
Package ‘behavr’
January 3, 2019

Title Canonical Data Structure for Behavioural Data

Date 2019-01-02

Version 0.3.2

Description
Implements an S3 class based on 'data.table' to store and process efficiently ethomics (high-
throughput behavioural) data.

Depends R (>= 3.00), data.table

Imports methods

Suggests testthat, covr, knitr

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/rethomics/behavr

BugReports https://github.com/rethomics/behavr/issues

RoxygenNote 6.1.1

NeedsCompilation no

Author Quentin Geissmann [aut, cre]

Maintainer Quentin Geissmann <qgeissmann@gmail.com>

Repository CRAN

Date/Publication 2019-01-03 01:10:13 UTC

R topics documented:
behavr . 2
bind_behavr_list . 3
bin_apply . 5
meta . 6
print.behavr . 7
rejoin . 8

1

https://github.com/rethomics/behavr
https://github.com/rethomics/behavr/issues

2 behavr

stitch_on . 9
time_conversion . 10
toy_activity_data . 11
xmv . 12

Index 14

behavr An S3 class, based on data.table, to store ethomics data

Description

In modern behavioural biology, it is common to record long time series of several variables (such
as position, angle, fluorescence and many others) on multiple individuals. In addition to large
multivariate time series, each individual is associated with a set of metavariables (i.e. sex, genotype,
treatment and lifespan), which, together, form the metadata. Metavariables are crucial in so far as
they generally "contain" the biological question. During analysis, it is therefore important to be
able to access, alter and compute interactions between both variables and metavariables. behavr
is a class that facilitates manipulation and storage of metadata and data in the same object. It is
designed to be both memory-efficient and user-friendly. For instance, it abstracts joins between
data and metavariables.

Usage

behavr(x, metadata)

setbehavr(x, metadata)

is.behavr(x)

Arguments

x data.table containing all measurements
metadata data.table containing the metadata

Details

A behavr table is a data.table. Therefore, it can be used by any function that would work on a
data.frame or a data.table. Most of the operation such as variable creation, subsetting and joins
are inherited from the data.table [] operator, following the convention DT[i,j,by] (see data table
package for detail). These operations are applied on the data. Metadata can be accessed using
meta=TRUE: DT[i,j,by, meta=TRUE], which allows extraction of subsets, creation of metavari-
ables, etc.

Both x and metadata should have a column set as key with the same name (typically named id).
behavr() copies x, whilst setbehavr() uses reference. metadata is always copied.

References

• The relevant rethomic tutorial section – about metavariables and variables in this context

https://rethomics.github.io/behavr.html#variables-and-metavariables

bind_behavr_list 3

See Also

• data.table – on which behavr is based

• xmv – to join metavariables

• rejoin – to join all metadata

• bind_behavr_list – to merge several behavr tables

Examples

We generate some metadata and data
set.seed(1)
met <- data.table::data.table(id = 1:5,

condition = letters[1:5],
sex = c("M", "M", "M", "F", "F"),
key = "id")

data <- met[,
list(t = 1L:100L,

x = rnorm(100),
y = rnorm(100),
eating = runif(100) > .5),

by = "id"]
we store them together in a behavr object d
d is a copy of the data
d <- behavr(data, met)
print(d)
summary(d)

we can also convert data to a behavr table without copy:
setbehavr(data, met)
print(data)
summary(data)

Operations are just like in data.table
row subsetting:
d[t < 10]
column subsetting:
d[, .(id, t, x)]
making new columns inline:
d[, x2 := 1 - x]
Using `meta = TRUE` applies the operation on the metadata
making new metavariables:
d[, treatment := interaction(condition,sex), meta = TRUE]
d[meta = TRUE]

bind_behavr_list Put together a list of behavr tables

4 bind_behavr_list

Description

Bind all rows of both data and metadata from a list of behavr tables into a single one. It checks keys,
number and names of columns are the same across all data. In addition, it forbids to bind metadata
that would result in duplicates (same id in two different metadata).

Usage

bind_behavr_list(l)

Arguments

l list of behavr

Value

a single behavr object

See Also

• behavr – the documentation of the behavr object

Examples

met <- data.table::data.table(id = 1:5,
condition = letters[1:5],
sex = c("M", "M", "M", "F", "F"),
key = "id")

data <- met[,list(t = 1L:100L,
x = rnorm(100),
y = rnorm(100),
eating = runif(100) > .5),
by = "id"]

d1 <- behavr(data, met)

met[,id := id + 5]
data[,id := id + 5]
data.table::setkeyv(met, "id")
data.table::setkeyv(data, "id")

d2 <- behavr(data, met)
d_all <- bind_behavr_list(list(d1, d2))
print(d_all)

bin_apply 5

bin_apply Bin a variable (typically time) and compute an aggregate for each bin

Description

This function is typically used to summarise (i.e. computing an aggregate of) a variable (y) for bins
of a another variable x (typically time).

Usage

bin_apply(data, y, x = "t", x_bin_length = mins(30),
wrap_x_by = NULL, FUN = mean, ...)

bin_apply_all(data, ...)

Arguments

data data.table or behavr table (see details)

y variable or expression to be aggregated

x variable or expression to be binned

x_bin_length length of the bins (same unit as x)

wrap_x_by numeric value defining wrapping period. NULL, the default, means no wrapping
(see details).

FUN function used to aggregate (e.g. mean, median, sum and so on)

... additional arguments to be passed to FUN

Details

bin_apply expects data from a single individual, whilst bin_apply_all works on multiple indi-
viduals identified by a unique key. wrapping is typically used to compute averages across several
periods. For instance, wrap_x_by = days(1), means bins will aggregate values across several
days. In this case, the resulting x can be interpreted as "time relative to the onset of the day" (i.e.
Zeitgeber Time).

See Also

• behavr – the documentation of the behavr object

Examples

metadata <- data.frame(id = paste0("toy_experiment|",1:5))
dt <- toy_activity_data(metadata, duration = days(2))

average by 30min time bins, default
dt_binned <- bin_apply_all(dt, moving)
equivalent to

6 meta

dt_binned <- dt[, bin_apply(.SD, moving), by = "id"]

if we want the opposite of moving:
dt_binned <- bin_apply_all(dt, !moving)

More advanced usage
dt <- toy_dam_data(metadata, duration = days(2))

sum activity per 60 minutes
dt_binned <- bin_apply_all(dt,

activity,
x = t,
x_bin_length = mins(60),
FUN = sum)

average activity. Time in ZT
dt_binned <- bin_apply_all(dt,

activity,
x = t,
wrap_x_by = days(1)
)

meta Retrieve and set metadata

Description

This function returns the metadata from a behavr table.

Usage

meta(x)

setmeta(x, new)

Arguments

x behavr object

new a new metadata table

Value

a data.table representing the metadata in x

See Also

• behavr – the documentation of the behavr object

• xmv – to join metavariables

print.behavr 7

Examples

set.seed(1)
met <- data.table::data.table(id = 1:5,

condition = letters[1:5],
sex = c("M", "M", "M", "F", "F"),
key = "id")

data <- met[,
list(t = 1L:100L,

x = rnorm(100),
y = rnorm(100),
eating = runif(100) > .5),

by = "id"]

d <- behavr(data, met)
show metadata
meta(d)
same as:
d[meta = TRUE]
set metadata
m <- d[meta = TRUE]
only id > 2 is kept
setmeta(d, m[id < 3])
meta(d)

print.behavr Print and summarise a behavr table

Description

Print and summarise a behavr table

Usage

S3 method for class 'behavr'
print(x, ...)

S3 method for class 'behavr'
summary(object, detailed = F, ...)

Arguments

x, object behavr table

... arguments passed on to further method

detailed whether summary should be exhaustive

8 rejoin

See Also

• behavr – to generate x

• print.default

• summary.default

rejoin Join data and metadata

Description

This function joins the data of a behavr table to its own metadata. When dealing with large data sets,
it is preferable to keep metadata and data separate until a summary of data is computed. Indeed,
joining many metavariables to very long time series may result in unnecessary – and prohibitively
– large memory footprint.

Usage

rejoin(x)

Arguments

x behavr object

Value

a data.table

See Also

• behavr – to formally create a behavr object

Examples

set.seed(1)
met <- data.table::data.table(id = 1:5,

condition = letters[1:5],
sex = c("M", "M", "M", "F", "F"),
key = "id")

data <- met[,
list(t = 1L:100L,

x = rnorm(100),
y = rnorm(100),
eating = runif(100) > .5),

by = "id"]

d <- behavr(data, met)
summary_d <- d[, .(test = mean(x)), by = id]
rejoin(summary_d)

stitch_on 9

stitch_on Stitch behavioural data by putting together the same individuals
recorded over different experiments on the basis of a user-defined iden-
tifier

Description

This function can merge rows of data from the same individual that was recorded over multiple
experiments. A usual scenario in which stitch_on can be used is when an experiment is interrupted
and a new recording is started on the same biological subjects. Stitching assumes the users has
defined a unique id in the metadata that refers to a specific individual. Then, if any data that comes
from the same unique id, it is merged.

Usage

stitch_on(x, on, time_ref = "datetime", use_time = F,
time_variable = "t")

Arguments

x behavr object

on name of a metavariable serving as a unique id (per individual)

time_ref name of a metavariable used to align time (e.g. "date", or "datetime")

use_time whether to use time as well as date

time_variable name of the variable describing time

Details

When several rows of the metadata match a unique id (several experiments), the first (in time)
experiment is used as the reference id. The data from the following one(s) will be added with a time
lag equals to the difference between the values of time_ref. When data is not aligned to circadian
time, it makes sense to set use_time = TRUE. Otherwise, the assumption is that the time is already
aligned to a circadian reference, so only the date is used.

Value

a behavr table

See Also

• behavr – to formally create a behavr object

10 time_conversion

Examples

set.seed(1)
met1 <- data.table::data.table(uid = 1:5,id = 1:5,

condition = letters[1:5],
sex = c("M", "M", "M", "F", "F"),
key = "id")

met2 <- data.table::data.table(uid = 1:4, id = 6:9,
condition = letters[1:4],
sex=c("M", "M", "M", "F"),
key = "id")

met1[, datetime := as.POSIXct("2015-01-02")]
met2[, datetime := as.POSIXct("2015-01-03")]
met <- rbind(met1, met2)
data.table::setkeyv(met, "id")
t <- 1L:100L
data <- met[,list(t = t,

x = rnorm(100),
y = rnorm(100),
eating = runif(100) > .5),

by = "id"]
d <- behavr(data, met)
summary(d)
d2 <- stitch_on(d, on = "uid")
summary(d2)

time_conversion Time conversion utilities

Description

Trivial functions to convert time to seconds – since behavr uses second as a conventional unit of
time.

Usage

days(x)

hours(x)

mins(x)

Arguments

x numeric vector to be converted in second

Details

Most functions in the rethomics framework will use seconds as a unit of time. It is always prefer-
able to call a function like my_function(days(1.5)) rather than my_function(60 * 60 * 24 * 1.5).

toy_activity_data 11

Value

number of seconds corresponding to x (1d = 86400s, 1h = 3600s and 1min = 60s)

toy_activity_data Generate toy activity and sleep data mimicking Drosophila behaviour
in tubes

Description

This function generates random data that emulates some of the features of fruit fly activity and
sleep. This is designed exclusively to provide material for examples and tests as it generates
"realistic" datasets of arbitrary length.

Usage

toy_activity_data(metadata = NULL, seed = 1, rate_range = 1/c(60,
10), duration = days(5), sampling_period = 10, ...)

toy_ethoscope_data(...)

toy_dam_data(...)

Arguments

metadata data.frame where every row defines an individual. Typically metadata has, at
least, the column id. The default value (NULL), will generate data for a single
animal.

seed random seed used (see set.seed)

rate_range parameter defining the boundaries of the rate at which animals wake up. It will
be uniformly distributed between animals, but fixed within each animal.

duration length (in seconds) of the data to generate
sampling_period

sampling period (in seconds) of the resulting data

... additional arguments to be passed to simulate_animal_activity

Value

a behavr table with the metadata columns as metavariables. In addition to id and t columns different
methods will output different variables:

• toy_activity_data will have asleep and moving (1/10s)

• toy_dam_data will have activity (1/60s)

• toy_ethoscope_data will have xy_dist_log10x1000, has_interacted and x (2/1s)

12 xmv

References

• The relevant rethomic tutorial section – explainig how to work with toy data.

See Also

• behavr – to formally create a behavr object

Examples

just one animal, no metadata needed
dt <- toy_ethoscope_data(duration = days(1))

advanced, using a metadata
metadata <- data.frame(id = paste0("toy_experiment|",1:9),

condition = c("A", "B", "C"))

metadata
Data that could come from the scopr package:
dt <- toy_ethoscope_data(metadata, duration = days(1))
print(dt)

Some DAM-like data
dt <- toy_dam_data(metadata, seed = 2, duration = days(1))
print(dt)

data where behaviour is annotated e.g. by a classifier
dt <- toy_activity_data(metadata, 1.5)
print(dt)

xmv Expand a metavariable and map it against the data

Description

This function eXpands a MetaVariable from a parent behavr object. That is, it matches this variable
(from metadata) to the data by id.

Usage

xmv(var)

Arguments

var the name of the variable to be extracted

Details

This function can only be called within between the [] of a parent behavr object. It is intended to
facilitate operations between data and metadata. For instance, when one wants to modify a variable
according to a metavariable.

https://rethomics.github.io/behavr.html#playing-with-toy-data

xmv 13

Value

a vector of the same type as var, but of the same length as the number of row in the parent data.
Each row of data is matched against metadata for this specific variable.

See Also

• behavr – to formally create a behavr object

• rejoin – to join all metadata with data

Examples

First, we create some data

library(data.table)
set.seed(1)
data <- data.table(

id = rep(c("A", "B"), times = c(10, 26)),
t = c(1:10, 5:30),
x = rnorm(36), key = "id"
)

metadata = data.table(id = c("A", "B"),
treatment = c("w", "z"),
lifespan = c(19, 32),
ref_x = c(1, 0),
key = "id")

dt <- behavr(data, metadata)
summary(dt)

Subsetting using metadata

dt[xmv(treatment) == "w"]
dt[xmv(treatment) == "w"]
dt[xmv(lifespan) < 30]

Allocating new columns using metavariable

Just joining lifespan (not necessary)
dt[, lif := xmv(lifespan)]
print(dt)
Anonymously (more useful)
dt[, x2 := x - xmv(ref_x)]
print(dt)

Index

behavr, 2, 3–9, 11–13
bin_apply, 5
bin_apply_all (bin_apply), 5
bind_behavr_list, 3, 3

data.frame, 2, 11
data.table, 2, 3, 5, 6, 8
days (time_conversion), 10

hours (time_conversion), 10

is.behavr (behavr), 2

mean, 5
median, 5
meta, 6
mins (time_conversion), 10

print.behavr, 7
print.default, 8

rejoin, 3, 8, 13

set.seed, 11
setbehavr (behavr), 2
setmeta (meta), 6
stitch_on, 9
sum, 5
summary.behavr (print.behavr), 7
summary.default, 8

time_conversion, 10
toy_activity_data, 11
toy_dam_data (toy_activity_data), 11
toy_ethoscope_data (toy_activity_data),

11

xmv, 3, 6, 12

14

	behavr
	bind_behavr_list
	bin_apply
	meta
	print.behavr
	rejoin
	stitch_on
	time_conversion
	toy_activity_data
	xmv
	Index

