# Package 'bfp' 

## April 2, 2022

Version 0.0-45
Date 2022-04-02
Title Bayesian Fractional Polynomials
Depends R (>=3.0.0)
Imports Rcpp (>=0.11.0)
LinkingTo Rcpp
Suggests doBy, SoDA, Hmisc
SystemRequirements GNU make, C++11
Description Implements the Bayesian paradigm for fractional polynomial models under the assumption of normally distributed error terms, see Sabanes Bove, D. and Held, L. (2011) [doi:10.1007/s11222-010-9170-7](doi:10.1007/s11222-010-9170-7).

License GPL (>=2)
Copyright hyp2f1 is from Cephes Math Library Release 2.3, Copyright 1995 by Stephen L. Moshier. Newmat is Copyright 1991-2005 by Robert B. Davies. Function fpScale is derived from the R-package mfp written by Gareth Ambler and Axel Benner.
Author Daniel Sabanes Bove [aut, cre], Isaac Gravestock [aut], Robert Davies [cph], Stephen Moshier [cph], Gareth Ambler [cph], Axel Benner [cph]

Maintainer Daniel Sabanes Bove [daniel.sabanesbove@gmx.net](mailto:daniel.sabanesbove@gmx.net)
Repository CRAN
Repository/R-Forge/Project bfp
Repository/R-Forge/Revision 163
Repository/R-Forge/DateTimeStamp 2022-04-02 13:56:28
Date/Publication 2022-04-02 15:20:02 UTC
NeedsCompilation yes

## $R$ topics documented:

as.data.frame.BayesMfp ..... 2
BayesMfp ..... 3
BayesMfp Methods ..... 6
bmaPredict ..... 7
BmaSamples ..... 9
BmaSamples Methods ..... 11
empiricalHpd ..... 12
Extract.BayesMfp ..... 13
findModel ..... 14
getPosteriorParms ..... 15
inclusionProbs ..... 16
ozone ..... 17
plotCurveEstimate ..... 18
posteriors ..... 20
predict.BayesMfp ..... 21
predict.BmaSamples ..... 22
scrBesag ..... 23
scrHpd ..... 24
Summary of BayesMfp object ..... 25
Summary of BmaSamples object ..... 27
Index ..... 29
as.data.frame.BayesMfp
Convert a BayesMfp object to a data frame

## Description

Convert the BayesMfp object to a data frame with the saved models.

## Usage

\#\# S3 method for class 'BayesMfp'
as.data.frame(x, row.names $=$ NULL, ..., freq $=$ TRUE)

## Arguments

x
row. names
freq should empirical frequencies of the models in the sampling path be given? (default)
... unused

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

```
summary.BayesMfp
```


## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
## get the models data frame
as.data.frame(test)
```

BayesMfp Bayesian model inference for multiple fractional polynomial models

## Description

Bayesian model inference for multiple fractional polynomial models is conducted by means of either exhaustive model space evaluation or posterior model sampling.

## Usage

BayesMfp(formula = formula(data), data = parent.frame(), family =
gaussian, priorSpecs = list(a = 4, modelPrior = "flat"), method =
c("ask", "exhaustive", "sampling"), subset = NULL, na.action = na.omit,
verbose $=$ TRUE, nModels $=$ NULL, nCache=1e9L, chainlength = 1e5L)
bfp(x, max $=2$, scale $=$ TRUE, rangeVals=NULL)
uc ( x )

## Arguments

| formula | model formula |
| :--- | :--- |
| data | optional data.frame for model variables (defaults to the parent frame) |
| family | distribution and link: only gaussian("identity") supported at the moment |


| priorSpecs | prior specifications, see details <br> which method should be used to explore the posterior model space? (default: <br> ask the user) |
| :--- | :--- |
| method | optional subset expression <br> default is to skip rows with missing data, and no other option supported at the <br> moment |
| na.action | should information on computation progress be given? (default) <br> how many best models should be saved? (default: 1\% of the explored models or <br> the chainlength, 1 would mean only the maximum a posteriori [MAP] model) <br> nModels |
| nCache | maximum number of best models to be cached at the same time during the model <br> sampling (only has an effect if sampling has been chosen as method) |
| chainlength | length of the model sampling chain (only has an effect if sampling has been <br> chosen as method) |
| x | variable |
| max maxim degree for this FP (default: 2) |  |

## Details

The formula is of the form $y \sim \operatorname{bfp}(x 1, \max =4)+u c(x 2+x 3)$, that is, the auxiliary functions bfp and uc must be used for defining the fractional polynomial and uncertain fixed form covariates terms, respectively. There must be an intercept, and no other fixed covariates are allowed. All max arguments of the bfp terms must be identical.
The prior specifications are a list:
a hyperparameter for hyper-g prior which must be greater than 3 and is recommended to be not greater than 4 (default is 4)
modelPrior choose if a flat model prior (default, "flat"), a model prior favoring sparse models explicitly ("sparse"), or a dependent model prior ("dependent") should be used.

If method = "ask", the user is prompted with the maximum cardinality of the model space and can then decide whether to use posterior sampling or the exhaustive model space evaluation.
Note that if you specify only one FP term, the exhaustive model search must be done, due to the structure of the model sampling algorithm. However, in reality this will not be a problem as the model space will typically be very small.

## Value

Returns an object of class BayesMfp that inherits from list. It is essentially a list of models. Each model is a list and has the following components:
powers a list of numeric vectors, where each vector contains the powers of the covariate that its name denotes.

| ucTerms | an integer vector of the indices of uncertain fixed form covariates that are present <br> in the model. |
| :--- | :--- |
| logM | log marginal likelihood <br> logP <br> posterior |
| log prior probability <br> normalized posterior probability, and if model sampling was done, the frequency <br> of the model in the sampling algorithm |  |
| postExpectedg |  |
| postExpectedShrinkage |  |
| posterior expected covariance factor $g$ |  |
| posterior expected shrinkage factor $\mathrm{t}=\mathrm{g} /(\mathrm{g}+1)$ |  |
| R2 | usual coefficient of determination for the linear model |

Subsetting the object with [.BayesMfp returns again a BayesMfp object with the same attributes, which are

| numVisited | the number of models that have been visited (exhaustive search) or cached (model sampling) |
| :---: | :---: |
| inclusionProbs | BMA inclusion probabilities for all uncertain covariates |
| linearInclusionProbs |  |
|  | BMA probabilities for exactly linear inclusion of FP covariates |
| logNormConst | the (estimated) log normalizing constant $f(D)$ |
| chainlength | length of the Markov chain, only present if method = "sampling" |
| call | the original call |
| formula | the formula by which the appropriate untransformed design matrix can be extracted |
| x | the shifted and scaled design matrix for the data |
| xCentered | the column-wise centered x |
| $y$ | the response vector |
| yMean | the mean of the response values |
| SST | sum of squares total |
| indices | a list with components that describe the positions of uncertain covariate groups, fractional polynomial terms and fixed variables in the design matrix |
| termNames | a list of character vectors containing the names of uncertain covariate groups, fractional polynomial terms and fixed variables |
| shiftScaleMax | matrix with 4 columns containing preliminary transformation parameters, maximum degrees and cardinalities of the powersets of the fractional polynomial terms |
| priorSpecs | the utilized prior specifications |
| randomSeed | if a seed existed at function call (get(".Random.seed", .GlobalEnv)), it is saved here |

Note
logNormConst may be unusable due to necessary conversion from long double to double!
Various methods for posterior summaries are available.

## See Also

BayesMfp Methods, BmaSamples

## Examples

```
## generate some data
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
## run an exhaustive model space evaluation with a flat model prior and
## a uniform prior (a = 4) on the shrinkage factor t = g/(1 + g):
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
test
## now the same with a *dependent* model prior:
test2 <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    priorSpecs = list(a = 4, modelPrior = "dependent"),
        method="exhaustive")
test2
```

BayesMfp Methods Other methods for BayesMfp objects

## Description

Print the object (print), get fitted values (fitted) and corresponding residuals (residuals).

## Usage

```
## S3 method for class 'BayesMfp'
print(x, ...)
## S3 method for class 'BayesMfp'
fitted(object, design = getDesignMatrix(object), post =
getPosteriorParms(object, design = design), ...)
## S3 method for class 'BayesMfp'
residuals(object, ...)
```


## Arguments

| $x$ | valid BayesMfp object |
| :--- | :--- |
| object | valid BayesMfp object, only the first model will be used. |

```
design design matrix of the first model in the object, which can be supplied by the caller
        if it is computed beforehand
post posterior parameters of the normal-gamma distribution (defaults to the posterior
        expected mean, marginalized over the covariance factor g)
... unused
```


## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

BayesMfp, BmaSamples Methods

## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
## the print method
test
## extract fitted values and corresponding residuals
fitted(test)
residuals(test)
```

bmaPredict

BMA prediction for new data points

## Description

Make a Bayesian model averaged prediction for new data points, from those models saved in a BayesMfp object.

## Usage

bmaPredict(BayesMfpObject, postProbs = posteriors(BayesMfp0bject), newdata)

## Arguments

BayesMfpObject BayesMfp object with the models over which the predictions should be averaged
postProbs vector of posterior probabilities, which are then normalized to the weights of the model average (defaults to the normalized posterior probability estimates)
newdata new covariate data as data.frame

## Value

The predicted values as a vector.

## Note

Note that this function is not an S3 predict method for BmaSamples objects, but a function working on BayesMfp objects (because we do not need BMA samples to do BMA point predictions).

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

```
BmaSamples Methods
```


## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
## predict new responses at (again random) covariates
bmaPredict(test,
    newdata = list(x1 = rnorm(n=15),
                                    x2 = rbinom(n=15, size=5, prob=0.2) + 1,
                                    x3 = rexp(n=15)))
```


## Description

Draw samples from the Bayesian model average over the models in saved in a BayesMfp-object.

## Usage

```
BmaSamples(object, sampleSize = length(object) * 10, postProbs =
posteriors(object), gridList = list(), gridSize = 203, newdata=NULL,
verbose = TRUE, includeZeroSamples=FALSE)
```


## Arguments

object valid BayesMfp object containing the models over which to average
sampleSize sample size (default is 10 times the number of models)
postProbs vector of posterior probabilites (will be normalized within the function, defaults to the normalized posterior probabilities)
gridList optional list of appropriately named grid vectors for FP evaluation, default is a length (gridSize-2) grid per covariate additional to the observed values (two are at the minimum and maximum)
gridSize see above (default: 203)
newdata new covariate data.frame with exactly the names (and preferably ranges) as before (default: no new covariate data)
verbose should information on sampling progress be printed? (default)
includeZeroSamples
should the function and coefficient samples include zero samples, from models where these covariates are not included at all? (default: FALSE, so the zero samples are not included)

## Value

Return an object of class BmaSamples, which is a list with various elements that describe the BayesMfp object over which was averaged, model frequencies in the samples, the samples themselves etc:
priorSpecs the utilized prior specifications
termNames a list of character vectors containing the names of uncertain covariate groups, fractional polynomial terms and fixed variables
shiftScaleMax matrix with 4 columns containing preliminary transformation parameters, maximum degrees and cardinalities of the powersets of the fractional polynomial terms
$y$ the response vector
$\left.\begin{array}{ll}\text { x } & \text { the shifted and scaled design matrix for the data } \\ \text { randomSeed } & \begin{array}{l}\text { if a seed existed at function call (get (". Random. seed", .GlobalEnv)), it is } \\ \text { saved here }\end{array} \\ \text { modelFreqs } & \begin{array}{l}\text { The table of model frequencies in the BMA sample } \\ \text { data frame containing the normalized posterior probabilities of the models in } \\ \text { the underlying BayesMfp object, corresponding log marginal likelihoods, model } \\ \text { prior probabilities, posterior expected covariance and shrinkage factors, coeffi- } \\ \text { cients of determination, powers and inclusions, and finally model average weights } \\ \text { and relative frequencies in the BMA sample. }\end{array} \\ \text { sampleSize } & \begin{array}{l}\text { sample size }\end{array} \\ \text { sigma2 } & \begin{array}{l}\text { BMA samples of the regression variance }\end{array} \\ \text { shrinkage } & \begin{array}{l}\text { BMA samples of the shrinkage factor }\end{array} \\ \text { fixed } & \begin{array}{l}\text { namples of the intercept } \\ \text { bfp } \\ \text { covariate and is a matrix (samples x grid), with the following attributes: }\end{array} \\ \text { whereObsVals where in the scaled grid are the originally observed covariate } \\ \text { values? (integer vector of the indexes) }\end{array}\right\}$

## See Also

BmaSamples Methods, BayesMfp

## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
```

```
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 200, method="exhaustive")
## now draw samples from the Bayesian model average
testBma <- BmaSamples (test)
testBma
## We can also draw predictive samples for new data points, but then
## we need to supply the new data to BmaSamples:
newdata <- data.frame(x1 = rnorm(15),
    x2 = rbinom(n=15, size=5, prob=0.2) + 1,
    x3 = rexp(n=15))
testBma <- BmaSamples(test, newdata=newdata)
predict(testBma)
## test that inclusion of zero samples works
testBma <- BmaSamples (test, includeZeroSamples=TRUE)
testBma
```

BmaSamples Methods Other methods for BmaSamples objects

## Description

Print the object (print), get fitted values (fitted) and corresponding residuals (residuals).

## Usage

```
## S3 method for class 'BmaSamples'
print(x, ...)
## S3 method for class 'BmaSamples'
fitted(object, ...)
## S3 method for class 'BmaSamples'
residuals(object, ...)
```


## Arguments

| x | valid BmaSamples object |
| :--- | :--- |
| object | valid BmaSamples object |
| $\ldots$. | unused |

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

predict.BmaSamples, summary.BmaSamples

## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 200, method="exhaustive")
## now draw samples from the Bayesian model average
testBma <- BmaSamples (test)
## the print method:
testBma
## the fitted method:
fitted(testBma)
## and the corresponding residuals:
residuals(testBma)
```

empiricalHpd
Construct an empirical HPD interval from samples

## Description

Construct an empirical highest posterior density (HPD) interval from samples which have been drawn from the distribution of a quantity of interest.

## Usage

empiricalHpd(theta, level)

## Arguments

theta the vector of samples
level the credible level

## Value

A vector with the estimated lower and upper bounds of the HPD interval.

## Author(s)

Daniel Sabanl'es Bovl'e

## Examples

```
## draw standard normal variates
test <- rnorm(n=1000)
## estimate the 95% HPD interval with these samples:
empiricalHpd(theta=test, level=0.95)
## compare with true HPD:
qnorm(p=c(0.025, 0.975))
```

Extract.BayesMfp Extract method for BayesMfp objects

## Description

Extract a subset of models from a BayesMfp object.

## Usage

```
## S3 method for class 'BayesMfp'
x[...]
```


## Arguments

| $x$ | valid BayesMfp object |
| :--- | :--- |
| $\ldots$ | transports the indexes of the models |

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

BayesMfp

## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
```

```
## extract the top ten models
```

test[1:10]

```
findModel Find a specific fractional polynomial model in a BayesMfp object
```


## Description

Returns the index of the wished model if it is present in the model list, and otherwise returns NA.

## Usage

findModel(model, BayesMfpObject)

## Arguments

model the specific model: a list with entries powers and ucTerms
BayesMfpObject an object of class BayesMfp

## Details

See BayesMfp for the description of a model.

## Value

Index of model in BayesMfpObject if it is present in the model list, otherwise NA.

## Note

The searched model must have exactly the same construction as the models in BayesMfpObject. See the example below for the recommended use.

## Examples

```
## construct a BayesMfp object
set.seed(92)
x1 <- rnorm (15)
x2 <- rbinom (n=15, size=20, prob=0.6)
x3 <- rexp (15)
y <- rt (15, df=2)
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels=2000, method="exhaustive")
## copy one model
myModel <- test[[1]]
## and modify it!
myModel$powers[["x2"]] <- c (1, 2)
stopifnot(identical(findModel (myModel, test),
    31L))
```


## Description

Conditional on a fixed shrinkage factor $\mathrm{t}=\mathrm{g} /(\mathrm{g}+1)$, the posterior joint distribution of the effects and the regression variance is normal inverse gamma. With this function, you can compute the parameters of this distribution.

## Usage

getPosteriorParms(x, shrinkage=x[[1]]\$postExpectedShrinkage, design = getDesignMatrix(x))

## Arguments

| $x$ | a valid BayesMfp-Object, only first list element will be recognized |
| :--- | :--- |
| shrinkage | shrinkage factor used in the computations (defaults to the posterior expected <br> shrinkage factor in the model $x[1])$ |
| design | (centered) design matrix for the model |

## Value

A list with four parameters:
aStar the first parameter of the inverse gamma distribution
VStar the covariance matrix part of the multivariate normal distribution
mStar the expectation of the multivariate normal distribution
bStar the second parameter of the inverse gamma distribution

## Author(s)

Daniel Sabanl'es Bovl'e

## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 200, method="exhaustive")
```

```
## now get the posterior parameters of the third best model
getPosteriorParms(test[3])
```

inclusionProbs Compute (model averaged) posterior variable inclusion probabilites

## Description

Compute (model averaged) posterior inclusion probabilites for the uncertain variables (including FP variables) based on a BayesMfp object.

## Usage

inclusionProbs(BayesMfpObject, postProbs = posteriors(BayesMfpObject, ind = 1))

## Arguments

BayesMfpObject valid BayesMfp object
postProbs posterior probabilities to weight the models (defaults to the normalized probability estimates)

## Value

Named numeric vector with the estimated variable inclusion probabilities. Note that these can differ noticeably from the "global" inclusion probabilities computed from all discovered models, from which only the best were saved in the BayesMfp object.

## Author(s)

Daniel Sabanl'es Bovl'e

## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 200, method="exhaustive")
## now get the local inclusion probabilities
local <- inclusionProbs(test)
## they can be compared with the global inclusion probabilities
local - attr(test, "inclusionProbs")
```


## Description

This is the Ozone data discussed in Breiman and Friedman (JASA, 1985, p. 580). These data are for 330 days in 1976. All measurements are in the area of Upland, CA, east of Los Angeles.

## Usage

data(ozone)

## Format

A data frame with 366 observations on the following 13 variables.
month month of the year
day day of the month
weekday day of the week: a factor with levels Monday, Tueday, Wednesday, Thursday, Friday, Saturday, Sunday
hourAverageMax maximum 1-hour average ozone level [ppm]
pressure 500 Height 500 millibar pressure height [meters]
windSpeed wind speed [mph]
humidity relative humidity [\%]
tempSandburg temperature at Sandberg, CA [degrees F]
tempElMonte temperature at El Monte, CA [degrees F]
inversionBaseHeight inversion base height [feet]
pressureGradientDaggett pressure gradient from LAX to Daggett, CA $[\mathrm{mm} \mathrm{Hg}]$
inversionBaseTemp inversion base temperature [degrees F ]
visibility visibility [miles]

## Source

Breiman, L and Friedman, J. (1985), "Estimating Optimal Transformations for Multiple Regression and Correlation", Journal of the American Statistical Association, 80, 580-598.
plotCurveEstimate

## Description

Plot a fractional polynomial curve estimate for either a single model or a Bayesian model average over BayesMfp objects. Optionally, credible intervals and / or bands can be added to the plot.

## Usage

plotCurveEstimate(model, termName, plevel = 0.95, slevel = plevel, plot = TRUE, legendPos = "topleft", rug = FALSE, partialResids=TRUE, hpd=TRUE,..., main = NULL)

## Arguments

model an object of class BayesMfp or BmaSamples
termName string denoting an FP term, as written by the summary method
plevel credible level for pointwise intervals, and NULL means no pointwise intervals (default: 0.95)
slevel credible level for simultaneous credible band (SCB), NULL means no SCB (defaults to plevel)
plot if FALSE, only return values needed to produce the plot, but do not plot (default is TRUE, so a plot is made)
legendPos position of coefficient estimates (for BayesMfp) or sample size (for BmaSamples) in the plot, NULL suppresses the printing (default is "topleft")
rug add a rug to the plot? (default: FALSE)
partialResids add partial residuals to the plot? (default: TRUE)
hpd use HPD intervals (TRUE, default) or quantile-based (FALSE) intervals?
... further arguments in case of a BayesMfp object (see details) and arguments for plotting with matplot
main optional main argument for the plot

## Details

Further arguments for application on a BayesMfp object:
grid vector of unscaled abscissae, default is a length gridSize grid over the observed range specified by providing the argument NULL.
post list with posterior parameters of the model, which may be provided manually to accelerate plotting in a loop
gridSize default number of grid points used when no grid is supplied (default is 201)
numSim number of simulations for estimation of the SCB (default is 500)

## Value

a list of various plotting information:

| original | grid on the original covariate scale |
| :--- | :--- |
| grid | grid on the transformed scale |
| mode | mode curve values, only for BayesMfp object |
| mean | pointwise mean curve values, only for BmaSamples object <br> pointwise median curve values, only for BmaSamples object |
| median | lower boundaries for pointwise intervals |
| plower | upper boundaries for pointwise intervals |
| pupper | lower boundaries for SCB |
| slower | upper boundaries for SCB |
| supper | observed values of the covariate on the original scale |
| obsVals | sample size underlying the curve estimate, only for BmaSamples object |
| sampleSize | partial residuals |
| partialResids | vector of shift and scale parameter |
| transform |  |

## See Also

```
    BayesMfp, BmaSamples
```


## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
test <- BayesMfp (y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
method="exhaustive")
## plot the x2 curve estimate for the 20-th best model
p1 <- plotCurveEstimate (test[20], "x2")
## look at the returned list
str(p1)
## plot the BMA curve estimate for the same covariate
testBma <- BmaSamples (test)
p2 <- plotCurveEstimate (testBma, "x2")
## look at the returned list
str(p2)
## try the new options:
plotCurveEstimate (testBma, "x2", partialResids=FALSE, hpd=FALSE)
```


## Description

Extract posterior model probability estimates (either normalized estimates or sampling frequencies) from BayesMfp objects.

## Usage

posteriors(BayesMfpObject, ind $=1$ )

## Arguments

BayesMfpObject a valid BayesMfp object, containing the models the probabilites of which one wants to estimate
ind $\quad$ ind $=1$ means normalized posteriors, ind $=2$ means sampling frequencies

## Value

The vector of probability estimates.

## Author(s)

Daniel Sabanl'es Bovl'e

## Examples

```
## construct a BayesMfp object
set.seed(19)
x1 <- rnorm (n=15)
x2 <- rbinom (n=15, size=20, prob=0.5)
x3 <- rexp (n=15)
y <- rt (n=15, df=2)
test <- BayesMfp (y ~ bfp (x1, max = 2) + bfp (x2, max = 2) + uc (x3), nModels = 100,
    method="exhaustive")
## this works:
posteriors(test)
## this must not work:
## SoDA::muststop(posteriors(test, ind=2))
## only if we do model sampling there are model frequencies:
test2 <- BayesMfp (y ~ bfp (x1, max = 2) + bfp (x2, max = 2) + uc (x3), nModels = 100,
    method="sampling")
posteriors(test2, ind=2)
```


## Description

Predict new responses from a single multiple FP model.

## Usage

\#\# S3 method for class 'BayesMfp'
predict(object, newdata, ...)

## Arguments

object valid BayesMfp object, from which only the first model will be used.
newdata new covariate data with exactly the names (and preferably ranges) as for the original BayesMfp call
... unused

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

bmaPredict

## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y <- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
            method="exhaustive")
## predict new responses at (again random) covariates
predict(test,
    newdata = list(x1 = rnorm (15),
        x2 = rbinom (n=15, size=5, prob=0.2) + 1,
        x3 = rexp (15)))
```

predict.BmaSamples Predict method to extract point and interval predictions from BmaSamples objects

## Description

Predict new responses from a Bayesian model average over FP models, from which predictive samples have already been produced.

## Usage

\#\# S3 method for class 'BmaSamples'
predict(object, level=0.95, hpd=TRUE, ...)
\#\# S3 method for class 'predict. BmaSamples'
print(x, ...)

## Arguments

| object | valid BmaSamples object |
| :--- | :--- |
| level | credible level for the credible intervals (default: $95 \%$ ) |
| hpd | should emprical hpd intervals be used (default) or simple quantile-based? |
| $\ldots$ | unused |
| $x$ | object of S3 class predict.BmaSamples |

## Details

This function summarizes the predictive samples saved in the BmaSamples object. Using these functions, one can obtain predictive credible intervals, as opposed to just using the function bmaPredict, which only gives the means of the predictive distributions.

## Value

A list of class predict. BmaSamples, which has then a separate print method. The elements of the list are:
intervalType which credible intervals have been computed (either "HPD" or "equitailed")
level the credible level
newdata the covariate data for the predicted data points (just copied from object)
sampleSize the sample size (just copied from object)
nModels the number of models (just copied from object)
summaryMat the summary matrix for the predictions, with median, mean, lower and upper credible interval borders.

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

bmaPredict

## Examples

```
    \#\# generate a BmaSamples object
    set.seed(19)
    x1 <- rnorm(n=15)
    x2 <- rbinom(n=15, size=20, prob=0.5)
    \(x 3<-\operatorname{rexp}(n=15)\)
    \(y<-r t(n=15, d f=2)\)
    test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
\#\# predict new responses at (again random) covariates with BMA:
testBma <- BmaSamples(test,
                        newdata=data.frame(x1 = rnorm (15),
                        \(x 2=\) rbinom ( \(n=15\), size=5, prob=0.2) +1 ,
                                \(\left.x^{3}=\operatorname{rexp}(15)\right)\) )
predict(testBma)
```

scrBesag Simultaneous credible band computation (Besag algorithm)

## Description

Simultaneous credible band computation

## Usage

scrBesag(samples, level=0.95)

## Arguments

samples $\quad \mathrm{m}$ by n matrix where m is the number of parameters, n is the number of samples and hence each (multivariate) sample is a column in the matrix samples
level the credible level (default: 0.95)

## Details

Calculates a series of simultaneous credible bounds for one parameter type.

## Value

matrix with 'lower' and 'upper' rows

## Author(s)

Thomas Kneib

## References

J. Besag, P. Green, D. Higdon, K. Mengersen (1995): Bayesian Methods for Nonlinear Classification and Regression, Statistical Science 10/1, 3-66
scrHpd Calculate an SCB from a samples matrix

## Description

Calculate an SCB from a samples matrix, which minimizes the absolute distances of the contained samples to a mode vector, at each gridpoint. Therefore the SCB might be considered an "HPD SCB".

## Usage

scrHpd(samples, mode = apply(samples, 2, median), level = 0.95)

## Arguments

samples $\quad m$ by $n$ matrix where $m$ is the number of samples and $n$ the number of parameters, hence each (multivariate) sample is a row in the matrix samples
mode mode vector of length $n$ (defaults to the vector of medians)
level credible level for the SCB (default: 0.95)

## Details

This function first computes the matrix of absolute distances of the samples to the mode vector. Then based on this distance matrix, a one-sided SCB as described in Besag et al. (1995) is computed, which is then mapped back to the samples.

## Value

A matrix with rows "lower" and "upper", with the lower and upper SCB bounds.

## Author(s)

Daniel Sabanl'es Bovl'e

## References

Besag, J.; Green, P.; Higdon, D. <br>\& Mengersen, K. (1995): "Bayesian computation and stochastic systems (with discussion)", Statistical Science, 10, 3-66.

## See Also

empiricalHpd

## Examples

```
## create some samples
time <- 1:10
nSamples <- 50
samples <- t(replicate(nSamples,
                        time * rnorm(1) + rexp(1))) +
        rnorm(length(time) * nSamples)
matplot(time, t(samples), type="l", lty=1, col=1,
        xlab="time", ylab="response")
## now test the function: 50% credible band
scb <- scrHpd(samples, level=0.5)
matlines(time, t(scb), col=2, lwd=2, lty=1)
```

Summary of BayesMfp object
Calculate and print the summary of a BayesMfp object

## Description

Calculate and print the summary of a BayesMfp object, using S3 methods for the class.

## Usage

\#\# S3 method for class 'BayesMfp'
summary (object, level=0.95, table=TRUE,
shrinkage=NULL, ...)
\#\# S3 method for class 'summary.BayesMfp'
print(x, ...)

## Arguments

object
x
level
table
shrinkage
a valid BayesMfp object
a return value of summary. BayesMfp
credible level for coefficients HPD intervals (default: 0.95)
should a data.frame of the models be included? (default)
shrinkage factor used, where NULL defaults to the posterior expected shrinkage factor
only used by summary. BayesMfp to pass arguments to as. data. frame. BayesMfp

## Value

summary.BayesMfp returns a list with S3 class summary.BayesMfp, where the arguments "call", "numVisited", "termNames", "shiftScaleMax", "inclusionProbs", "chainlength" (only for model sampling results) are copied from the attributes of the BayesMfp object, please see its help page for details.
The other elements are:
dataframe the model overview as data.frame (only if table=TRUE was specified)
localInclusionProbs
local variable inclusion probability estimates
nModels number of models contained in object
If there are multiple models in object, the list element postProbs contains the exact (for exhaustively explored model spaces) or estimated (if model sampling has been done) posterior model probabilities.
If object contains only one FP model, then this one is summarized in more detail:
level used credible level for coefficients HPD intervals
shrinkage used shrinkage factor
summaryMat matrix with posterior summaries of the single coefficients: "mode" gives the posterior mode, "HPDlower" and "HPDupper" give the boundaries of the HPD intervals with specified credible level
sigma2Sum posterior summary for the regression variance: again mode, and lower and upper HPD bounds are given in a rowvector.

## Note

Note that if you extract the summary of a single model with these functions, you ignore the uncertainty about the shrinkage factor $t=g /(g+1)$ by plugging in the number shrinkage. If you want to incorporate this uncertainty, you must run BmaSamples on this model and call the corresponding method summary.BmaSamples.

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

summary.BmaSamples

## Examples

```
## generate a BayesMfp object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
```

```
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
## summary of multiple models:
summary(test)
## summary of just one model (no. 10):
summary(test[10])
## internal structure is usually not interesting:
str(summary(test[10]))
```

Summary of BmaSamples object

Calculate and print the summary of a BmaSamples object

## Description

Calculate and print the summary of a BmaSamples object, using S3 methods for the class.

## Usage

```
    ## S3 method for class 'BmaSamples'
```

    summary (object, level \(=0.95\), hpd \(=\) TRUE, ...)
    \#\# S3 method for class 'summary.BmaSamples'
    print (x, table \(=\) TRUE, ...)
    
## Arguments

| object | a valid BmaSamples object |
| :--- | :--- |
| level | credible level for coefficients credible intervals |
| hpd | should emprical hpd intervals be used (default) or simple quantile-based? |
| X | a return value of summary. BmaSamples |
| table | should the model table been shown? (default) |
| $\ldots$ | unused |

## Value

The summary method returns an S3 object, where "sampleSize", "modelData" and "modelFreqs" are copied from the BmaSamples object, please see its help page for the details. "intervalType" and "level" copy the function's parameters.
"summaryMat" contains the posterior summaries for the intercept and uncertain fixed form covariates. "sigma2Sum" and "shrinkageSum" contain the posterior summaries for the regression variance and the shrinkage factor, respectively. The summaries are always the median, mean, lower and upper credible bounds for the coefficients.

## Author(s)

Daniel Sabanl'es Bovl'e

## See Also

summary.BayesMfp

## Examples

```
## generate a BmaSamples object
set.seed(19)
x1 <- rnorm(n=15)
x2 <- rbinom(n=15, size=20, prob=0.5)
x3 <- rexp(n=15)
y<- rt(n=15, df=2)
test <- BayesMfp(y ~ bfp (x2, max = 4) + uc (x1 + x3), nModels = 100,
    method="exhaustive")
testBma <- BmaSamples(test)
## look at the summary
summary(testBma)
## and its structure
str(summary(testBma))
```


## Index

```
* datasets
    ozone, 17
* htest
    empiricalHpd,12
    inclusionProbs,16
    scrBesag, 23
    scrHpd, 24
* methods
    as.data.frame.BayesMfp,2
    BayesMfp Methods,6
    BmaSamples Methods,11
    Extract.BayesMfp,13
    predict.BayesMfp,21
    predict.BmaSamples, 22
    Summary of BayesMfp object, 25
    Summary of BmaSamples object, 27
* multivariate
    scrHpd, 24
* regression
    BayesMfp, 3
    bmaPredict,7
    BmaSamples,9
    getPosteriorParms, 15
    plotCurveEstimate, 18
* utilities
    findModel, 14
    posteriors,20
[.BayesMfp,5
[.BayesMfp (Extract.BayesMfp), 13
as.data.frame.BayesMfp, 2, 25
BayesMfp, 2, 3, 6-10, 13-16, 18-21, 25, 26
BayesMfp Methods, 6,6
bfp,4
bfp (BayesMfp), 3
bmaPredict, 7, 21-23
BmaSamples, 6, 8, 9, 11, 18, 19, 22, 26, 27
BmaSamples Methods, 7, 8, 10,11
```

empiricalHpd, 12, 25
Extract.BayesMfp, 13
findModel, 14
fitted. BayesMfp (BayesMfp Methods), 6
fitted.BmaSamples (BmaSamples Methods), 11
getPosteriorParms, 15
inclusionProbs, 16
matplot, 18
ozone, 17
plotCurveEstimate, 18
posteriors, 20
predict.BayesMfp, 21
predict.BmaSamples, 11, 22, 22
print.BayesMfp (BayesMfp Methods), 6
print.BmaSamples (BmaSamples Methods),
11
print.predict.BmaSamples
(predict.BmaSamples), 22
print.summary. BayesMfp (Summary of BayesMfp object), 25
print. summary.BmaSamples (Summary of BmaSamples object), 27
residuals.BayesMfp (BayesMfp Methods), 6
residuals.BmaSamples (BmaSamples
Methods), 11
scrBesag, 23
scrHpd, 24
summary, 18
Summary of BayesMfp object, 25
Summary of BmaSamples object, 27
summary.BayesMfp, 3, 25, 26, 28
summary.BayesMfp (Summary of BayesMfp object), 25
summary.BmaSamples, 11, 26, 27
summary.BmaSamples (Summary of
BmaSamples object), 27
uc, 4
uc (BayesMfp), 3

