
Package ‘bulletcp’
March 16, 2019

Type Package

Title Automatic Groove Identification via Bayesian Changepoint
Detection

Version 1.0.0

Maintainer Nathaniel Garton <nate.garton13@gmail.com>

Description Provides functionality to automatically detect groove locations via a Bayesian change-
point detection method to be used in the data preprocessing step
of forensic bullet matching algorithms. The methods in this pack-
age are based on those in Stephens (1994) <doi:10.2307/2986119>. Bayesian changepoint detec-
tion will simply be an option
in the function from the package 'bulletxtrctr' which identifies the groove locations.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Depends mvtnorm, dplyr, stats, assertthat

Suggests knitr, rmarkdown, ggplot2

VignetteBuilder knitr

Imports Rdpack

RdMacros Rdpack

NeedsCompilation no

Author Nathaniel Garton [aut, cre],
Kiegan Rice [ctb]

Repository CRAN

Date/Publication 2019-03-16 09:13:22 UTC

R topics documented:
detect_cp . 2
get_grooves_bcp . 4

1

2 detect_cp

imputeGP . 5
mlgp . 6
raw_data . 7
robust_loess_fit . 7
runmcmc_cp0 . 8
runmcmc_cp1 . 9
runmcmc_cp1_left . 11
runmcmc_cp1_right . 13
runmcmc_cp2 . 15
runmcmc_cpall . 18

Index 21

detect_cp Impute data and estimate groove locations.

Description

This function is mostly just a wrapper function which calls the functions necessary to impute miss-
ing data, run the changepoint Gibbs algorithms, and select MAP estimates of the changepoint loca-
tions. Much less output is given for this function than for the functions called by this function. If all
goes well, one should only need to explicitly use this function to estimate groove locations. Note
that because this function calls the functions which do the Gibbs sampling, all of the input required
for those functions is required by this function.

Usage

detect_cp(data, iter = 5000, start.vals = NA, prop_var = NA,
cp_prop_var = NA, tol_edge = 50, tol_cp = 1000, warmup = 200,
verbose = FALSE, prior_numcp = rep(1/4, times = 4),
est_impute_par = FALSE, impute_par = c(0.8, 15))

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of iterations after warmup.

start.vals Starting values for the changepoint algorithm. Either NA valued or a named list
of lists. If list, the names of the lists should be "cp2","cp1", and "cp0". Each list
posessing one of those aforementioned names is a list of starting values identical
to what would be given if the changepoint algorithm were to be run with the
corresponding number of specified changepoints. List with elements "sigma",
"l", "cp", "beta", and "intercept." "sigma" and "l" are 3 element vectors where the
first element is for the data on the left groove. The second element is for the land
engraved area, and the third element is for the right groove. "cp" is the vector of
changepoint starting values. "beta" and "intercept" are two element vectors of
the slope and intercept for the left and right groove engraved area respectively.

detect_cp 3

If NA, default starting values will be used. Note that the changepoint starting
values should always be near the edges of the data.

prop_var Either NA valued or a list of named lists. If list, the names of the lists should
be "cp2","cp1", and "cp0". Each list posessing one of those aforementioned
names is a list of proposal covariance matrices identical to what would be given
if the changepoint algorithm were to be run with the corresponding number of
specified changepoints.

cp_prop_var The proposal variance-covariance matrix for the changepoints. Can either be NA
or a named list. If list, the names of the list items should be "cp2", "cp1" where
each is the appropriate proposal variance/covariance matrix for the number of
changepoints.

tol_edge This parameter controls how close changepoint proposals can be to the edge
of the data before getting automatically rejected. For example, a value of 10
means that the changepoint will be automatically rejected if either of the pro-
posal changepoints is within a distance of 10 x-values from either edge.

tol_cp This parameter controls how close changepoint proposals can be to each other
before getting automatically rejected. For example, a value of 10 means that the
changepoint will be automatically rejected if either of the proposal changepoints
is within a distance of 10 x-values from either each other.

warmup The number of warmup iterations. This should be set to a very small number of
iterations, as using too many iterations as warmup risks moving past the change-
points and getting stuck in a local mode. Default is set to 500.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

prior_numcp This is a vector with four elements giving the prior probabilities for the zero
changepoint model, the one changepoint on the left model, the one changepoint
on the right model, and the two changepoint model, in that order. Note that,
practically, because the likelihood values are so large, only very strong priors
will influence the results.

est_impute_par Logical value indicating whether parameters for the Gaussian process impu-
tation should be estimated before actually doing the imputation. Default is
FALSE, in which case the default imputation standard deviation is 0.8 and the
length scale is 15. The covariance function is a squared exponential. These
values have worked well in testing.

impute_par A two element vector containing the standard deviation and length scale (in that
order) to use for the Gaussian process imputation. These values will not be used
if the est_impute_par argument is set to TRUE.

Value

A named list containing the output from variable_cp_gibbs function, the range of data that was
actually used for the changepoint algorithm (since it doesn’t impute values past the outermost non-
missing values), and the estimated groove locations.

4 get_grooves_bcp

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()
cp_gibbs2 <- detect_cp(data = fake_groove,

verbose = FALSE,
tol_edge = 50,
tol_cp = 1000,
iter = 300,
warmup = 100,
est_impute_par = FALSE)

get_grooves_bcp Conforming get_grooves_"name" function.

Description

This is a wrapper function that comforms to the other get_grooves functions.

Usage

get_grooves_bcp(x, value, adjust = 10, ...)

Arguments

x numeric vector of locations in microns

value numeric vector of surface measurements in microns

adjust positive number to adjust the grooves - XXX should be expressed in microns
rather than an index

... Additional arguments to be passed to detect_cp_v2.

Value

A named list containing the output from variable_cp_gibbs function, the range of data that was
actually used for the changepoint algorithm (since it doesn’t impute values past the outermost non-
missing values), and the estimated groove locations.

imputeGP 5

Examples

data("example_data")
head(raw_data)
raw_data <- raw_data[seq(from = 1, to = nrow(raw_data), by = 30),]
cp_gibbs3 <- get_grooves_bcp(x = raw_data$x,

value = raw_data$value,
adjust = 10,
iter = 300,
warmup = 100)

imputeGP Impute missing data.

Description

This function imputes missing data based on a Gaussian process regression

Usage

imputeGP(y, x, sigma, l)

Arguments

y Numeric y vector of response values.

x Numeric x vector of locations used for the covariance function.

sigma Marginal standard deviation in the Gaussian process.

l Length scale parameter in the Gaussian process.

Value

A data frame with columns "x" and "y" which contain the combined observed and imputed data.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()
fake_groove <- fake_groove[sample.int(n = nrow(fake_groove),

size = round(0.8 * nrow(fake_groove)),
replace = FALSE),]

6 mlgp

fake_groove <- fake_groove[order(fake_groove$x),]
plot(fake_groove$x, fake_groove$y)

add NA values where the data are missing
x_na <- seq(from = min(fake_groove$x), to = max(fake_groove$x),
by = min(fake_groove$x[2:nrow(fake_groove)] - fake_groove$x[1:(nrow(fake_groove) - 1)]))
x_na <- x_na[!round(x_na, digits = 2) %in% round(fake_groove$x, digits = 2)]
y_na <- rep(NA, times = length(x_na))
d_na <- data.frame("x" = x_na, "y" = y_na)
fake_groove <- rbind(fake_groove, d_na)
fake_groove <- fake_groove[order(fake_groove$x),]

impute the data
full_data <- imputeGP(y = fake_groove$y, x = fake_groove$x, sigma = 0.9, l = 15)
head(full_data)
plot(full_data$x, full_data$y)

mlgp Impute missing data.

Description

This function performs maximum likelihood estimation to estimate the variance parameters in a
Gaussian process with a squared exponential covariance function. These parameters could then be
used in the Gaussian process used for imputation.

Usage

mlgp(y, x, tol = 1e-06)

Arguments

y Numeric y vector of response values.

x Numeric x vector of locations used for the covariance function.

tol Tolerance level for the maximum likelihood procedure to fit the Gaussian pro-
cess.

Value

Standard optim output. The first optimized parameter value is the standard deviation the second is
the length scale.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)

raw_data 7

y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()
fake_groove <- fake_groove[sample.int(n = nrow(fake_groove),

size = round(0.8 * nrow(fake_groove)),
replace = FALSE),]

plot(fake_groove$x, fake_groove$y)

estimate the MLE's
mles <- mlgp(y = fake_groove$y, x = fake_groove$x)

raw_data Example of an average of 2D crosscuts from the Hamby 44 data set.

Description

This data set is essentially a 2D crosscut from a land in the Hamby 44 set of bullet land scans.

Usage

raw_data

Format

A data frame with 3346 rows and two variables:

x location variable

value the height of the land at the given location described by x

Source

Hamby 44

robust_loess_fit Fit a robust loess regression

Description

Internal function called by get_grooves_lassobasic and get_grooves_lassofull

Usage

robust_loess_fit(cc, iter)

8 runmcmc_cp0

Arguments

cc data frame with columns x and value_std, representing the crosscut

iter number of iterations

Examples

data("example_data")
head(raw_data)
raw_data <- raw_data[seq(from = 1, to = nrow(raw_data), by = 30),]
plot(raw_datax, raw_datay)

set the minimum y-value to zero
check_min <- min(raw_data$value[!is.na(raw_data$value)])
raw_data <- dplyr::mutate(raw_data, value_std = value - check_min)

remove global structure
rlo_fit <- robust_loess_fit(cc = raw_data, iter = 20)
raw_data$rlo_pred <- predict(rlo_fit, newdata = raw_data)
raw_data$rlo_resid <- raw_data$value_std - raw_data$rlo_pred

define new data frame without the global structure
data <- data.frame("x" = raw_data$x, "y" = raw_data$rlo_resid)
plot(data$x, data$y)

runmcmc_cp0 Estimate a posterior distribution of data conditional on zero change-
points.

Description

This function runs a random walk Metropolis algorithm to estimate the posterior distribution of a
zero mean multivariate normal distribution with an covariance matrix generated by the exponential
covariance function. This functions assumes equally spaced locations ("x" values in the "data"
argument).

Usage

runmcmc_cp0(data, iter, start.vals, prop_var, warmup = 500,
verbose = FALSE)

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of interations after warmup.

start.vals List with elements "sigma" and "l" for the standard deviation and length scale
which parameterize the covariance matrix.

runmcmc_cp1 9

prop_var The proposal variance-covariance matrix for the random walk metropolis algo-
rithm.

warmup The number of initial iterations which serves two purposes: the first is to allow
the algorithm to wander to the area of most mass, and the second is to tune the
proposal variance.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

Value

A named list. "parameters" is a list of named parameter values each of which is a vector of length
"iter". "accept" gives the proportion of accepted proposals after warmup. "lp" is a vector of values
of the log data pdf at each sampled parameter value.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()
define starting values
start.vals <- list("sigma" = c(1), "l" = c(10))

proposal variance for the MH step
prop_var <- diag(c(1/2,1/2))

set.seed(1111)
m0cp <- runmcmc_cp0(data = fake_groove, iter = 500,

start.vals = start.vals,
prop_var = prop_var, warmup = 100, verbose = FALSE)

runmcmc_cp1 Estimate a posterior distribution of data conditional that there is one
groove.

Description

This function is basically a wrapper for running the left and right (one) changepoint Gibbs algo-
rithms. The only computation that this function does is to estimate the posterior means of the left
and right changepoint distributions.

10 runmcmc_cp1

Usage

runmcmc_cp1(data, iter, start.vals.left, start.vals.right, prop_var_left,
prop_var_right, cp_prop_var, tol_edge = 10, warmup = 500,
verbose = FALSE)

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of interations after warmup.
start.vals.left

Starting values for the changepoint algorithm assuming the groove is on the left.
List with elements "sigma", "l", "cp", "beta", and "intercept." "sigma" and "l"
are 2 element vectors where the first element is for the data to the left of the
changepoint. "cp" is the changepoint starting value. "beta" and "intercept" are
the slope and intercept starting values for the mean of the data model to the left
of the changepoint. which parameterize the covariance matrix.

start.vals.right

Starting values for the changepoint algorithm assuming the groove is on the
right.

prop_var_left The proposal variance for the random walk Metropolis algorithm assuming that
the groove is on the left. A two element list of the proposal variance-covariance
matrices for the random walk metropolis algorithm(s). The first element is for
the data to the left of the changepoint.

prop_var_right The proposal variance for the random walk Metropolis algorithm assuming that
the groove is on the right.

cp_prop_var The proposal variance for the changepoint.

tol_edge This parameter controls how close changepoint proposals can be to the edge of
the data before getting automatically rejected. For example, a value of 10 means
that the changepoint will be automatically rejected if the proposal is within a
distance of 10 x-values from either edge.

warmup The number of initial iterations which serves two purposes: the first is to allow
the algorithm to wander to the area of most mass, and the second is to tune the
proposal variance.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

Value

A named list with all of the output that the left and right changepoint functions produce individually
plus the posterior means of the left and right changepoints.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)

runmcmc_cp1_left 11

{
x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()

define starting values for the changepoints
cp_start_left <- min(fake_groove$x) + 60
cp_start_right <- max(fake_groove$x) - 60

define list of starting values for both the left and right changepoint models
start.vals <- list("left" = list("sigma" = c(1,1),

"l" = c(10,10),
"cp" = c(cp_start_left),
"beta" = c(-1),
"intercept" = c(0)),
"right" = list("sigma" = c(1,1),
"l" = c(10,10),
"cp" = c(cp_start_right),
"beta" = c(1),
"intercept" = c(0)))

list of starting values for each of the two MH steps
(not sampling the changepoint) for both the left and right changepoint models

prop_var <- list("left" = list(diag(c(1/2,1/2,1/2,1/2)),
diag(c(1/2,1/2))),
"right" = list(diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2, 1/2))))

define the proposal variance for the RWMH step sampling the changepoint
cp_prop_var <- 10^2

run Gibbs MCMC for both the right only and left only GEA models
set.seed(1111)
m1cp <- runmcmc_cp1(data = fake_groove, iter = 500,

start.vals.left = start.vals$left,
start.vals.right = start.vals$right,
prop_var_left = prop_var$left,
prop_var_right = prop_var$right,
cp_prop_var = cp_prop_var,
tol_edge = 50,
warmup = 100, verbose = FALSE)

runmcmc_cp1_left Estimate a posterior distribution of data conditional on a left groove
and no right groove.

12 runmcmc_cp1_left

Description

This function runs a random walk metropolis within Gibbs algorithm to estimate the posterior dis-
tribution of the value of the changepoint as well as the parameters fit in each multivariate normal
distribution on either side of the changepoint. The covariance matrices are both based on the ex-
ponential covariance function. This functions assumes equally spaced locations ("x" values in the
"data" argument). The distribution to the left of the changepoint has a mean that is a linear function
of the distance from the center of the data.

Usage

runmcmc_cp1_left(data, iter, start.vals, prop_var, cp_prop_var,
tol_edge = 50, warmup = 500, verbose = FALSE)

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of interations after warmup.

start.vals List with elements "sigma", "l", "cp", "beta", and "intercept." "sigma" and "l"
are 2 element vectors where the first element is for the data to the left of the
changepoint. "cp" is the changepoint starting value. "beta" and "intercept" are
the slope and intercept starting values for the mean of the data model to the left
of the changepoint. which parameterize the covariance matrix.

prop_var A two element list of the proposal variance-covariance matrices for the random
walk metropolis algorithm(s). The first element is for the data to the left of the
changepoint.

cp_prop_var The proposal variance for the changepoint.

tol_edge This parameter controls how close changepoint proposals can be to the edge of
the data before getting automatically rejected. For example, a value of 10 means
that the changepoint will be automatically rejected if the proposal is within a
distance of 10 x-values from either edge.

warmup The number of initial iterations which serves two purposes: the first is to allow
the algorithm to wander to the area of most mass, and the second is to tune the
proposal variance.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

Value

A named list. "parameters" is a list of named parameter values each of which is a vector of length
"iter". "accept" gives the proportion of accepted proposals after warmup. "lp" is a vector of values
of the log data pdf at each sampled parameter value. "gp_prop_var" and "cp_prop_var" are the
tuned proposal variances for the metropolis steps.

runmcmc_cp1_right 13

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()

define starting values for the changepoints
cp_start_left <- min(fake_groove$x) + 60
cp_start_right <- max(fake_groove$x) - 60

define list of starting values for both the left and right changepoint models
start.vals <- list("left" = list("sigma" = c(1,1),

"l" = c(10,10),
"cp" = c(cp_start_left),
"beta" = c(-1),
"intercept" = c(0)),
"right" = list("sigma" = c(1,1),
"l" = c(10,10),
"cp" = c(cp_start_right),
"beta" = c(1),
"intercept" = c(0)))

list of starting values for each of the two MH steps
(not sampling the changepoint) for both the left and right changepoint models

prop_var <- list("left" = list(diag(c(1/2,1/2,1/2,1/2)),
diag(c(1/2,1/2))),
"right" = list(diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2, 1/2))))

define the proposal variance for the RWMH step sampling the changepoint
cp_prop_var <- 10^2

run Gibbs MCMC for the left GEA model
set.seed(1111)
m1cp_left <- runmcmc_cp1_left(data = fake_groove, iter = 500, warmup = 100,

start.vals = start.vals$left,
prop_var = prop_var$left,
cp_prop_var = cp_prop_var,
verbose = FALSE, tol_edge = 50)

runmcmc_cp1_right Estimate a posterior distribution of data conditional on a left groove
and no right groove.

14 runmcmc_cp1_right

Description

This function runs a random walk metropolis within Gibbs algorithm to estimate the posterior dis-
tribution of the value of the changepoint as well as the parameters fit in each multivariate normal
distribution on either side of the changepoint. The covariance matrices are both based on the ex-
ponential covariance function. This functions assumes equally spaced locations ("x" values in the
"data" argument). The distribution to the right of the changepoint has a mean that is a linear func-
tion of the distance from the center of the data. Note that this function is identical to the 1cp_left
function, and more thorough documentation is in that file.

Usage

runmcmc_cp1_right(data, iter, start.vals, prop_var, cp_prop_var,
tol_edge = 50, warmup = 500, verbose = FALSE)

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of interations after warmup.

start.vals List with elements "sigma", "l", "cp", "beta", and "intercept." "sigma" and "l"
are 2 element vectors where the first element is for the data to the left of the
changepoint. "cp" is the changepoint starting value. "beta" and "intercept" are
the slope and intercept starting values for the mean of the data model to the left
of the changepoint. which parameterize the covariance matrix.

prop_var A two element list of the proposal variance-covariance matrices for the random
walk metropolis algorithm(s). The first element is for the data to the left of the
changepoint.

cp_prop_var The proposal variance for the changepoint.

tol_edge This parameter controls how close changepoint proposals can be to the edge of
the data before getting automatically rejected. For example, a value of 10 means
that the changepoint will be automatically rejected if the proposal is within a
distance of 10 x-values from either edge.

warmup The number of initial iterations which serves two purposes: the first is to allow
the algorithm to wander to the area of most mass, and the second is to tune the
proposal variance.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

Value

A named list. "parameters" is a list of named parameter values each of which is a vector of length
"iter". "accept" gives the proportion of accepted proposals after warmup. "lp" is a vector of values
of the log data pdf at each sampled parameter value. "gp_prop_var" and "cp_prop_var" are the
tuned proposal variances for the metropolis steps.

runmcmc_cp2 15

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()

define starting values for the changepoints
cp_start_left <- min(fake_groove$x) + 60
cp_start_right <- max(fake_groove$x) - 60

define list of starting values for both the left and right changepoint models
start.vals <- list("left" = list("sigma" = c(1,1),

"l" = c(10,10),
"cp" = c(cp_start_left),
"beta" = c(-1),
"intercept" = c(0)),
"right" = list("sigma" = c(1,1),
"l" = c(10,10),
"cp" = c(cp_start_right),
"beta" = c(1),
"intercept" = c(0)))

list of starting values for each of the two MH steps
(not sampling the changepoint) for both the left and right changepoint models

prop_var <- list("left" = list(diag(c(1/2,1/2,1/2,1/2)),
diag(c(1/2,1/2))),
"right" = list(diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2, 1/2))))

define the proposal variance for the RWMH step sampling the changepoint
cp_prop_var <- 10^2

run Gibbs MCMC for the right GEA model
set.seed(1111)
m1cp_right<- runmcmc_cp1_right(data = fake_groove, iter = 500, warmup = 100,

start.vals = start.vals$right,
prop_var = prop_var$right,
cp_prop_var = cp_prop_var,
verbose = FALSE, tol_edge = 50)

runmcmc_cp2 Estimate a posterior distribution of data conditional that there are two
grooves.

16 runmcmc_cp2

Description

This function runs a random walk metropolis within Gibbs algorithm to estimate the posterior dis-
tribution of the value of the changepoints as well as the parameters fit in each multivariate normal
distribution on either side of each changepoint. The covariance matrices are based on the exponen-
tial covariance function. This functions assumes equally spaced locations ("x" values in the "data"
argument). The distribution to the right of the right most changepoint and to the left of the left most
changepoint have means that are a linear function of the distance from the center of the data. The
slope is constrained to be negative in the left case and positive in the right case. The models fit to
the groove engraved areas are exactly the same as in the one changepoint case. Thus, this algorithm
only differs in that there are three segments of data to deal with as opposed to two.

Usage

runmcmc_cp2(data, iter, start.vals, prop_var, cp_prop_var, tol_edge = 50,
tol_cp = 1000, warmup = 500, verbose = FALSE)

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of interations after warmup.

start.vals Starting values for the changepoint algorithm. List with elements "sigma", "l",
"cp", "beta", and "intercept." "sigma" and "l" are 3 element vectors where the
first element is for the data on the left groove. The second element is for the land
engraved area, and the third element is for the right groove. "cp" is the vector of
changepoint starting values. "beta" and "intercept" are two element vectors of
the slope and intercept for the left and right groove engraved area respectively.

prop_var A three element list of the proposal variance-covariance matrices for the random
walk Metropolis algorithm(s). The first element is for the left groove engraved
area. The second element is for the land engraved area, and the third element is
for the right engraved area.

cp_prop_var The proposal variance-covariance matrix for the changepoints.

tol_edge This parameter controls how close changepoint proposals can be to the edge
of the data before getting automatically rejected. For example, a value of 10
means that the changepoint will be automatically rejected if either of the pro-
posal changepoints is within a distance of 10 x-values from either edge.

tol_cp This parameter controls how close changepoint proposals can be to each other
before getting automatically rejected. For example, a value of 10 means that the
changepoint will be automatically rejected if either of the proposal changepoints
is within a distance of 10 x-values from either each other.

warmup The number of initial iterations which serves two purposes: the first is to allow
the algorithm to wander to the area of most mass, and the second is to tune the
proposal variance.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

runmcmc_cp2 17

Value

A named list containing the sampled parameters, acceptance rates for the Metropolis steps, log
likelihood values, and proposal variance for the changepoints.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()

define starting values for the changepoints
cp_start_left <- min(fake_groove$x) + 60
cp_start_right <- max(fake_groove$x) - 60

define starting values
start.vals <- list("sigma" = c(1,1,1),

"l" = c(10,10,10),
"cp" = c(cp_start_left, cp_start_right),
"beta" = c(-2,2),
"intercept" = c(0,0))

define proposal variances (not for changepoints)
prop_var <- list(diag(c(1/2,1/2,1/2,1/2)),

diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2,1/2)))

define proposal variance for changepoints
cp_prop_var <- diag(c(10^2, 10^2))

run Gibbs MCMC for both the right only and left only GEA models
set.seed(1111)
m2cp <- runmcmc_cp2(data = fake_groove,

iter = 500,
start.vals = start.vals,
prop_var = prop_var,
cp_prop_var = cp_prop_var,
tol_edge = 50, tol_cp = 1000,
warmup = 100,
verbose = FALSE)

18 runmcmc_cpall

runmcmc_cpall Estimate posterior distributions for the 0, 1, or 2 changepoint case.

Description

This function runs the changepoint functions designed for the cases when there are 0, 1, or 2 change-
points. It then returns a subset of the results that are returned for each function individually. This
subset of results is enough to decide the likely number of shoulders, the locations of the shoulders
(if they exist), as well as the posterior samples for the changepoints for minimal diagnostic use.

Usage

runmcmc_cpall(data, iter = 8000, start.vals = NA, prop_var = NA,
cp_prop_var = NA, tol_edge = 50, tol_cp = 1000, warmup = 500,
verbose = FALSE, prior_numcp = rep(1/4, times = 4))

Arguments

data Data frame with columns "x" and "y." "x" is a column of the locations of the
observed residual values, y.

iter Number of iterations after warmup.

start.vals Starting values for the changepoint algorithm. Either NA valued or a named list
of lists. If list, the names of the lists should be "cp2","cp1", and "cp0". Each list
posessing one of those aforementioned names is a list of starting values identical
to what would be given if the changepoint algorithm were to be run with the
corresponding number of specified changepoints. List with elements "sigma",
"l", "cp", "beta", and "intercept." "sigma" and "l" are 3 element vectors where the
first element is for the data on the left groove. The second element is for the land
engraved area, and the third element is for the right groove. "cp" is the vector of
changepoint starting values. "beta" and "intercept" are two element vectors of
the slope and intercept for the left and right groove engraved area respectively.
If NA, default starting values will be used. Note that the changepoint starting
values should always be near the edges of the data.

prop_var Either NA valued or a list of named lists. If list, the names of the lists should
be "cp2","cp1", and "cp0". Each list posessing one of those aforementioned
names is a list of proposal covariance matrices identical to what would be given
if the changepoint algorithm were to be run with the corresponding number of
specified changepoints.

cp_prop_var The proposal variance-covariance matrix for the changepoints. Can either be NA
or a named list. If list, the names of the list items should be "cp2", "cp1" where
each is the appropriate proposal variance/covariance matrix for the number of
changepoints.

tol_edge This parameter controls how close changepoint proposals can be to the edge
of the data before getting automatically rejected. For example, a value of 10
means that the changepoint will be automatically rejected if either of the pro-
posal changepoints is within a distance of 10 x-values from either edge.

runmcmc_cpall 19

tol_cp This parameter controls how close changepoint proposals can be to each other
before getting automatically rejected. For example, a value of 10 means that the
changepoint will be automatically rejected if either of the proposal changepoints
is within a distance of 10 x-values from either each other.

warmup The number of warmup iterations. This should be set to a very small number of
iterations, as using too many iterations as warmup risks moving past the change-
points and getting stuck in a local mode. Default is set to 500.

verbose Logical value indicating whether to print the iteration number and the parameter
proposals.

prior_numcp This is a vector with four elements giving the prior probabilities for the zero
changepoint model, the one changepoint on the left model, the one changepoint
on the right model, and the two changepoint model, in that order. Note that,
practically, because the likelihood values are so large, only very strong priors
will influence the results.

Value

A named list containing the sampled changepoint locations for both the one and two changepoint
scenarios, the posterior changepoint means, the average log pdf values from the data model un-
der each model, the maximum log probability values under each model log likelihood values, and
estimates of the maximum a posteriori changepoint value under each model.

Examples

Fake data
sim_groove <- function(beta = c(-0.28,0.28), a = 125)
{

x <- seq(from = 0, to = 2158, by = 20)
med <- median(x)
y <- 1*(x <= a)*(beta[1]*(x - med) - beta[1]*(a - med)) +
1*(x >= 2158 - a)*(beta[2]*(x - med) - beta[2]*(2158 - a - med))
return(data.frame("x" = x, "y" = y))

}

fake_groove <- sim_groove()

define starting values for the changepoints
cp_start_left <- min(fake_groove$x) + 60
cp_start_right <- max(fake_groove$x) - 60

define list of starting values for both the left and right changepoint models
cp0.start.vals <- list("sigma" = c(1), "l" = c(10))
cp1.start.vals <- list("left" = list("sigma" = c(1,1),

"l" = c(10,10),
"cp" = c(cp_start_left),
"beta" = c(-1),
"intercept" = c(0)),
"right" = list("sigma" = c(1,1),
"l" = c(10,10),
"cp" = c(cp_start_right),

20 runmcmc_cpall

"beta" = c(1),
"intercept" = c(0)))

cp2.start.vals <- list("sigma" = c(1,1,1),
"l" = c(10,10,10),
"cp" = c(cp_start_left, cp_start_right),
"beta" = c(-2,2),
"intercept" = c(0,0))

start.vals <- list("cp2" = cp2.start.vals, "cp1" = cp1.start.vals, "cp0" = cp0.start.vals)

list of starting values for each of the two MH steps
(not sampling the changepoint) for both the left and right changepoint models
prop_var_0cp <- diag(c(1/2,1/2))
prop_var_lrcp <- list("left" = list(diag(c(1/2,1/2,1/2,1/2)),

diag(c(1/2,1/2))),
"right" = list(diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2, 1/2))))

prop_var_2cp <- list(diag(c(1/2,1/2,1/2,1/2)),
diag(c(1/2,1/2)),
diag(c(1/2,1/2,1/2,1/2)))

prop_var <- list("cp2" = prop_var_2cp, "cp1" = prop_var_lrcp, "cp0" = prop_var_0cp)

define the proposal variance for the RWMH step sampling the changepoint
cp_prop_var <- list("cp2" = diag(c(10^2, 10^2)),

"cp1" = 10^2)

prior on the number of changepoints
prior_numcp <- rep(1/4, times = 4)

set.seed(1111)
cp_gibbs <- runmcmc_cpall(data = fake_groove,

start.vals = start.vals,
prop_var = prop_var,
cp_prop_var = cp_prop_var,
verbose = FALSE,
tol_edge = 50,
tol_cp = 1000,
iter = 300,
warmup = 100,
prior_numcp = prior_numcp)

Index

∗Topic datasets
raw_data, 7

detect_cp, 2

get_grooves_bcp, 4

imputeGP, 5

mlgp, 6

raw_data, 7
robust_loess_fit, 7
runmcmc_cp0, 8
runmcmc_cp1, 9
runmcmc_cp1_left, 11
runmcmc_cp1_right, 13
runmcmc_cp2, 15
runmcmc_cpall, 18

21

	detect_cp
	get_grooves_bcp
	imputeGP
	mlgp
	raw_data
	robust_loess_fit
	runmcmc_cp0
	runmcmc_cp1
	runmcmc_cp1_left
	runmcmc_cp1_right
	runmcmc_cp2
	runmcmc_cpall
	Index

