Package 'bpbounds'

January 21, 2020

Title Nonparametric Bounds for the Average Causal Effect Due to Balke and Pearl and Extensions

Version 0.1.4

Description Implementation of the nonparametric bounds for the average causal effect under an instrumental variable model by Balke and Pearl (Bounds on Treatment Effects from Studies with Imperfect Compliance, JASA, 1997, 92, 439, 1171-1176). The package can calculate bounds for a binary outcome, a binary treatment/phenotype, and an instrument with either 2 or 3 categories. The package implements bounds for situations where these 3 variables are measured in the same dataset (trivariate data) or where the outcome and instrument are measured in one study and the treatment/phenotype and instrument are measured in another study (bivariate data).

Depends R (>= 3.5.0)
Imports methods
License GPL-3
Encoding UTF-8
LazyData true
Suggests dplyr, testthat, knitr, rmarkdown, tidyr, shiny
VignetteBuilder knitr
RoxygenNote 7.0.2
URL https://github.com/remlapmot/bpbounds
BugReports https://github.com/remlapmot/bpbounds/issues
NeedsCompilation no
Author Tom Palmer [aut, cre] (https://orcid.org/0000-0003-4655-4511),
Roland Ramsahai [aut] (https://orcid.org/0000-0002-7349-1977),
Vanessa Didelez [aut] (https://orcid.org/0000-0001-8587-7706),
Nuala Sheehan [aut] (https://orcid.org/0000-0001-9094-2605)
Maintainer Tom Palmer remlapmot@hotmail.com
Repository CRAN
Date/Publication 2020-01-21 11:10:03 UTC

R topics documented:

bpbounds runExample	
Index	
bpbounds-package	bpbounds: Nonparametric bounds for the Average Causal Effect due to Balke and Pearl and extensions

Description

This package implements the nonparametric bounds for the average causal effect defined by Balke and Pearl, Bounds on Treatment Effects from Studies with Imperfect Compliance, JASA, 1997; and some extensions.

Details

The functions implement bounds for the situation where each of the outcome, treatment/phenotype, and instrumental variable are binary; and additionally for when the instrument has 3 categories (e.g. a single genotype under an additive model in a Mendelian randomization study).

The package implements bounds for when the three variables are measured in the same study (trivariate data) and when the outcome and instrument are measured in one study and the treatment/phenotype and instrument in another sample (bivariate/two sample data).

Nonparametric Bounds for the Average Causal Effect due to Balke and Pearl.

Description

Nonparametric Bounds for the Average Causal Effect due to Balke and Pearl.

Usage

bpbounds(p, $t=N U L L, ~ f m t=" t r i v a r i a t e ")$

Arguments

p
t
fmt A character string which sould be either "bivariate" (i.e. X, Z in one dataset and Y, Z in another dataset) or "trivariate" ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ in the same dataset).

Value

List with the following elements:
fmt whether the data is bivariate or trivariate
nzcats 2 or 3 , the no. instrument categories
inequality Logical, indicating whether the IV inquality is satisfied
bplb Lower bound of ACE
bpub Upper bound of ACE
bplower Vector of lower bound probabilities
bpupper Vector of upper bound probabilities
p11low Lower bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=1))$
p11upp Upper bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=1))$
p10low Lower bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=0))$
p10upp Upper bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=0))$
p11lower Vector of probabilities for lower bound of $\mathrm{P}(\mathrm{Y}=1 \operatorname{ldo}(\mathrm{X}=1))$
p11upper Vector of probabilities for upper bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=1))$
p10lower Vector of probabilities for lower bound of $\mathrm{P}(\mathrm{Y}=1 \operatorname{ldo}(\mathrm{X}=0))$
p10upper Vector of probabilities for upper bound of $\mathrm{P}(\mathrm{Y}=1 \operatorname{ldo}(\mathrm{X}=0))$
crrlb Lower bound of CRR
crrub Upper bound of CRR
monoinequality Logical, indicating whether the monoticity inequality is satisfied
monobplb Lower bound of ACE assuming monotonicity
monobpub Upper bound of ACE assuming monotonicity
monobplower Vector of probabilities for lower bound of ACE assuming monotonicity
monobpupper Vector of probabilities for upper bound of ACE assuming monotonicity
monop11low Lower bound of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{do}(\mathrm{X}=1))$ assuming monotonicity
monop11upp Upper bound of $\mathrm{P}(\mathrm{Y}=1 \mid \operatorname{do}(\mathrm{X}=1))$ assuming monotonicity
monop10low Lower bound of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{do}(\mathrm{X}=0))$ assuming monotonicity
monop10upp Upper bound of $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{do}(\mathrm{X}=0))$ assuming monotonicity
monop11lower Vector for corresponding bound above
monop11upper Vector for corresponding bound above
monop10lower Vector for corresponding bound above
monop10upper Vector for corresponding bound above
monocrrlb Lower bound of CRR assuming monotonicity
monocrrub Upper bound of CRR assuming monotonicity

Examples

```
# Vitamin A example, using cell counts
require(tidyr)
require(bpbounds)
tab1dat <- data.frame(
    z = c(0, 0, 1, 1, 1, 1, 0, 0),
    x = c(0, 0, 0, 0, 1, 1, 1, 1),
    y = c(0, 1, 0, 1, 0, 1, 0, 1),
    freq = c(74, 11514, 34, 2385, 12, 9663, 0, 0)
)
tab1inddat = uncount(tab1dat, freq)
xt = xtabs(~ x + y + z, data = tab1inddat)
p = prop.table(xt, margin = 3)
bpres = bpbounds(p)
sbpres = summary(bpres)
print(sbpres)
```

```
runExample
    \# Vitamin A example, using conditional probabilities
    require(bpbounds)
    \(c p=c(.0064,0, .9936,0, .0028, .001, .1972, .799)\)
    tabp \(=\) as.table(array \((\)
        cp ,
        \(\operatorname{dim}=c(2,2,2)\),
        dimnames \(=\) list \((\)
        \(x=c(0,1)\),
        \(y=c(0,1)\),
        \(z=c(0,1)\)
        )
    ))
    bpbounds(tabp)
```

 runExample Run Shiny App demonstrating the package

Description

Run Shiny App demonstrating the package

Usage

runExample(...)

Arguments

... passed to shiny:: runApp(), e.g. port, launch.browser

Examples

```
if (interactive()) {
    bpbounds::runExample()
}
```


Index

bpbounds, 2
bpbounds-package, 2
runExample, 5

