two decisions available are to either continue and pay the stage cost or
to stop and abort (which costs nothing). At the final stage, the two decisions available are to either
finalise the process and obtain the final gain and pay the final cost or to stop and abort (whith no
gain and no cost).

26

Value

sim.model

A list representing a sequential decision problem object. See sequential. dp for further description

of the components.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

sequential.dp

sim.model

Construct A Simulation Model Object

Description

Construct a simulation model object from a JAGS model file and a JAGS data file or a named list of

data objects.

Usage

sim.model (model

Arguments

model.file

data

Value

.file, data)

Name of the file defining the JAGS model. This must be an atomic character
vector of a single element.

Name of the file defining the JAGS data or a named list of R objects. If a file
name, it must be an atomic character vector of a single element.

An S3 object of class sim.model with components

model.file
data

grid.spec.list

sim.points

sim.means

sim.SEs

The name of the JAGS model file used to create the object.

A named list of data objects extracted from the JAGS data file or directly sup-
plied as an argument.

The grid specification list after grid evaluation. Initially set to NA when the object
is created.

A matrix with with columns holding the positions of the grid points after grid
evaluation. Initially set to NA when the object is created.

A vector holding the sample means after grid evaluation. Initially set to NA when
the object is created.

A vector holding the standard errors corresponding to the sample means after
grid evaluation. Initially set to NA when the object is created.

sim.model 27

regression.fun The approximate, smoothed function after regression has been performed. Ini-
tially set to NA when the object is created.

gpr.hyper.params
The hyperparameters selected in the GPR regression after it has been performed.
Initially set to NA when the object is created.

Author(s)

Sebastian Jobjornsson <jobjorns@chalmers.se>

See Also

create.normal.model

Index

create.normal.model, 2, 4, 27
create.normal.model.from.file, 3,3
create.utility.function, 4

diag.mcmc.list, 6,7
diag.mcmc.list.sim.model, 7

eval.eu, 8,9, 11
eval.eu.sim.model, 9
eval.on.grid, 9, 10, 12
eval.on.grid.sim.model, 11

fit.gpr, 12,14, 15
fit.gpr.sim.model, 13
fit.loess, 13,14, 15
fit.loess.sim.model, 15

n.opt, 15

optimise.eu, 17,17, 19
optimise.eu.sim.model, 18
optimise.sequential.eu, 19,21
optimise.sequential.normal.eu, 20, 20

plot.sim.model, 21
print.sim.model, 23

sequential.dp, 23, 26
sequential.normal.dp, 25, 25
sim.model, 10, 13, 14, 26

28

	create.normal.model
	create.normal.model.from.file
	create.utility.function
	diag.mcmc.list
	diag.mcmc.list.sim.model
	eval.eu
	eval.eu.sim.model
	eval.on.grid
	eval.on.grid.sim.model
	fit.gpr
	fit.gpr.sim.model
	fit.loess
	fit.loess.sim.model
	n.opt
	optimise.eu
	optimise.eu.sim.model
	optimise.sequential.eu
	optimise.sequential.normal.eu
	plot.sim.model
	print.sim.model
	sequential.dp
	sequential.normal.dp
	sim.model
	Index

