
Package ‘blockcpd’
August 12, 2022

Title Change Point Detection for Multiple Aligned Independent Time
Series

Version 1.0.0

Description Implementation of statistical models based on
regularized likelihood for offline change point detection on multiple
aligned independent time series. It detects changes in
parameters for the specified family for the series as group or block.
As a reference for the method, see Prates et al. (2021) <arXiv:2111.10187>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.1

Imports Rcpp, graphics, stats

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Lucas Prates [aut, cre] (<https://orcid.org/0000-0002-6431-8232>),
Florencia Leonardi [aut] (<https://orcid.org/0000-0002-0299-0680>)

Maintainer Lucas Prates <lucasdelprates@gmail.com>

Repository CRAN

Date/Publication 2022-08-12 11:20:06 UTC

R topics documented:
check_input . 2
compare_model . 2
compute_dynseg . 3
compute_hausdorff . 4
compute_hierseg . 4
compute_jaccard . 5

1

https://arxiv.org/abs/2111.10187
https://orcid.org/0000-0002-6431-8232
https://orcid.org/0000-0002-0299-0680

2 compare_model

compute_rand . 6
compute_symdiff . 6
confidence_plot . 7
fit_blockcpd . 8
plot.blockcpd . 10
plot.frv . 11
rcpd . 11
select_frv . 13
toy_regularization . 14

Index 15

check_input Checks input from caller

Description

Performs a sanity check on the inputs from caller. It stops execution and outputs an error message
if arguments are not in conformity with caller method.

Usage

check_input(caller, args_to_check)

Arguments

caller name of the function that called the check_input.

args_to_check list of arguments that will be checked.

compare_model Compare or evaluate model performance with respect to other model
or ground truth

Description

Compares or evaluates model estimated change point set against another model or ground truth.
The comparison is made using common metrics to compare clusters. The metrics provided are

• "hausdorff": Hausdorff Distance metric;

• "rand": Rand Index ;

• "symdiff": Symmetric difference metric;

• "jaccard": Jaccard similarity index.

Usage

compare_model(model1, model2, ncol = NULL)

compute_dynseg 3

Arguments

model1 The first blockcpd object or list of sorted integers representing the change point
set.

model2 The second blockcpd object or list of sorted integers representing the change
point set.

ncol The number of variables which the model was fitted on. Only needs to be passed
if both arguments are change point sets instead of a blockcpd object.

Value

Returns a list containing four metrics:

• "haus" Hausdorff distance;

• "rand" Rand index;

• "symdiff" Symmetric difference;

• "jaccard" Jaccard index.

Examples

model1 = fit_blockcpd(c(0, 1, 0, 1), lambda = 0)
model2 = fit_blockcpd(c(0, 1, 0, 1), lambda = Inf)
comparison = compare_model(model1, model2)
change-point sets can also be passed directly with ncol
compare_model(c(1,2,3,4), c(3), 10)

compute_dynseg Block segmentation using dynamical programming

Description

Computes the exact solution of the regularized loss optimization problem, providing change point
locations and the parameters of each blocks. Should be called within fit_blockcpd

Usage

compute_dynseg(
suff_stats,
family,
lambda = 1,
nrow,
ncol,
min_block_size = min_block_size,
max_blocks = ncol - 1,
pen_func = bic_loss

)

4 compute_hierseg

Arguments

suff_stats Sufficient statistics to perform change point analysis

family The name of the family used to fit the model

lambda Penalization constant

nrow Number of rows or samples

ncol Number of columns or variables

min_block_size Minimum block size allowed. Default is 0, and the value must be smaller or
equal to ncol.

max_blocks Threshold on the number of block segments to fit the model. Set low values for
this parameters if having performance issues on large data sets.

pen_func A penalization function defined i integer intervals The function signature should
be pen(left_index, right_index, nrow, ncol), where the left_index:right_index is
the integer interval, nrow the sample size and ncol the number of variables/columns.

compute_hausdorff Hausdorff distance metric

Description

Computes the Hausdorff distance between change point sets.

Usage

compute_hausdorff(cp1, cp2)

Arguments

cp1 Change point set for model 1 or true change point set.

cp2 Change point set for model 2 or true change point set.

compute_hierseg Block segmentation using hierarchical algorithm

Description

Uses binary splitting to obtain a greedy solution to the regularized loss optimization problem.
Should be called within fit_blockcpd

compute_jaccard 5

Usage

compute_hierseg(
suff_stats,
family,
lambda = 1,
nrow,
ncol,
pen_func = bic_loss,
min_block_size = min_block_size,
max_blocks = NULL

)

Arguments

suff_stats Sufficient statistics to perform change point analysis

family The name of the family used to fit the model

lambda Penalization constant

nrow Number of rows or samples

ncol Number of columns or variables

pen_func A penalization function defined i integer intervals The function signature should
be pen(left_index, right_index, nrow, ncol), where the left_index:right_index is
the integer interval, nrow the sample size and ncol the number of variables/columns.

min_block_size Minimum block size allowed. Default is 0, and the value must be smaller or
equal to ncol.

max_blocks Threshold on the number of block segments to fit the model. Set low values for
this parameters if having performance issues on large data sets.

compute_jaccard Jaccard’s Index metric

Description

Computes the Jaccard index between two change point detection sets

Usage

compute_jaccard(cp1, cp2)

Arguments

cp1 Change point set for model 1 or true change point set.

cp2 Change point set for model 2 or true change point set.

6 compute_symdiff

compute_rand Rand Index Function for change point detection

Description

Computes the rand Index (non-adjusted) for the change point sets. A specific equation for change
point detection is used to make the computation faster. Proof of correctness of the equation is given
in the dissertation.

Usage

compute_rand(cp1, cp2, m)

Arguments

cp1 Change point set for model 1 or true change point set.

cp2 Change point set for model 2 or true change point set.

m The size of the vector array.

compute_symdiff Symmetric difference metric

Description

Computes the size of the symmetric difference between two change point detection sets

Usage

compute_symdiff(cp1, cp2)

Arguments

cp1 Change point set for model 1 or true change point set.

cp2 Change point set for model 2 or true change point set.

confidence_plot 7

confidence_plot Plot to check reported change-points

Description

Plots the estimates of how likely it is for the model to detect a change at any given point. True
change-points should have confidence near $100%$, while non change-points should have a confi-
dence near $0%$. It might also be difficult to detect a true change-point at the given sample size.
In this case, it should fluctuate in the middle.

Usage

confidence_plot(
model,
scale = "percentage",
index_values = NULL,
index_variable_name = "Index",
pkg = "base"

)

Arguments

model A blockcpd model object.

scale A string describing the scale which the y-scale should is plotted. Possible values
are "percentage", "probability" and "frequency".

index_values A numerical vector of size ncol that contains the values of the the variable cor-
responding to the change points.

index_variable_name

Name of the variable segmented.

pkg Graphical package to be used for plotting. Current values are "base".

Value

No return value.

Examples

td = rcpd(nrow = 10, ncol = 10)
model = fit_blockcpd(td$data_matrix, bootstrap = TRUE)
confidence_plot(model)

8 fit_blockcpd

fit_blockcpd Fits a blockcpd model

Description

Fits a blockcpd model to find the best segmentation of the data into blocks. Variables in each block
have the same distribution and parameter, and consecutive blocks have different parameters.

Usage

fit_blockcpd(
data_matrix,
method = "hierseg",
family = "bernoulli",
lambda = 1,
pen_func = bic_loss,
min_block_size = 1L,
max_blocks = NULL,
bootstrap = FALSE,
bootstrap_samples = 100L,
bootstrap_progress = FALSE,
skip_input_check = FALSE

)

Arguments

data_matrix Data frame or matrix containing the data set to be segmented. There is no verifi-
cation if the entries correspond to the model specified by the "family" argument,
such as entries different than 0, 1 or NA for the bernoulli family.

method The method that will be used to fit the model. The current implemented models
are:

• [hierseg] Hierarchical segmentation, also known as binary segmentation;
• [dynseg] Dynamical programming segmentation.

family The name of the family to detect changes in parameters. Should be passed as a
string. The families currently implemented are:

• "bernoulli": The model assumes that data comes from a Bernoulli distri-
bution. For each block, the algorithm estimates the probability paramater.
Each entry should be binary.

• "normal": The model assumes data comes fro ma Normal distribution with
unknown mean and variance. For each block, the algorithms estimates the
mean and variance parameter. Each entry should be numeric.

• "binaryMarkov": The model assumes that data comes from two states (0,
1) Markov Chain. For each block, the algorithm estimates the 2x2 transi-
tion matrix. Each entry should be binary. At the boundary of the blocks,
the transition is defined using the parameters of the next (new) block. For

fit_blockcpd 9

instance, consider a block defined from a to c, followed a block from c +
1 to b (including the extremes). By definition, c is a change point, and the
transition from X_c to X_c + 1 is defined by the parameters on c + 1 to b.

• "exponential": The model assumes that data comes from an Exponential
distribution. For each block, the algorithm estimates the scale parameter,
that is, the inverse of the rate. Each entry should be numeric and positive.

• "poisson": The model assumes that data comes from a Poisson distribu-
tion For each block, the algorithm estimates the rate paramater. Each entry
should an positive integer.

lambda The penalization constant. Must be a unique non-negative numeric value.
pen_func Regularization function used for fitting, with default as the BIC. For user speci-

fied functions, check the template in the regularization regularization.rd file.
min_block_size Minimum block size allowed. Default is 1, and the value must be smaller or

equal to ncol.
max_blocks An integer greater than 0 that specify the maximum number of blocks fitted by

the algorithm. It is only used if dynseg is specified in the "method" argument.
bootstrap A flag to decide if bootstrap computations for the estimation of the probability

of each index being detected as a change point. It also provides a sample of
all the metrics implemented computed with respect to the final change point set
estimated.

bootstrap_samples

Number of bootstrap samples.
bootstrap_progress

Flag for bootstrap progress printing.
skip_input_check

Flag indicating if input checking should be skipped.

Value

The function returns a S3 object of the type blockcpd.

• "changepoints" a list containing the set of estimated change points;
• "parameters" a list containing the estimated parameters for each block. In the case of multiple

parameters, it provides a list of lists, where each sub list refers to the parameter that names the
list;

• "loss" the final loss evaluated on the entire data set for the returned model;
• "neg_loglike" The negative log likelihood of the model;
• "ncp" number of change points estimated;
• "metadata" Arguments passed to fit the model;
• "bootstrap_info" if bootstrap argument is true, this contains a list of the metrics for each boot-

strap sample, and contains the estimated probability of each index being detected as a change
point;

Examples

fit_blockcpd(c(0, 1, 2, 10, 11), family = "normal", lambda = 1) # single series
fit_blockcpd(matrix(c(0, 1, 0, 0, 0, 0, 1, 1), nrow = 2)) # 2 binary series

10 plot.blockcpd

plot.blockcpd Plot for blockcpd object

Description

Plots the selected parameters in a blocked fashion.

Usage

S3 method for class 'blockcpd'
plot(
x,
...,
parameter = NULL,
index_values = NULL,
index_variable_name = "Index",
pkg = "base"

)

Arguments

x A fitted blockcpd S3 object provided by the fit_blockcpd function.

... Other parameters

parameter The parameter of the family for which to plot the blocked

index_values A numerical vector of size ncol that contains the values of the the variable cor-
responding to the change points. For example, if your segmented variable cor-
responds to a time samples from 0 to 150 sampled each 15 seconds, the model
treats these as values from 1 to 11. To plot on the variable scale, pass the argu-
ment ’index_values = seq(0, 150, 15)’.

index_variable_name

Name of the variable segmented.

pkg Graphical package to be used for plotting. Current values are "base".

Value

No return value.

Examples

plot(fit_blockcpd(c(1,2,3, 4), family = "exponential", lambda = 0))

plot.frv 11

plot.frv Plot for graphical selection of the constant

Description

Plots the output of a frv object. It shows how the number of change-points estimated by the given
model vary with the regularization constant lambda. Graphical inspection can be used to choose a
proper value for the constant. The suggestion is to pick a value in which the curve starts to "flat-out"

Usage

S3 method for class 'frv'
plot(x, ..., pkg = "base")

Arguments

x An object returned from the function select_frv

... Other parameters

pkg Graphical package to be used for plotting. Current values are "base".

Value

No return value.

Examples

td = rcpd(nrow = 10, ncol = 10)
frv = select_frv(td$data_matrix)
plot(frv)

rcpd Sampler for the CPD Block Model

Description

Creates a nrow × ncol matrix with ncp change points. In between change points, the random
variables are i.i.d. sampled from the given family and parameters

12 rcpd

Usage

rcpd(
nrow = 100,
ncol = 50,
ncp = 1,
family = "bernoulli",
parameters = NULL,
changepoints = NULL,
prob_NA = 0

)

Arguments

nrow Number of rows, or sample size, of the data.

ncol Number of columns of data matrix. It is the number of variables for each sample.

ncp Number of change points. The number of blocks is ncp + 1. It is overridden if
changepoints is non-NULL.

family The family model to be sampled. The families currently implemented are:

• bernoulli: Sample independent Bernoullis with probability parameter of the
block

• normal: Sample independent Normal with mean and variance specified by
the block.

• binaryMarkov: Samples a two state Markov Chain process with transition
matrix defined by the block.

• exponential: Sample independent Exponential with scale parameter defined
by the block.

• poisson: Sample independent Poisson with rate parameter defined by the
block.

parameters List of parameters containing ncp + 1 dimensional parameter vectors of each
block. If NULL, the parameters are sampled randomly.

changepoints A sorted vector of size ncp containing integers as change point locations. The
change points are between 1 and ncol − 1. If NULL, the change points are
sampled uniformly in [1, ncol − 1].

prob_NA Probability of each entry of being NA. Default is 0.

Value

Returns a list containing 3 elements: #’

• "data_matrix" A matrix containing the data.

• "changepoints" A numeric vector containing the change-point locations

• "parameters" A list whose keys are the parameters names and the values are vectors containing
the parameter for each block.

select_frv 13

Examples

td = rcpd(nrow = 20, ncol = 10) # 20 Bernoulli series of size 10 with 1 change-point
td = rcpd(nrow = 10, ncol = 100, ncp = 5,

family = "normal") # 10 normal series of size 100 with 5 change-points
td = rcpd(nrow = 1000, ncol = 100, changepoints = c(10, 40, 79)) # choosing change-points locations
td = rcpd(nrow = 100, ncol = 15, ncp = 2, family = "normal",

parameters = list(mean = c(1, 2, 3), var = c(4, 5, 6))) # choosing parameters

select_frv Methodology to aid choosing regularization constant

Description

Aids in the selection of the penalization constants, possibly providing an automatic optimal value. It
analyses how the number of change-points vary with the chosen grid of penalization constant. It ap-
plied the First Repeated Value (FRV) methodology to select the regularization constant lambda. It is
similar to the Elbow method used in clustering, or the CROPS algorithm in change-point detection.
The values of the constant range from ’lambda_left’ to ’lambda_right’, increasing by ’step’. For
each value, the function fit_blockcpd is run with arguments ’model_args’. An automatic suggestion
for the penalization, number of change-points and model is given automatically. Optionally, The
user can call the plot function to the output of this method so he can use an elbow plot like graphical
inspection to select the constant value.

Usage

select_frv(
data_matrix,
lambda_left = 0,
lambda_right = 10,
step = "automatic",
model_args = list()

)

Arguments

data_matrix Data frame or matrix containing the data set to be segmented.
lambda_left Left most value of lambda. Must be non-negative.
lambda_right Right most value of lambda. Must be non-negative and greater than lambda_left.
step Value by which lambda will be increased. Must be greater than 0, The default

is ’automatic’, which consists of a penalization of 1/sqrt(log(n)), where n is the
number of samples (rows).

model_args A list with argument values for the fit_blockcpd function. The list keys must be
the arguments names. It must not contain the argument ’lambda’ or ’data_matrix’.

Value

Returns a frv object containing the suggested values and caller parameters.

14 toy_regularization

toy_regularization Implements the regularization functions used in the estimation

Description

The estimator in this package computes the optimum of −l(C, p)+λ∗R(leftIndex, rightIndex, nrow, ncol),
where l is the log likelihood of the family, lambda is the penalization constant and R is the regu-
larization function. The user can create his own regularization function and pass as an argument to
fit_blockcpd. It should have four arguments, in the following order: left_index, right_index, nrow
and ncol. Each argument is explained in the parameter section. If the function depends on leftIn-
dex and rightIndex, it will be non-homogeneous, which might be interesting in some applications.
The package implements some functions as an example, but uses only bic_loss as the default. The
algorithm is consistent as long as the the regularization is bounded by a constant.

Usage

toy_regularization(left_index, right_index, nrow, ncol)

Arguments

left_index First index of the interval

right_index Last index of the interval

nrow Number of rows/signals/series

ncol Number of columns/variables

Examples

my_reg <- function(leftIndex, rightIndex, nrow, ncol){
block_size = (rightIndex - leftIndex + 1)
return(log(nrow*ncol)*(1/block_size))

}

Index

check_input, 2
compare_model, 2
compute_dynseg, 3
compute_hausdorff, 4
compute_hierseg, 4
compute_jaccard, 5
compute_rand, 6
compute_symdiff, 6
confidence_plot, 7

dynseg, 8

fit_blockcpd, 3, 4, 8, 10, 13, 14

hierseg, 8

plot.blockcpd, 10
plot.frv, 11

rcpd, 11
regularization, 9

select_frv, 11, 13

toy_regularization, 14

15

	check_input
	compare_model
	compute_dynseg
	compute_hausdorff
	compute_hierseg
	compute_jaccard
	compute_rand
	compute_symdiff
	confidence_plot
	fit_blockcpd
	plot.blockcpd
	plot.frv
	rcpd
	select_frv
	toy_regularization
	Index

