This vignette unpacks how to find interesting individuals.
Let’s say we calculate a slope for each individual key
, using keys_slope()
:
<- key_slope(wages, ln_wages ~ xp)
wages_slope
wages_slope#> # A tibble: 888 × 3
#> id .intercept .slope_xp
#> <int> <dbl> <dbl>
#> 1 31 1.41 0.101
#> 2 36 2.04 0.0588
#> 3 53 2.29 -0.358
#> 4 122 1.93 0.0374
#> 5 134 2.03 0.0831
#> 6 145 1.59 0.0469
#> 7 155 1.66 0.0867
#> 8 173 1.61 0.100
#> 9 206 1.73 0.180
#> 10 207 1.62 0.0884
#> # … with 878 more rows
This is neat! But now we want to know those keys
that are nearest to some set of summary statistics of the slope. By nearest here we mean which values have the smallest numerical difference.
Let’s say the five number summary:
summary(wages_slope$.slope_xp)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> -4.57692 -0.00764 0.04796 0.06235 0.09447 13.21569 38
If want to find those individuals that have slopes near these values.
We can do this using keys_near()
, which returns those nearest to some summary statistics. In this case, it is the five number summary. In the next section we describe how you can provide your own named list of functions to use.
<- wages_slope %>%
wages_slope_near keys_near(key = id,
var = .slope_xp)
wages_slope_near#> # A tibble: 6 × 5
#> id .slope_xp stat stat_value stat_diff
#> <int> <dbl> <fct> <dbl> <dbl>
#> 1 2305 0.0480 med 0.0480 0.0000498
#> 2 2594 -0.00768 q_25 -0.00769 0.0000127
#> 3 7918 -4.58 min -4.58 0
#> 4 10380 0.0479 med 0.0480 0.0000498
#> 5 12178 0.0946 q_75 0.0947 0.0000579
#> 6 12455 13.2 max 13.2 0
We can then join this information back against the data and plot those interesting individuals:
%>%
wages_slope_near left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line()
You could also, with a bit of work, show these lines against the background using gghighlight
library(gghighlight)
%>%
wages left_join(wages_slope_near, by = "id") %>%
as_tibble() %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line() +
gghighlight(!is.na(stat))
keys_near
You can specify your own list of summaries to pass to keys_near
. For example, you could create your own summaries to give a sense of range. Note that the functions here start with b_
, and are b_summaries
provided by brolgar
that have sensible defaults. You can read about them here, or with ?b_summaries
<- list(min = b_min,
l_ranges range_diff = b_range_diff,
max = b_max,
iqr = b_iqr)
%>%
wages key_slope(formula = ln_wages ~ xp) %>%
keys_near(key = id,
var = .slope_xp,
funs = l_ranges)
#> # A tibble: 4 × 5
#> id .slope_xp stat stat_value stat_diff
#> <int> <dbl> <fct> <dbl> <dbl>
#> 1 7918 -4.58 min -4.58 0
#> 2 9357 0.103 iqr 0.102 0.000139
#> 3 12455 13.2 range_diff 17.8 4.58
#> 4 12455 13.2 max 13.2 0
keys_near
If you are interested in the specifics of how keys_near()
works, this section describes how it is implemented in brolgar
.
To get the data into the right format, there are a few steps.
First, we need to get the data into a format where we have all the statistics that we are interested in, along with the id, and the statistic of interest.
We can fit a linear model for each key
in the dataset using key_slope()
.
<- key_slope(wages, ln_wages ~ xp)
wages_slope
wages_slope#> # A tibble: 888 × 3
#> id .intercept .slope_xp
#> <int> <dbl> <dbl>
#> 1 31 1.41 0.101
#> 2 36 2.04 0.0588
#> 3 53 2.29 -0.358
#> 4 122 1.93 0.0374
#> 5 134 2.03 0.0831
#> 6 145 1.59 0.0469
#> 7 155 1.66 0.0867
#> 8 173 1.61 0.100
#> 9 206 1.73 0.180
#> 10 207 1.62 0.0884
#> # … with 878 more rows
We can then perform a summary of the statistic of interest, in this case the slope.
<- wages_slope %>%
wages_slope_all_stats mutate_at(.vars = vars(.slope_xp),
.funs = list(.slope_min = b_min,
.slope_max = b_max,
.slope_median = b_median,
.slope_q1 = b_q25,
.slope_q3 = b_q75)) %>%
select(id,
starts_with(".slope"))
wages_slope_all_stats#> # A tibble: 888 × 7
#> id .slope_xp .slope_min .slope_max .slope_median .slope_q1 .slope_q3
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 31 0.101 -4.58 13.2 0.0480 -0.00769 0.0947
#> 2 36 0.0588 -4.58 13.2 0.0480 -0.00769 0.0947
#> 3 53 -0.358 -4.58 13.2 0.0480 -0.00769 0.0947
#> 4 122 0.0374 -4.58 13.2 0.0480 -0.00769 0.0947
#> 5 134 0.0831 -4.58 13.2 0.0480 -0.00769 0.0947
#> 6 145 0.0469 -4.58 13.2 0.0480 -0.00769 0.0947
#> 7 155 0.0867 -4.58 13.2 0.0480 -0.00769 0.0947
#> 8 173 0.100 -4.58 13.2 0.0480 -0.00769 0.0947
#> 9 206 0.180 -4.58 13.2 0.0480 -0.00769 0.0947
#> 10 207 0.0884 -4.58 13.2 0.0480 -0.00769 0.0947
#> # … with 878 more rows
We then need to convert this into long format
<-
wages_slope_all_stats_long %>%
wages_slope_all_stats gather(key = "stat",
value = "stat_value",
-id,
-.slope_xp)
wages_slope_all_stats_long#> # A tibble: 4,440 × 4
#> id .slope_xp stat stat_value
#> <int> <dbl> <chr> <dbl>
#> 1 31 0.101 .slope_min -4.58
#> 2 36 0.0588 .slope_min -4.58
#> 3 53 -0.358 .slope_min -4.58
#> 4 122 0.0374 .slope_min -4.58
#> 5 134 0.0831 .slope_min -4.58
#> 6 145 0.0469 .slope_min -4.58
#> 7 155 0.0867 .slope_min -4.58
#> 8 173 0.100 .slope_min -4.58
#> 9 206 0.180 .slope_min -4.58
#> 10 207 0.0884 .slope_min -4.58
#> # … with 4,430 more rows
We can then calculate the difference between each stat and the slope, .slope_xp
:
<-
stats_diff %>%
wages_slope_all_stats_long mutate(stat_diff = abs(.slope_xp - stat_value))
stats_diff#> # A tibble: 4,440 × 5
#> id .slope_xp stat stat_value stat_diff
#> <int> <dbl> <chr> <dbl> <dbl>
#> 1 31 0.101 .slope_min -4.58 4.68
#> 2 36 0.0588 .slope_min -4.58 4.64
#> 3 53 -0.358 .slope_min -4.58 4.22
#> 4 122 0.0374 .slope_min -4.58 4.61
#> 5 134 0.0831 .slope_min -4.58 4.66
#> 6 145 0.0469 .slope_min -4.58 4.62
#> 7 155 0.0867 .slope_min -4.58 4.66
#> 8 173 0.100 .slope_min -4.58 4.68
#> 9 206 0.180 .slope_min -4.58 4.76
#> 10 207 0.0884 .slope_min -4.58 4.67
#> # … with 4,430 more rows
With stats diff, we can then group by the stat
, and find return those rows with the smallest difference between the statistic and the value:
<-
top_stats_diff %>%
stats_diff group_by(stat) %>%
top_n(-1,
wt = stat_diff)
top_stats_diff#> # A tibble: 6 × 5
#> # Groups: stat [5]
#> id .slope_xp stat stat_value stat_diff
#> <int> <dbl> <chr> <dbl> <dbl>
#> 1 7918 -4.58 .slope_min -4.58 0
#> 2 12455 13.2 .slope_max 13.2 0
#> 3 2305 0.0480 .slope_median 0.0480 0.0000498
#> 4 10380 0.0479 .slope_median 0.0480 0.0000498
#> 5 2594 -0.00768 .slope_q1 -0.00769 0.0000127
#> 6 12178 0.0946 .slope_q3 0.0947 0.0000579
%>%
top_stats_diff left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line()
We can see that we get the same output using keys_near()
:
%>%
wages key_slope(ln_wages ~ xp) %>%
keys_near(key = id,
var = .slope_xp) %>%
left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line()