Package 'brlrmr'

September 11, 2019
Title Bias Reduction with Missing Binary Response

Version 0.1.7

Date 2019-09-09
Description Provides two main functions, $\mathrm{il()}$ and fil(). The il() function implements the EM algorithm developed by Ibrahim and Lipsitz (1996) DOI:10.2307/2533068 to estimate the parameters of a logistic regression model with the missing response when the missing data mechanism is nonignorable. The fil() function implements the algorithm pro-
posed by Maity et. al. (2017+) https://github.com/arnabkrmaity/brlrmr to reduce the bias produced by the method of Ibrahim and Lipsitz (1996) DOI:10.2307/2533068.
Depends R (>=2.10)
Imports boot, brglm, MASS, profileModel, Rcpp, stats
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Author Arnab Maity [aut, cre],
Vivek Pradhan [aut],
Ujjwal Das [aut]
Maintainer Arnab Maity arnab.maity@pfizer.com
Repository CRAN
Date/Publication 2019-09-10 22:50:21 UTC

R topics documented:

em.fil 2
em.fil.interaction 3
em.il 3
em.il.interaction 4
fil 5
il 7
incontinence . 9
nhanes . 10
simulated.data . 10

Index

```
em.fil em.fi
```


Description

It is called by the main function fil and is for internal use.

Usage

em.fil(parameter, X, full.missing.data, observed.data, full.data, family)

Arguments

parameter \quad The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.

X
The design matrix with the intercept column.
full.missing.data
The augmented response with design matrix and missing indicator 1 for missing data.
observed.data The observed response with design matrix and missing indicator 0 for observed data.
full.data The observed response, augmented response with corresponding design matrix and missing indicator 0 for observed data and 1 for missing data.
family as in glm. brlrmr currently supports only the "binomial" family with links

References

Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.

```
em.fil.interaction em.fl.interaction
```


Description

It is called by the main function fil and is for internal use.

Usage

em.fil.interaction(parameter, X, full.missing.data, observed.data, full.data, k, family)

Arguments

parameter \quad The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.

X
The design matrix with the intercept column.
full.missing.data
The augmented response with design matrix and missing indicator 1 for missing data.
observed.data The observed response with design matrix and missing indicator 0 for observed data.
full.data The observed response, augmented response with corresponding design matrix and missing indicator 0 for observed data and 1 for missing data.
$\mathrm{k} \quad$ If interaction is present in the missing data model, then the k is the column number of covariate matrix which has interaction with the response.
family as in glm. brlrmr currently supports only the "binomial" family with links

References

Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.

```
em.il em.il
```


Description

It is called by the main function fil and is for internal use.

Usage

em.il(parameter, X, full.missing.data, observed.data, full.data, family)

Arguments

parameter \quad The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.
$X \quad$ The design matrix with the intercept column.
full.missing.data
The augmented response with design matrix and missing indicator 1 for missing data.
observed.data The observed response with design matrix and missing indicator 0 for observed data.
full.data The observed response, augmented response with corresponding design matrix and missing indicator 0 for observed data and 1 for missing data.
family as in glm. brlrmr currently supports only the "binomial" family with links

References

Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.

```
em.il.interaction
```


Description

It is called by the main function fil and is for internal use.

Usage

em.il.interaction(parameter, X, full.missing.data, observed.data, full.data, k, family)

Arguments

parameter \quad The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.

X
The design matrix with the intercept column.
full.missing.data
The augmented response with design matrix and missing indicator 1 for missing data.
observed.data The observed response with design matrix and missing indicator 0 for observed data.
full.data The observed response, augmented response with corresponding design matrix and missing indicator 0 for observed data and 1 for missing data.
$\mathrm{k} \quad$ If interaction is present in the missing data model, then the k is the column number of covariate matrix which has interaction with the response.
family as in glm. brlrmr currently supports only the "binomial" family with links

References

Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.
fil fil

Description

This provides the estimates using IL method and FIL method as described in the reference.

Usage

fil(formula, data, parameter = NULL, family = binomial, alpha = 0.05, interaction = FALSE, k = NULL, na.action)

Arguments

formula as in lm. The missing values of response are NA.
data as in lm. The first column of data is binary missing response. The missing observations are denoted by NA. The rest of the columns are covariates or explanatory variables.
parameter \quad The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.
family as in glm. brlrmr currently supports only the "binomial" family with links.
alpha This is used for upper 100(1-alpha)\% point of standard Normal distribution. The default is 1.96 .
interaction TRUE or FALSE, whether to consider interaction in the missing data model. Currenly only one intercation between response and covariates is supported. FALSE by default.
$\begin{array}{ll}\mathrm{k} & \begin{array}{l}\text { Which covariate has interaction with response. Takes integer values. User must } \\ \text { assign a value if interaction = TRUE. }\end{array} \\ \text { na. action } & \begin{array}{l}\text { as in lm. Always set to na.pass. Note that setting any other value to na.action will } \\ \text { remove the NA's from response and hence will break the code as this package is } \\ \text { only intended for missing response data. }\end{array}\end{array}$

Value
n number of observations.
nmissing the number of missing observations.
missing.proportion
proportion of missing observations.
beta. hat parameter estimate of logistic regression of y on x using FIL method.

beta.se.hat z.value	standard error using FIL method. Wald Z value using FIL method.
p.value	p value using FIL method.
significance.beta.firth	
	indicator output whether regressors are significant using FIL method, 1 if significant and 0 if not significant.
LCL	Lower Confidence Limits of 100(1-alpha)\% Confidence Intervals.
UCL	Upper Confidence Limits of 100(1-alpha)\% Confidence Intervals.
alpha.hat	parameter estimate due to missing model using FIL.
alpha.se.hat	standard error of the them.
$z . v a l u e . a l p h a ~$	Wald Z value for them.
p.value.alpha	p values for them.

References

Bias Reduction in Logistic Regression with Missing Responses when the Missing Data Mechanism is Nonignorable.

Examples

```
## Not run:
###############################################
########### Simulated Example ###############
###############################################
data(simulated.data) # load simulated data
# parameter definition
beta0 <- 1
beta1 <- 1
beta2 <- 1
beta3 <- 1
beta4 <- 1
# parameter definition for missing indicator
alpha0 <- -1.1
alpha1 <- -1
alpha2 <- 1
alpha3 <- 1
alpha4 <- 1
alpha5 <- -1
parameter <- c(beta0, beta1, beta2, beta3, beta4,
                        alpha0, alpha1, alpha2, alpha3, alpha4, alpha5)
fil(y ~ x1 + x2 + x3 + x4, data = simulated.data, parameter,
family = binomial(link = "logit"), na.action = na.pass)
## End(Not run)
```

```
###############################################
##### Real data example with separation #####
##############################################
data(nhanes) # load nhanes data
fil(hyp ~ age2 + age3, data = nhanes, family = binomial(link = "logit"), na.action = na.pass)
data(incontinence) # load nhanes data
fil(y ~ x1 + x2 + x3, data = incontinence, family = binomial(link = "logit"), na.action = na.pass)
```

 il il

Description

This provides the estimates using IL method as described in the reference.

Usage

il(formula, data, parameter = NULL, family = binomial, alpha = 0.05, interaction = FALSE, k = NULL, na.action)

Arguments

formula	as in $1 m$. The missing values of response are NA.
data	as in lm. The first column of data is binary missing response. The missing obser- vations are denoted by NA. The rest of the columns are covariates or explanatory variables.
parameter	The starting values of the parameters as (β, α) where β is the parameters of original model and α is the for the missing data model.
family	as in glm. brlrmr currently supports only the "binomial" family with links.
alpha	This is used for upper 100(1 - alpha) \% point of standard Normal distribution. The default is 1.96.
interaction	TRUE or FALSE, whether to consider interaction in the missing data model. Currenly only one intercation between response and covariates is supported. FALSE by default.
na.action	Which covariate has interaction with response. Takes integer values. User must assign a value if interaction = TRUE.
as in lm. Always set to na.pass. Note that setting any other value to na.action will	
remove the NA's from response and hence will break the code as this package is	
only intended for missing response data.	

Value

n	number of observations.
nmissing	the number of missing observations.
missing.proportion	
	proportion of missing observations.
beta.hat	parameter estimate of logsitic regression of y on x using IL method.
beta.se.hat	standard error using IL method.
z.value	Wald Z value using IL method.
p.value	p value using IL method.
significance.beta	
	is indicator output whether regressors are significant using IL method, 1 if significant and 0 if not significant.
LCL	Lower Confidence Limits of 100(1-alpha)\% Confidence Intervals.
UCL	Upper Confidence Limits of 100(1-alpha)\% Confidence Intervals.
alpha.hat	parameter estimate due to missing model using IL.
alpha.se.hat	standard error of the them.
z.value.alpha	Wald Z value for them.
p.value.alpha	p values for them.
sep	separation indicator $=1$ if separation, $=0$ otherwise

References

Ibrahim, J. G. and Lipsitz, S. R. (1996). Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics, 52:1071-1078.

Examples

```
## Not run:
#############################################
########### Simulated Example ###############
#############################################
data(simulated.data) # load simulated data
# parameter definition
beta0 <- 1
beta1 <- 1
beta2 <- 1
beta3 <- 1
beta4 <- 1
# parameter definition for missing indicator
alpha0 <- -1.1
alpha1 <- -1
alpha2 <- 1
alpha3 <- 1
alpha4 <- 1
```

```
alpha5 <- -1
parameter <- c(beta0, beta1, beta2, beta3, beta4,
                alpha0, alpha1, alpha2, alpha3, alpha4, alpha5)
il(y ~ x1 + x2 + x3 + x4, data = simulated.data, parameter,
family = binomial(link = "logit"), na.action = na.pass)
## End(Not run)
## Not run:
##############################################
##### Real data example with separation #####
##############################################
data(nhanes) # load nhanes data
il(hyp ~ age2 + age3, data = nhanes, family = binomial(link = "logit"), na.action = na.pass)
# IL method encounters separation
## End(Not run)
```

incontinence Incontinence example.

Description

A urinary incontinence study.

Usage

incontinence

Format

A data frame with 21 observations on the following 4 variables:
y Response ($1=$ continent, $0=$ otherwise)
$\mathbf{x 1}$ Lower urinary tract measure
$\mathbf{x} 2$ Lower urinary tract measure
x3 Lower urinary tract measure

Source

Heinze, G. (2006). A comparative investigation of methods for logistic regression with seperated or nearly separated data. Statistics in Medicine, 25:4216-4226.

```
    nhanes Subset of original NHANES data used in mice package.
```


Description

A small data set with missing values.

Usage

nhanes

Format

A data frame with 25 observations on the following 2 variables:
hyp Hypertensive ($0=$ no, $1=$ yes)
age 2 Age group ($1=40-59,0=$ otherwise $)$
age3 Age group $(1=60+, 0=$ otherwise $)$

Source

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman \& Hall. Table 6.14 .
simulated.data We simulate this data for the purpose of illustration of the package

Description

A dataset containing the 100 observations and 4 covariates. The covariates are generated from standard normal distribution. The missing binary response is generated using the simulation process as described in the reference.

Usage

simulated.data

Format

A data frame with 100 observations with 28 missing responses:

Index

```
*Topic datasets
    incontinence, }
    nhanes, 10
    simulated.data,10
em.fil,2
em.fil.interaction, 3
em.il, 3
em.il.interaction,4
fil,5
glm, 2-5,7
il,7
incontinence, }
lm, 5, 7
nhanes, 10
simulated.data,10
```

