bst: Gradient Boosting
Functional gradient descent algorithm for a variety of convex and non-convex loss functions, for both classical and robust regression and classification problems. See Wang (2011) <doi:10.2202/1557-4679.1304>, Wang (2012) <doi:10.3414/ME11-02-0020>, Wang (2018) <doi:10.1080/10618600.2018.1424635>, Wang (2018) <doi:10.1214/18-EJS1404>.
Version: |
0.3-23 |
Imports: |
rpart, methods, foreach, doParallel, gbm |
Suggests: |
hdi, pROC, R.rsp, knitr, gdata |
Published: |
2020-11-09 |
Author: |
Zhu Wang [aut,
cre],
Torsten Hothorn [ctb] |
Maintainer: |
Zhu Wang <wangz1 at uthscsa.edu> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
Citation: |
bst citation info |
Materials: |
NEWS |
In views: |
MachineLearning |
CRAN checks: |
bst results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bst
to link to this page.